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ABSTRACT Due to the high maneuverability of a hypersonic vehicle, the measurements for tightly
coupled INS/GNSS (inertial navigation system/global navigation satellite system) integration system
inevitably involve errors. The typical measurement errors include outliers in pseudorange observations
and non-Gaussian noise distribution. This paper focuses on the nonlinear state estimation problem in
hypersonic vehicle navigation. It presents a new innovation orthogonality-based robust unscented Kalman
filter (IO-RUKF) to resist the disturbance of measurement errors on navigation performance. This IO-RUKF
detects measurement errors by use of the hypothesis test theory. Subsequently, it introduces a defined robust
factor to inflate the covariance of predicted measurement and further rescale the Kalman gain such that the
measurements in error are less weighted to ensure the filtering robustness against measurement errors. The
proposed IO-RUKF can not only correct the UKF sensitivity to measurement errors, but also avoids the loss
of accuracy for state estimation in the absence of measurement errors. The efficacy and superiority of the
proposed IO-RUKF have been verified through simulations and comparison analysis.

INDEX TERMS INS/GNSS integration, robust unscented Kalman filter, measurement errors, hypersonic
vehicle navigation.

I. INTRODUCTION
Hypersonic vehicle refers to a vehicle at the speed of Mach
5 or above. Due to the merits such as large flight envelope,
high maneuverability and speedy global reach, hypersonic
vehicle has received great attention in the recent years in both
aeronautic and astronautic fields for various civil and military
applications [1], [2]. As the ‘‘eye’’ of a hypersonic vehicle,
the navigation system is the primary element of the over-
all vehicle flight control system (navigation, guidance and
control system). The position, speed and attitude information
provided by the navigation system is directly related to the
accuracy and reliability of the vehicle guidance and control
loop [3].
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Nowadays, the INS/GNSS (inertial navigation sys-
tem/global navigation satellite system) integration has been
a widely used navigation technique for hypersonic vehi-
cles [4], [5]. The integration of INS and GNSS overcomes
the limitations of both standalone systems, i.e., the growth
of navigation errors with time for INS as well as the
typical low update rate of GNSS measurements. Thus, it
can provide a superior performance comparing to either
INS or GNSS [6]–[8]. The integration of INS and GNSS
can be classified into two categories [9]–[11]. One is the
loosely coupled integration which employ the velocity and
position estimations solved by GNSS to assist INS. This
method is simple in principle and easy to implement. How-
ever, the number of observable GNSS satellites frequently
drops to below four due to high maneuverability, leading
to the poor stability and reliability. Thus, the method is
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unsuitable for hypersonic vehicle navigation. This problem
can be easily addressed by the tightly coupled integration in
which the raw GNSS pseudorange measurements is directly
used as measurements to update the navigation filtering. The
tightly coupled integration can also refrain from the loss
of information and cross correlation of position estimates
involved in the loosely coupled integration [9]. Neverthe-
less, the tightly coupled INS/GNSS integration incorporates
nonlinearity in the measurement model due to the nonlinear
nature of GNSS pseudorange. As a result, a nonlinear Kalman
filtering method is required for navigation sensor fusion [10].

The extended Kalman filter (EKF) is a typically employed
method in the integration of INS and GNSS [12]. It is an
approximationmethod, in which nonlinear systemmodels are
truncated through the first-order Taylor expansion such that
the Kalman filter can be applied. Although the EKF has the
advantage in real-time estimation, the linearization of system
model may cause a biased or even divergent filtering solu-
tion [13], [14]. The deterministic sampling based unscented
Kalman filter (UKF) is proposed as an improvement to EKF.
It uses a finite number of sigma points to capture high-
order system characteristics, leading to a better performance
than EKF in terms of both estimation accuracy and conver-
gence [15]. However, similar to EKF, the performance of
UKF depends on the pre-defined process and measurement
models of a dynamical system. If the system models involve
uncertainties, UKF will generate poor solutions [16]–[18].
As to the INS/GNSS integrated system for hypersonic vehicle
navigation, because the GNSS receiver is easily affected
by abnormal interference during highly dynamic maneuvers,
the measurements inevitably involve errors such as typical
outliers in pseudorange observations and non-Gaussian char-
acteristics of noise statistics [12], [19]. Therefore, it requires
UKF to counteract the above measurement errors involved in
INS/GNSS integration for hypersonic vehicle navigation.

