
Received August 24, 2019, accepted October 3, 2019, date of publication October 18, 2019, date of current version October 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948220

Accelerating CS-MRI Reconstruction With
Fine-Tuning Wasserstein Generative Adversarial
Network
MINGFENG JIANG 1, ZIHAN YUAN1, XU YANG1, JUCHENG ZHANG2, YINGLAN GONG3,
LING XIA3, AND TIEQIANG LI4,5
1School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2Department of Clinical Engineering, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310019, China
3Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
4Institute of Informatic Engineering, China Jiliang University, Hangzhou 310018, China
5Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden

Corresponding author: Mingfeng Jiang (m.jiang@zstu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672466, Grant 61671405, and Grant
61701435, in part by the Joint Fund of Zhejiang Provincial Natural Science Foundation under Grant LSZ19F010001, in part by the Natural
Science Foundation of Zhejiang Province under Grant LY17H180003, in part by the Science Technology Department of Zhejiang Province
under Grant LGG18H180001, and in part by the 521 Talents project of Zhejiang Sci-Tech University.

ABSTRACT Compressed sensing magnetic resonance imaging (CS-MRI) is a time-efficient method to
acquire MR images by taking advantage of the highly under-sampled k-space data to accelerate the time
consuming acquisition process. In this paper, we proposed a de-aliasing fine-tuning Wasserstein generative
adversarial network (DA-FWGAN) for imaging reconstruction of highly under-sampled k-space data in
CS-MRI. In the architecture, we used the fine-tuning method for accurate training of the neural network
parameters and the Wasserstein distance as the discrepancy measure between the real and reconstructed
images. Furthermore, for better preservation of the fine structures in the reconstructed images, we incor-
porated perceptual loss, image and frequency loss into the loss function for training the network. With
experimental results from 3 different sampling schemes and 3 levels of sampling rates, we compared the
reconstruction performance of the DA-FWGAN method with other state-of-the-art deep learning methods
for CS-MRI reconstruction, including ADMM-Net, Pixel-GAN, and DAGAN. The proposed DA-FWGAN
method outperforms all other methods and can provide superior reconstruction with improved peak signal-
to-noise ratio (PSNR) and structural similarity index measure.

INDEX TERMS Fine-tuning, image reconstruction, magnetic resonance image (MRI), Wasserstein genera-
tive adversarial network (WGAN).

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) is a widely used med-
ical image technology [1]–[3] and can provide non-invasive
diagnostic imaging of the tissue structures in the human body.
WithMRI, we acquire the k-space data [4] in the time domain
and perform the image reconstruction using inverse fast
Fourier transformation (FFT) to generate real-space images in
the frequency domain. MRI does not involve exposure to ion-
izing radiation, and thus avoids the associated carcinogenic
risk. However, the scanning time to acquire high-resolution
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images can be too long for some patients to endure the
discomfort of keeping the same posture. In addition, imaging
quality is susceptible to physiological movements andmotion
artifacts. Therefore, how to accelerate the acquisition speed
and improve the quality of MRI has been one of the important
research topics in MRI. The current promising technolo-
gies for fast MRI include mainly CS-MRI based meth-
ods [5], such as graph-based redundant wavelet transform
[6], pseudo-polar [7], CS-MRI reconstruction using GPUs
[8], multi-contrast guided graph representation [9], CS-MRI
reconstruction via group-based eigenvalue decomposition
and estimation [10], and CS-MRI with phase noise distur-
bance based on adaptive tight frame and total variation [11].
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Other development directions include the combination meth-
ods of parallel imaging with compressed sensing, such as
k-t Sparse SENSE [12], iGRASP [13], learning joint-sparse
codes for calibration-free parallelMR imaging [14], low-rank
model forMRI, using redundant wavelet tight frame [15], and
dictionary learning based reconstruction methods [16]–[19].

Recently, the deep learning method [20] has received great
attention. Because of its breakthroughs in computer vision,
it has found applications in areas such as super-resolution
imaging [21], denoising, image inpainting [22], and recon-
struction [23]. Particularly, transfer learning [24] has become
a promising method to transfer the parameters of a trained
model to a new model, so as to speed up the learning effi-
ciency of the optimized model. Fine-tuning [25] is one of
the commonly used transfer learning methods, which starts
directly with a pre-trained deep neural network to seek ‘‘wor-
thy’’ samples, which are then continuously fine-tuned further
by incorporating newly annotated samples in each iteration to
enhance the network performance incrementally.

At present, the deep learning based methods have been
applied to image reconstruction in MRI [26], [27], including
two mainly different network structures: the convolutional
neural networks (CNN) and generative adversarial network
(GAN).Wang et al. [28] designed and trained an offline CNN
tomap the relationship between theMR images reconstructed
from the under- and fully-sampled k-space data. For the first
time, CNN was successfully applied to MRI reconstruction.
Once the CNNmodel is trained, highly undersampled k-space
data can be reconstructed quickly and accurately by using
the CNN model. The reconstructed image is quite similar to
the corresponding fully sampled image. In addition, a deep
cascade of convolutional neural networks (CNNs) was pro-
posed for reconstructing dynamic sequences of 2D cardiac
MR images from undersampled data [29], which can accel-
erate the data acquisition process significantly. Deep learning
networks have also been used to initialize the classic CS-MRI
either in a two-stage reconstruction or integrating directly into
the CS-MRI reconstruction as an additional regularization
term [30]. To improve the reconstruction accuracy and com-
putational speed for CS-MRI, Yang et al. [31] developed a
novel deep architecture, ADMM-Net, whichwas defined over
a data flow graph and derived from the iterative procedures in
Alternating Direction Method of Multipliers (ADMM) algo-
rithm [32]. It has been reported that the ADMM-Net method
can significantly improve the baseline ADMM algorithm and
achieve high accuracy reconstruction with fast computational
speed. In summary, compared with traditional CS-MRImeth-
ods, the CNN-based reconstruction methods have potential to
reduce the MRI scanning time, speed up the reconstruction
and improve the imaging quality.

With the development of deep learning technology,
the Generative Adversarial Network (GAN) proposed by
Goodfellow et al. [33], has recently been demonstrated
to have good performance in image transformation [34]
and super-resolution imaging [35]. More recently, deep de-
aliasing generative adversarial network method (DAGAN)

has been implemented for fast CS-MRI [36]. Accumulat-
ing evidence shows that GAN-based methods can achieve
better image quality than ADMM-Net methods. As one of
the variant network structures, Wasserstein GAN [37] has
been developed to tackle the problem of network training
instability, which is believed to be associated with the exis-
tence of undesirable sharp gradients of the GAN discrimi-
nator function. Yang et al. [38] adopted Wasserstein GAN
for denoising low-dose CT images and attained a successful
application in medical imaging reconstruction. The recent
study by Antun et al. [39] also underscores the importance
of stability in using deep learning network for CS-MRI
reconstruction. Deep learning method can work well in an
enclosed condition, therefore, undetectable perturbations will
cause unpredictable reconstruction results. Some constraints
are an effective way to solve this issue. Overall, the deep
learning method is a promising way for accelerating MR
image reconstruction.

In this study, we proposed a novel de-aliasing fine-tuning
Wasserstein generative adversarial network (DA-FWGAN)
for CS-MRI reconstruction, which can further improve the
reconstruction performance of DAGAN method. The gener-
ator was designed as three U-Net [40], [41] neural network
architecture with refinement learning and skip connections
[42]. The purpose of the three U-Net is to train the generator
model from coarse to fine. In addition, the discriminator
built in the CNN architecture does not include the sigmoid
layer. The discriminator loss function was converted to the
Wasserstein distance [43], [44] between the real and recon-
structed images. Perceptual loss, the image and frequency
loss were also incorporated into the loss function [35] in order
to enhance the quality of the reconstructed image. Moreover,
root mean square propagation (RMSProp) was proposed to
optimize the loss function.

II. METHODS
A. LINKED NEURAL NETWORK TO CS-MRI
If we denote X ∈ CN×N as the reconstruction image and
Y ∈ CN×N as the undersampled k-space data [45],
the CS-MRI reconstruction can be formulated as follows:

Y = FuX+ ε (1)

where Fu presents Fourier transformation operation matrix
with under-sampled mask, ε means the noise. In the tradi-
tional CS-MRI algorithm, a-priori information is always used
to overcome the ill-posed property of the image reconstruc-
tion so as to reconstruct accurately the image X from under-
sampled k-space dataY. Recently, neural networks have been
incorporated as constraints to obtain a unique solution for the
reconstruction problem [28], [36], which can be formulated
in the following way:

min
x

1
2
‖FuX− Y‖22 + ϕR(X)+ λ

∥∥X− fnn (Z|θ∗)∥∥22 (2)

where 1
2 ‖FuX− Y‖22 is the data fidelity term, R(X) repre-

sents regularization term, and ϕ is a regularization parameter
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in CS-MRI.Z is the zero-filled reconstruction from the under-
sampled k-space measurements Y. fnn (Z|θ∗) represents the
image generated by the neural networks, θ∗ represents the
optimal parameters of the trained neural networks, and λ is
the regularization parameter.