Various robust UKFs were reported to handle both outliers
and non-Gaussian measurement noises in nonlinear systems.
The robust UKFs based on the MIT principle [20], covari-
ance matching [18], maximum likelihood criterion [21] and
moving window [13], treat measurement errors as inaccurate
noise statistics to improve the UKF robustness by online
estimating noise statistics. Nevertheless, these methods face
the following twofold shortcomings in practical application.
Firstly, the ‘‘rank deficient’’ issue is likely to occur in the
calculation of noise statistics for a high-dimensional system,
leading to the stability issue. Secondly, the estimation of
noise statistics based on historical residuals is of hysteresis,
leading to the difficulty to adapt to highly dynamic circum-
stances. By minimizing the estimation error in the worst case,
the H-infinity strategy can be used to address uncertainties in
measurement noise [22]. However, it may break down in the
presence of randomly occurring outliers [23]. The concept
of M-estimation has been employed by UKF to resist the
influences ofmeasurement errors through the statistical linear
regression of a nonlinear system function [24]. However, this
method achieves the robustness by sacrificing the accuracy

of the nonlinear system function itself [25]. By introducing
scaling factors to inflate the covariance of measurement noise
and further adjust the Kalman gain, the UKF performance can
also be made robust against measurement errors [26]. How-
ever, since the scaling factors are determined empirically, this
method may lead to a suboptimal filtering solution.

This paper presents a novel innovation orthogonality-based
robust UKF (IO-RUKF) for tightly coupled INS/GNSS inte-
gration for hypersonic vehicle navigation. The IO-RUKF
detects the errors in measurements through hypothesis test-
ing. Based on this, it introduces a defined robust factor to
inflate the covariance of predicted measurement and further
decrease the Kalman gain such that the measurements in error
are associated with a small weight to achieve the robustness
against measurement errors. It should be noted that, different
from the empirical determination of the scaling factors [26],
the robust factor in the proposed IO-RUKF is derived based
on the orthogonality of innovation vector in the framework of
the derivative UKF and thus is optimal in theory. Simulations
and comparison analysis have been conducted to comprehen-
sively demonstrate the improved performance of the proposed
IO-RUKF for hypersonic vehicle navigation.

II. TIGHTLY COUPLED INS/GNSS INTEGRATION
The basic principle of tightly coupled INS/GNSS integration
is to use GNSS pseudorange data as the foundation mea-
surements to estimate the navigation parameter error of INS
through Kalman filtering. In this section, the mathematical
model of tightly coupled INS/GNSS integration is established
for the sake of INS error estimation.

A. PROCESS MODEL
In tightly coupled INS/GNSS integration, the INS error and
GNSS receiver clock error are commonly chosen to form
the system state vector. Thus, the process model is achieved
by composing the error equations of the INS and GNSS
receivers.

The navigation frame (n-frame) is selected as the E-N-U
(East-North-Up) geography frame. Denote the inertial frame
by i, the earth frame e, the body frame b and the INS simulated
navigation frame n′. The error equations in terms of vehicle
attitude and velocity can be formulated as [27], [28]

φ̇ = −ω̂
n
in × φ + δω

n
in − C

n′
b δω

b
ib

δv̇n =
(
Cn′
b f̂

b)
× φ + Cn′

b δf
b
− (2ω̂nie + ω̂

n
en)

×δvn − (2δωnie + δω
n
en)× v̂

n

(1)

where φ = (φE , φN , φU )
T and δvn = (δvE , δvN , δvU )T

are the attitude error and velocity error in n-frame; v̂n =
(v̂E , v̂N , v̂U )T is the calculated velocity of the vehicle; Cn′

b

are the rotation matrix from b frame to n′ frame; f̂
b
is the

measured specific force in the b-frame, whose error δf b con-
sists of the accelerometer zero-bias ∇b and white noise ωba;
δωbib is the measurement error of the gyro, which is composed
of constant drift εb and white noise ωbg; ω

n
ie is the rotational
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angular velocity of the earth;ωnen is the angular velocity of the
vehicle relative to the earth; ωnin = ωnie + ω

n
en is the relative

angular velocity between n-frame and i-frame; ω̂nie, ω̂
n
en and

ω̂
n
in are the actual values of ω

n
ie, ω

n
en ω

n
in in the n′-frame, and

δωnie, δω
n
en and δω

n
in represent the corresponding errors.

The position error equation of INS is given by [28]
δL̇ =

δvN
RM + ĥ

− δh
vN

(RM + ĥ)2

δλ̇ =
δvE sec L̂

RN + ĥ
+ δL

vE tan L̂ sec L̂

RN + ĥ
− δh

vE sec L̂

(RN + ĥ)2

δḣ = δvU

(2)

where δp = (δL, δλ, δh) is the position error in n-frame; L̂
and ĥ represent the latitude and altitude of the vehicle; and
RM and RN are the median radius and normal radius.
Generally, the gyro constant drift εb and accelerometer

zero-bias∇b can be described by random constants [6], [18],
i.e.

ε̇bi = 0(i = x, y, z) (3)

∇̇b
i = 0(i = x, y, z) (4)

Define the system state of INS as

xINS (t) = [φ, δvn, δp, εb,∇b]T (5)

The INS error equation can be obtained by combin-
ing (1)∼(4) according to the defined system state, that is

ẋINS (t) = FINS (t)xINS (t)+ wINS (t) (6)

where FINS (t) is the system dynamic matrix, and wINS (t) =[(
−Cn′

b ω
b
a

)T
,
(
Cn′
b ω

b
g

)T
, 01×9

]T
is the noise vector.

The GNSS receiver clock usually introduces a time error
which is translated into a range error. The error equation of
the GNSS receiver can be modeled by [9]

ẋGNSS (t) = FGNSS (t) xGNSS (t)+ wGNSS (t) (7)

where xGNSS (t) =
[
bp, bf

]T , bp and bf are the range bias and
range drift related to the receiver clock, FGNSS (t) =

[
0 1
0 0

]
is

the transition matrix and wGNSS (t) =
[
wp,wf

]T is the noise
vector.

Consequently, augmenting (7) into (6), the process model
of tightly coupled INS/GPS integration can be obtained as:[

ẋINS (t)
ẋGNSS (t)

]
=

[
FINS (t) 0

0 FGNSS (t)

] [
xINS (t)
xGNSS (t)

]
+

[
wINS (t)
wGNSS (t)

]
or

ẋ(t) = F(t)x(t)+ w(t) (8)

B. MEASUREMENT MODEL
The measurement model considered herein is based on
the e-frame since the satellite position and velocity com-
puted from the broadcast ephemeris parameters are given in
this coordinate. For tightly coupled INS/GNSS integration,
the standard measurement is the pseudorange which defines
an approximate range from the GNSS receiver to a partic-
ular satellite. The pseudorange measurement from a GNSS
receiver can be represented by

ρ(i) = R(i) + bp + v(i) (i = 1, 2, ...,m) (9)

where R(i) = ||r − r(i)s || is the geometric range from the ith
satellite to the receiver, r the actual vehicle position vector,
r(i)s the position vector of the ith satellite, bp the range bias
associated with the receiver clock, v(i) the measurement error
modeled as white noise and m the number of observable
satellites. Normally, it is assumed that themeasurements from
each satellite are independent of each other.

Suppose (x, y, z) is the actual vehicle position and
(xsi, ysi, zsi) the ith satellite position in the e-frame. The geo-
metric range R(i) in (9) can be expressed as

R(i)=
√
(x−xsi)2+(y−ysi)2+(z−zsi)2 (i = 1, 2, ...,m)

(10)

It is verified that the coordinates of a vehicle’s actual
position in the e-frame and n-frame follow the relation

x = (RN + h) cosL cos λ
y = (RN + h) cosL sin λ
z =

[
RN

(
1− f 2

)
+ h

]
sinL

(11)

where (x, y, z) is the position coordinate of the vehicle in
the e-frame, (L, λ, h) the corresponding coordinate in the
n-frame, RN the radius of curvature in prime vertical and f
the eccentricity of ellipsoid.