B. FROM GAN TO WGAN
The original GANnetworks are deep neural network architec-
tures comprised of two nets: a generator G and a discrimina-
torD. In the context of CS-MRI reconstruction, the generator
continuously learns the true probability distribution of the
training data, X, and zero-filled undersampled reconstructed
images, Z, to mimic the true probability distribution. That is,
the generated full MR image from a zero-filling reconstruc-
tion (i.e., image generated from under-sampled k-space data)
is within a small distance to the fully sampled image and the
generator targets to make the discriminator unable to discern
if the image is real or generated. The discriminator distin-
guishes whether the reconstructed image by the generator
conforms to the fully sampled real image, thereby, identifies
if the output result is real or reconstructed. Mathematically,
it can be formulated as a minimax game, and the ultimate goal
is to achieve a Nash equilibrium. The MRI reconstruction
problem is to generate images, which are equal to the fully
sampled real image. This can be expressed as follows [36]:

min
G

max
D

L(D,G) = EX∼Pdata(X)[logD(X)]

+EZ∼PZ (Z)[log(1− D(G(Z)))] (3)

where E represents mathematical expectation, and P data (X)
is the real data distribution.

Let PG(X) be the distribution induced by the generator, for
a fixed generator, the optimal discriminator is

D∗(X) =
Pdata(X)

Pdata(X)+ PG(X)
st. Pdata(X) = PG(X) (4)

when the discriminator is optimal, the minimax game
is reduced into a minimization over the generator as
follows [33]:

min
G
L
(
D∗,G

)
= JSD (Pdata‖PG)− log(2) (5)

As shown in (5), the more the discriminator becomes
trained, the more the generator gradient disappears. The
Jensen-Shannon divergence (JSD) [47] is abrupt in the orig-
inal GAN and is either maximal or minimum, whereas the
Wasserstein distance is smooth and can avoid the gradient
disappearance problem to improve the training stability. JSD
can lead to instability in network training and mode collapse.
Wasserstein GAN provides an effective way to overcome
this issue. In this study, the Wasserstein distance (aka Earth-
Mover distance) is used to reflect the gap between PG and
Pdata [46] according to following formula

W (Pdata,PG) = inf
γ∼5(Pdata,PG)

E(X,Z)∼γ [‖X− Z‖] (6)

The function of the network is to learn continuously from
the mapping G : Z→ X, which generates MR images from

undersampled and zero-filled MR data. The gap between the
real and reconstructed image becomes smaller and smaller
over the training process. The optimal reconstruction model
can be approached by continuously adjusting the parameters
in the neural network through a large number of samples.
The JSD was used as evaluation criterion in the loss function
of the original GAN. To mitigate the gradient disappearance
in the WGAN based reconstruction model, the evaluation
criterion is formulated as the following:

min
G

max
D

LWGAN (D,G) = −EX∼Pdata(X)[D(X)]

+EZ∼PZ (Z)[D(G(Z))] (7)

C. CONTINUOUS FINE-TUNING
Transfer learning is an effective way to solve the prob-
lem with a small training sample and use the pre-trained
model to improve the generalization ability of the network.
In this work, we combined transfer learning with fine-tuning
method. The procedure of fine-tuning is continuous training
from coarse to fine. The coarse procedure is to pre-train the
model (the first two layers of U-Net of the generator) with a
small sample size. And the fine procedure is to continuously
fine-tune the wholemodel with the augmented datasets on top
of the pre-trained model in an incremental fashion until the
performance is satisfactory. The difference between the fine-
tuning method and training from scratch is that the former
uses the trained parameters to initialize and the latter achieves
initialization according to the way specified by the network.
With the proposed DA-FWGAN architecture, the fine-tuning
method can shorten the convergence time and significantly
improve the quality of the generated images, especially when
the target dataset is small.