Denote the vehicle’s position estimation obtained by INS
as
(
L̂, λ̂, ĥ

)
. It is satisfied that

L̂ = L + δL
λ̂ = λ+ δλ

ĥ = h+ δh

(12)

where (δL, δλ, δh) is the position error in the state vector (9).
Then, by substituting (11) and (12) into (10), we can obtain

R(i)=
{[(

RN+(ĥ−δh)
)
cos(L̂−δL) cos(λ̂−δλ)−xsi

]2
+

[(
RN+(ĥ−δh)

)
cos(L̂−δL) sin(λ̂−δλ)− ysi

]2
+

[[
RN

(
1−f 2

)
+(ĥ−δh)

]
sin(L̂−δL)−zsi

]2}1/2
(13)

Subsequently, inserting (13) into (9), the measurement
model for tightly coupled INS/GNSS integration is estab-
lished. This model can be further rewritten as the standard
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form of a nonlinear system, that is

zk = h(δL, δλ, δh)+ vk
= h(xk )+ vk (14)

where zk = (ρ(1), ρ(2), · · ·, ρ(m))T , h(·) is the nonlinear
function describing the relationship between the pseudorange
measurement and system state, and vk is the measurement
noise.

III. INNOVATION ORTHOGONALITY
BASED ROBUST UKF
This section develops the IO-RUKF to restrain the impact
of measurement errors for tightly coupled INS/GPS inte-
gration for hypersonic vehicle navigation. Since the pro-
cess model (8) is linear while the measurement model (14)
involves nonlinearity, the promising derivative version of
UKF [9] which reduces the redundant computation in the
prediction process, is adopted as the basis for establishment
of the proposed IO-RUKF.

A. THE DERIVATIVE UKF
Considering the nonlinear discrete-time system with additive
noises

xk = Fk/k−1xk−1 + wk (15)
zk = h(xk )+ vk (16)

where xk ∈ Rn and zk ∈ Rm denote the state and measure-
ment vectors at time k; Fk/k−1 is the discrete state transition
matrix; h(·) is the nonlinear function describing the measure-
ment model; and wk ∈ Rn and vk ∈ Rm are the process
and measurement noises, which are assumed as uncorrelated
zero-mean Gaussian white noise processes with covariances

E
[
wkwTk

]
= Qk and E

[
vkvTk

]
= Rk (17)

The procedure of the derivative UKF can be summarized as
follows:

Step 1. Give the state estimate x̂k−1 and the error covari-
ance matrix P̂k−1.
Step 2. Prediction: Since the process model is linear, the

predicted state mean and covariance are performed with the
same equations as the Kalman filter by

x̂k/k−1 = Fk/k−1x̂k−1 (18)

P̂k/k−1 = Fk/k−1P̂k−1FTk/k−1 +Qk (19)

Step 3. Sigma Points Selection: A set of weighted sigma
points are selected based on the predicted state mean and
covariance. These sigma points are obtained by

ξ i,k/k−1 = x̂k/k−1
i = 0

ξ i,k/k−1 = x̂k/k−1 + a
(√

nP̂k/k−1

)
i

i = 1, 2, · · ·, n

ξ i,k/k−1 = x̂k/k−1 − a
(√

nP̂k/k−1

)
i

i = n+ 1, n+ 2, · · ·, 2n

(20)

where a ∈ R is a tuning parameter to determine the spread of
the sigma points around x̂k/k−1 and is usually set as a small

positive value.
(√

nP̂k/k−1

)
i
is the ith column of the matrix

square root of nP̂k/k−1.
Step 4. Update: The sigma points are instantiated through

the nonlinear measurement model to yield a set of trans-
formed samples

γ i,k/k−1 = h(ξ i,k/k−1) i = 0, 1, · · ·, 2n (21)

The weighted mean and covariance of the predicted mea-
surement are computed as

ẑk/k−1=
2n∑
i=0

ωiγ i,k/k−1 (22)