D. LOSS FUNCTION
The loss function provides a measure to estimate the gap
between the real and reconstructed MR image. The smaller
the loss function value is, the more robust the DA-FWGAN
model becomes. In order to improve the quality of the recon-
struction, we proposed to incorporate the perceptual loss,
image domain mean square error (iMSE), frequency domain
mean squared error (fMSE), and the adversarial loss together
as the loss function of the generator [36].

First, the iMSE and fMSE based loss functions can be
formulated as

min
G
LiMSE (G) =

1
2
‖Xt − Xu‖

2
2 (8)

min
G
LfMSE (G) =

1
2

∥∥Ŷt − Ŷu
∥∥2
2 (9)

where Xt and Xu are fully sampled and reconstructed MR
images, respectively. Ŷt and Ŷu correspond to the frequency
domain data of Xt and Xu, respectively. The perceptual loss
and adversarial loss are defined as

min
G
LVGG(G) =

1
2
‖fVGG (Xt)− fVGG (Xu)‖

2
2 (10)
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min
G
LGEN (G) = EZ∼PZ (Z)[D (G (Z))] (11)

where fVGG is VGG16 network [48]. PZ (Z) is the distribu-
tion of the reconstructed MR images. So, the combined loss
function can be presented as

Lconbine = αLiMSE + βLfMSE + δLVGG + LGEN (12)

E. PROPOSED NETWORK
The key idea for the proposed DA-FWGAN approach is to
introduce Wasserstein distance as the new evaluation crite-
rion in GAN-based MRI reconstruction and use fine-tuning
method for the training of the model from coarse to fine. Sim-
ilar to the original GAN network, the overall network archi-
tecture is divided into two parts: generator and discriminator.
The generator is designed as three cascading U-Net CNN
architectures with refinement learning and skips connections.
The first U-Net consists of 4 convolution layers (encoder) and
4 deconvolution layers (decoder); the second consists of 6
convolution layers and 6 deconvolution layers, and the last
U-Net set includes 8 convolution layers and 8 deconvolution
layers. The discriminator is a CNN architecture without the
sigmoid layer. To assess the similarity degree between the
real and reconstructed images we calculate the Wasserstein
distance between them. The updated values of discriminator
parameters are truncated to a small range to overcome the
issue of gradient disappearance. The perceptual loss, image
loss, and frequency loss are also incorporated into the loss
function to enhance the output quality from the generator.
Moreover, the generator target is converted to minimize the
Wasserstein distance and RMSProp is used to optimize the
loss function. Specifically, the generator and discriminator
are trained alternatively by fixing one and updating the other.
The proposed network architecture is schematically shown
in Fig. 1.

FIGURE 1. Schematics of the proposed DA-FWGAN architecture.

FIGURE 2. The three different under sampling masks, from left to right
are: the 1D Gaussian mask(a), 2D Gaussian mask(b), and radial sampling
mask(c).

III. EXPERIMENTS
A. EXPERIMENTAL PROCEDURES AND ANALYSIS
METHODS
The diencephalon challenge dataset of the MICCAI 2013
grand challenge (https://www.synapse.org/#!Synapse:syn319
3805/wiki/217780) [36] was used to train and test the
DA-FWGAN model. During the training procedure, a small
number of training samples were introduced to train the first
two U-Nets of the network, and then datasets of two different
sizes were used to train the rest of the network. Therefore,
three datasets of different sizes were used to train the network
model. The first batch consisted of 30 randomly selected 3D
MRI datasets and was used as the pre-training sets. 70%
(5000 effective 2D images) were used as training samples
and 30% (2100 effective 2D image) as validation samples.
The second batch consisted of 100 randomly selected 3D
MRI datasets and was used as training sets. The training and
validation samples were 70% (15800 effective 2D images)
and 30% (6700 effective 2D images), respectively. The third
batch was the same size as the first one. In this report, two
different independent tests were conducted to validate the
performances of the proposed DA-FWGAN model.

Three different under sampling masks were proposed to
acquire the k-space data, i.e., 1D Gaussian distribution, 2D
Gaussian distribution and radialmask, as shown in Fig. 2. Dif-
ferent sampling rates of 10%, 20%, and 30%were introduced
to evaluate the reconstruction performance of the different
methods. The selected sampling rates represent 10, 5, and
3.3 folds of acquisition accelerations, respectively.

Both the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) were used to evaluate the
quality of reconstructed MR image.

PSNR = 10 log10

(
2552

MN
∑M

i=1
∑N

j=1(yi,j − xi,j)2

)
(13)

where x is the fully sampled image, y is the reconstructed
image for the under samplings, i and j are the coordinates of
the pixels and the size of the image isM × N

SSIM =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ

2
y + C1

) (
σ 2
x + σ

2
y + C2

) (14)

where µx and µy are the means for the images x, y respec-
tively. σx and σy are the image variances of x, y, respectively.
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FIGURE 3. The reconstruction results for the 10-fold accelerated k-space data masked with the 1D Gaussian distribution. In the first row, from left to
right are the fully sampled grand-truth MR image (a), and the under-sampled reconstruction results obtained using ADMM-Net (b), Pixel-GAN (c),
DAGAN (d), DA-WGAN (e), and DA-FWGAN (f). In the 2nd row, from left to right are the 1D Gaussian mask (g), and the corresponding residual images
for ADMM-Net (h), Pixel-GAN (i), DAGAN (j), DA-WGAN (k), and DA-FWGAN (l). The framed square region indicates the zoom insert.

σxy is the covariance of x and y. The constant values C1
and C2 are used to maintain stability and are determined by
simplified calculation formula.

C1 = (k1L)2 (15)

C2 = (k2L)2 (16)

where k1 is 0.01 and k2 is 0.03. L is the dynamic range of
pixel values.

To avoid contingency caused by single analysis approach. Two
independents analysis methods were used to assess the recon-
struction performance of the proposed deep learning method.
One is to compute the average quality metrics: PSNRs and
SSIMs, for all the reconstructed images (5200 effective 2D
image samples) and the other is to select and evaluate a
representative image out of the testing examples.

B. NETWORK TRAINING SETTINGS
A server, based on Intel(R) Xeon(R) Gold 6148 CPU and
Tesla V100-SXM2 GPU was configured using the CentOS
system. Python and TensorFlow frameworks were the devel-
opment environments.

The DA-FWGAN network was trained to reconstruct
images from k-space data with different levels of under-
sampling rates. We used the following fixed mutual hyper-
parameters: the batch size of 16, the initial learning rate
of 0.0001, and the learning rate attenuation factor of 0.5. The
α, β, and δ parameters in the loss function were set to 15,
0.1, and 0.0025, respectively. The learning rate was updated
every 5 epochs. The update range of discriminator parameter
was 0.01.

We took advantage of the VGG16 network architecture
and used a pre-trained model and its function for percep-
tual loss [48]. In order to avoid over-fitting, the normalized
mean square error (NMSE) was utilized as the criterion to

determine the optimal model. If the current NMSE is smaller
than those found in the next 10 epochs, then we would stop
training the network further and save the current model as the
optimal model.

IV. RESULTS
As stateded above, a batch of 3D MRI samples of three
different sampling masks were used to train the GAN model.
After training the model, samples of different sizes were
tested to validate the reconstruction performances of the pro-
posed DA-FWGAN method. The qualitative performance of
the DA-FWGAN method (in terms of visual inspection for
the reconstructed MR images) and quantitative metrics of the
reconstruction results (in terms of PSNR and SSIM) were
compared to other state-of-the-art deep learning methods.

As shown in Fig. 3, in comparison with the fully sampled
grand-truth image (Fig. 3a) the reconstructed images for the
k-space data with 10% sampling rate depict various degrees
of artifacts, which is apparent by visual inspection of the
images and their corresponding residual images. It is evident
that the reconstruction quality for the ADMM-Net (Fig. 3b)
and Pixel-GAN (Fig. 3c) are quite poor and the structural
details are lost seriously. Although the reconstruction quality
for the DAGAN method (Fig. 3d) is somewhat improved,
there is still significant loss of structural information and the
edges of the image are too smooth. In contrast, the reconstruc-
tion qualities for the DA-WGAN (Fig. 3e) and DA-FWGAN
(Fig. 3f) methods are substantially improved, as indicated
by the reduced residual amplitudes (see Figs. 3k and 3l).
The proposed DA-FWGAN method preserves more detailed
structural information. The reconstructed image (Fig. 3f)
has clear texture details and most of the aliasing artifacts
are effectively suppressed even with 10-fold acquisition
acceleration.
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FIGURE 4. The reconstruction results for the 10-fold accelerated k-space data masked with the 2D Gaussian distribution. In the first row, from left to
right are the fully sampled grand-truth MR image (a), and the under-sampled reconstruction results obtained using ADMM-Net (b), Pixel-GAN (c),
DAGAN (d), DA-WGAN (e), and DA-FWGAN (f). In the 2nd row, from left to right are the 2D Gaussian mask (g), and the corresponding residual images
for ADMM-Net (h), Pixel-GAN (i), DAGAN (j), DA-WGAN (k), and DA-FWGAN (l).