P̂ẑk/k−1 =
2n∑
i=0

ωi
(
γ i,k/k−1−ẑk/k−1

)(
γ i,k/k−1−ẑk/k−1

)T
+Rk

(23)

and the cross-covariance between the predicted state and
measurement is

P̂x̂k/k−1 ẑk/k−1=
2n∑
i=0

ωi
(
ξ i,k/k−1−x̂k/k−1

)
×
(
γ i,k/k−1−ẑk/k−1

)T (24)

where

{
ωi = 1− 1

a2
i = 0

ωi =
1

2na2
i = 1, 2, · · ·, 2n

The Kalman gain is determined by

Kk = P̂x̂k/k−1 ẑk/k−1 P̂
−1
ẑk/k−1

(25)

Then, the state x̂k and the corresponding error covariance
matrix P̂k can be updated as

x̂k = x̂k/k−1 +Kk (zk − ẑk/k−1) (26)

P̂k = P̂k/k−1 −Kk P̂ẑk/k−1K
T
k (27)

Step 5. Repeat steps 1 to 4 for the next sample.

B. THE PROPOSED IO-RUKF
The core concept of the proposed IO-RUKF is to introduce
a time-varying robust factor into the covariance of predicted
measurement to rescale the Kalman gain such that the con-
tribution of contaminated measurements on state estimation
can be less weighted to achieve the robustness against mea-
surement errors. A modified covariance of the predicted mea-
surement is defined as

P̂∗ẑk/k−1 = sk P̂ẑk/k−1 (28)

where sk is the robust factor.
If no measurement error is existed, the robust factor

is sk = 1, which signifies that the proposed IO-RUKF is
carried out according to the derivative UKF as described
by (18)∼(27). Otherwise, a robust factor greater than 1 is
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incorporated in the filtering process to inflate the covariance
of predicted measurement as in (28).

Define the innovation vector of UKF by

z̃k = zk − ẑk/k−1 (29)

It is well known that as the system models (15) and (16) are
accurate, the output innovation sequence z̃k (k = 1, 2, · · ·,N )
should be Gaussian distributed with zero mean and satisfy the
orthogonality principle [29], that is

E
[
z̃Tk · z̃k+j

]
= 0 (j = 1, 2, · · · ) (30)

Nevertheless, in case of measurement errors (such as out-
liers in pseudorange observations and non-Gaussian noise
distribution), the violation of the assumption in (15) and (16)
may result in biased or unstable state estimation from
UKF, and further make (30) no longer hold. For this case,
we determine the robust factor by compelling the innova-
tion sequence to be orthogonal to each other, so that the
useful information in the innovation sequence is extracted
and the UKF filtering process is corrected by adjusting the
Kalman gain.

Denote the estimation error and prediction error by

x̃k = xk − x̂k (31)

x̃k/k−1 = xk − x̂k/k−1 (32)

Inserting (15) and (18) into (32), it is obtained that

x̃k/k−1 = Fk
(
xk−1 − x̂k−1

)
+ wk

= Fk x̃k−1 + wk (33)

Expanding zk by the Taylor series about x̂k/k−1, we have

zk = h(x̂k/k−1)+∇h(x̂k/k−1)x̃k/k−1
+∇

2h(x̂k/k−1)x̃2k/k−1 + · · · + vk (34)

where the ith term in the Taylor series for h(·) is

∇
ih(x̂k/k−1)x̃ik/k−1 =

1
i!

(
n∑
j=1

x̃j ∂∂xj

)i
h(x)

∣∣∣∣∣∣
x=x̂k/k−1

; and xj

denotes the jth component of x.

Similarly, expanding ẑk/k−1 given in (22) by the Taylor
series yields

ẑk/k−1 =
(
1−

1
a2

)
h(x̂k/k−1)+

1
2na2

n∑
i=1

× h
[
x̂k/k−1 + a

(√
nP̂k/k−1

)
i

]
+

1
2na2

2n∑
i=n+1

h
[
x̂k/k−1 − a

(√
nP̂k/k−1

)
i−n

]
= h(x̂k/k−1)+

1
2
∇

2h(x̂k/k−1)P̂k/k−1 + · · · (35)