FIGURE 5. The reconstruction results for the 10-fold accelerated k-space data masked with the 2D radial sampling. In the first row, from left to right
are the fully sampled grand-truth MR image (a), and the under-sampled reconstruction results obtained using ADMM-Net (b), Pixel-GAN (c), DAGAN
(d), DA-WGAN (e), and DA-FWGAN (f). In the 2nd row, from left to right are the 2D radial mask (g), and the corresponding residual images for
ADMM-Net (h), Pixel-GAN (i), DAGAN (j), DA-WGAN (k), and DA-FWGAN (l).

As shown in Fig. 4, we have obtained similar results for
the 10-fold accelerated k-space sampling masked with a 2D
Gaussian distribution. The WGAN based methods perform
better than the other three methods, and DA-FWGAN outper-
forms DA-WGAN method slightly. Furthermore, compared
to the 1D Gaussian mask with the same sampling coverage,
the sampling scheme based on a 2D Gaussian mask provides
significantly better image quality, as expected from the fact
that the 2D Gaussian mask acquires more data points in the
center of k-space.

The reconstructed MR images by using different methods
with 10% radial sampling mask are presented in Fig. 5.
It can be found that, with highly under-sampled radial mask,

the proposed DA-FWGAN method outperforms all other
reconstruction methods and can reconstruct the MR image
with clearer border. Moreover, compared with other two
under-sampling masks, the reconstruction results of radial
sampling are superior to the 1D Gaussian reconstruction
results, and comparable to the 2D Gaussian reconstruction
results.

In addition to the qualitative comparison of the reconstruc-
tion performances discussed above, the quantitative analyses
of the quality metrics also confirm the superior performance
of the proposed DA-FWGAN method. Table 1 shows the
average SSIM and PSNR results for all the testing sam-
ples of 5200 images. The SSIM and PSNR values for a
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FIGURE 6. Average PSNR as a function of the under-sampling rate of k-space data for 1D Gaussian(a), 2D Gaussian(b) and radial(c)
sampling masks.

FIGURE 7. Average SIMM as a function of the under-sampling rate of k-space data for 1D Gaussian(a), 2D Gaussian(b) and radial(c)
sampling masks.

TABLE 1. The average reconstruction performances of 25 randomly selected 3D MRI (5200 effective 2D) images.

representative image are also shown in Table 2. For compar-
ison, we listed systematically all results for the SSIM and
PSNR metrics for the 5 different reconstruction methods,
three samplingmasks (1DGaussian, 2DGaussian, and radial)
and 3 levels of sampling rates (10, 20, and 30% k-space
coverage). Among these five different deep learning meth-
ods, both the average and represent results demonstrate that
DA-FWGAN method provides the highest reconstruction

quality in all cases irrespective of the k-space sampling
schemes and coverage. For more indicative view of the recon-
struction quality, the average results for PSNR and SSIM
are also presented as the scattered plots in Figs. 6 and 7,
respectively. As shown, under the same sampling mask,
the reconstruction performance becomes better with higher
PSNR and SSIM, when increasing the sampling rate. The
ability of DA-FWGAN to reconstruct under-sampled MR
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TABLE 2. The reconstruction performance of a representative MR image.

FIGURE 8. Comparison of horizontal line profiles of the reconstructed
images using different deep learning methods. The k-space data were
sampled with 10-fold acceleration according to the 1D Gaussian
distribution.

data is consistently higher than the other methods, especially
at 10% low sampling rate.

Besides the global metrics discussed above, the local fea-
tures of the reconstructed image confirm further the ability for
WGAN-based methods to reconstruct under-sampled MRI
data. Fig. 8 displays horizontal line profiles for the recon-
structed images at an arbitrarily selected location inside the
brain. As shown, the image reconstructed by ADMM-Net
deviates far from the ground truth result. The result of Pixel-
GAN is better than ADMM-Net, but its intensity profile is
substantially different from the ground truth. Compared with
DAGAN method, WGAN based methods (DA-WGAN and
DA-FWGAN) suppress more effectively the aliasing artifacts
and produce line profiles that are more consistent with the
ground-truth result.

V. DISCUSSION
The most important motivation for this study is to recon-
struct highly under-sampled MRI k-space data accurately,
which can shorten the scanning time effectively. With the
experimental results discussed above, we have demonstrated
that the proposed DA-FWGAN method can improve the
reconstructed image quality and reduce the aliasing artifacts

even for cases of highly under-sampled k-space data. In the
DA-FWGAN architecture, we proposed to use fine-tuning
method for training the neural network and the Wasserstein
distance as the discrepancy measure between the real and
reconstructed images. Furthermore, to better preserve the
fine anatomic structures, such as texture and edges in the
reconstructed images, we incorporated the perceptual loss,
image and frequency domain errors into the loss function
to assess the network training. Compared with the other
state-of-the-art deep learning methods for CS-MRI recon-
struction, such as ADMM-Net, Pixel-GAN, and DAGAN,
the DA-FWGAN method can provide outstanding perfor-
mance in under-sampled MRI reconstruction and generate
MRI images with superior PSNR, less aliasing artifacts, and
higher SSIM.

Transfer learning method is an effective way to solve the
small training sample problem in deep learning methods, and
fine-tuning is one of the commonly used transfer-learning
methods. In this study, we investigated the effect of train-
ing sample sizes on the reconstruction of under-sampled
MRI data. We explored preliminarily two different train-
ing sample sizes: 5000 versus 15800 effective 2D images,
to investigate the training affect on the WGAN network
model and the reconstruction of under-sampled k-space MRI
data. In Table 3, we have summarized how the average PSNR
and SSIM metrics of the reconstructed images are affected.
As shown, increasing the training sample size by a factor of
over 3 can improve the average PSNR of the reconstructed
images by about 1.2-1.8% and SSIM by about 0.1-0.5%,
depending on the k-space sample rates. Even though this is
a relatively minor effect, it indicates that increasing training
samples for the WGAN network model improves general-
izability and can rerconstruct more accuratly to generate
images with higher PSNR and SSIM.

We have also conducted the convergence analyses in every
epoch by using DAGAN, DA-WGAN, and DA-FWGAN
methods in the case of 10% sampling rate with 1D Gaussian
mask. As shown in Fig. 9, the convergence of DAGAN
method is quite unstable and does not achieve its optimal
reconstruction conditions before the 5 th epoch and the results
are far from optimal when compared with the other methods.
On the other hand, the convergences of DA-WGAN and
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TABLE 3. Average results for randomly select 25 datasets of 3D MR images (5200 effective 2d images).

FIGURE 9. The convergences of NMSE (a) and PSNR (b) as a function of
epoch for the case of 10% sampling rate with the 1D Gaussian mask.

DA-FWGAN methods are always steady and stable. With
increasing epoch, the reconstruction performance gets better
and converges gradually to the asymptotic optimal state. The
convergence analysis indicates that the fine-tuning method
can significantly reduce the training complexity of WGAN
with stabilized and fast-converging training.

The proposed DA-FWGAN reconstruction method is a
typical end-to-end network structure to generate accurate
MRI reconstruction from highly under-sampled k-space
data. Compared with other deep-learning based algorithms,
the proposed DA-FWGAN method can reconstruct under-
sampled MRI data with higher PSNR and SSIM with better
preservation of the fine anatomical structures. However, there
is still space for further improvement. The DA-FWGAN
method in its current form requires relatively long training
time and predefined hyperparameters. In the future works,
we will test data augmentation to enlarge training samples
and include procedures to optimize the hyperparameters.

VI. CONCLUSION
In this paper, an end-to-end MRI reconstruction method,
DA-FWGAN, is proposed to perform CS-MRI reconstruc-
tion. The method integrates training method of fine-tuning
with Wasserstein distance as training criterion. Compared
with the other state-of-the-art deep learning reconstruction
methods for CS-MRI, such as ADMM-Net, Pixel-GAN, and
DAGAN, our experimental results have demonstrated that the
proposed DA-FWGAN method can effectively suppress the
well-known aliasing artifacts in highly accelerated MRI and
reconstruct more accurately with higher PSNR and SSIM.

The proposed DA-FWGAN method provides a promising
approach to improve MRI time efficiency without sacrificing
the image qualities.
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