Substituting (34) and (35) into (29), the innovation vector
z̃k can be rewritten as

z̃k = Hk x̃k/k−1 +1(x̃k/k−1)+ vk (36)

where Hk =
∂h(x)
∂x

∣∣∣
x=x̂k/k−1

, and 1(x̃k/k−1) denotes the

second- and higher-order moments in the Taylor series.
To simplify the error expression, the unknown instrumen-

tal diagonal matrices αk = diag(α1,k , α2,k , · · ·, αm,k ) are
employed to model the errors due to the first-order lineariza-
tion [30], leading to the following exact equality

z̃k = αkHk x̃k/k−1 + vk (37)

Substituting (33) into (37), it is also evident that

z̃k = αkHk (Fk x̃k−1 + wk)+ vk (38)

Subsequently, we denote Yj,k = E
[
z̃k+j · z̃Tk

]
. From the

presentation of z̃k in (29) and (38), Yj,k can be rewritten as

Yj,k = E
{ [
αk+jHk+j

(
Fk+jx̃k+j−1 + wk+j

)
+ vk+j

]
·(zk − ẑk/k−1)T

}
(39)

Then, by substituting (31), (26) and (38) into (39) and
applying the result of (33) recursively, (39) can be furtherly
derived as (40), as shown at the bottom of this page, where
the properties of the Gaussian white noise processes, i.e.
E
[
wiwTj

]
= 0, E

[
vivTj

]
= 0 (i 6= j) and E

[
wivTj

]
= 0

Y j,k = E
{[
αk+jHk+jFk+j

(
xk+j−1 − x̂k+j−1/k+j−2 −Kk+j−1(zk+j−1 − ẑk+j−1/k+j−2)

)]
· (zk − ẑk/k−1)T

}
= E

{[
αk+jHk+jFk+j

(
Fk+j−1x̃k+j−2 −Kk+j−1

(
αk+j−1Hk+j−1Fk+j−1x̃k+j−2

))]
· (zk − ẑk/k−1)T

}
= E

{[
αk+jHk+jFk+j

(
I− Kk+j−1αk+j−1Hk+j−1

)
Fk+j−1x̃k+j−2

]
· (zk − ẑk/k−1)T

}
= αk+jHk+jFk+j ·

k+j−1∏
i=k+1

(I− KiαiHi)Fi

 · E {[xk − x̂k/k−1 −Kk (zk − ẑk/k−1)
]
· (zk − ẑk/k−1)T

}

= αk+jHk+jFk+j ·

k+j−1∏
i=k+1

(I− KiαiHi)Fi

 · (P̂x̂k/k−1 ẑk/k−1 −KkY0,k

)
(40)
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are used, and Y0,k is the actual innovation covariance output
by UKF which is calculated as [16]

Y0,k =


z̃1z̃T1 , k = 1
ρ · Y0,k−1 + z̃k z̃Tk

1+ ρ
, k > 1

(41)

where 0 < ρ ≤ 1 is a forgetting factor and is generally
set as ρ = 0.95.

For determining the robust factor analytically, the modi-
fied covariance of predicted measurement (28) is considered
to compel the innovation sequence to be orthogonal. Let
Yj,k = 0, it can be deduced from (40) that

Kk ·

(
P̂∗ẑk/k−1 − Y0,k

)
= 0 (42)

which is equivalent to

sk P̂ẑk/k−1 = Y0,k (43)

Thus, by taking the trace of both sides of (43), we obtain
the robust factor

sk =
tr
(
Y0,k

)
tr
(
P̂ẑk/k−1

) (44)

Noticing that in the presence of measurement errors,
the innovation vector z̃k will be biased and its magnitude will
increase. As a result, the trace of the innovation covariance
Y0,k output from UKF becomes larger than that of the pre-
dicted measurement covariance P̂ẑk/k−1 . It is easy to verify
that the robust factor obtained by (44) is generally greater
than 1, which makes up a decrement in the Kalman gain as
shown in (25) and (28). Therefore, the measurements in error
are associated with a small weight in the estimation process
to inhibit the disturbances of measurement errors on the state
estimation.

Actually, the measurement errors can be detected via
the statistical information of the innovation sequence using
hypothesis test. Define the statistical function

θk = z̃Tk · P
−1
ẑk/k−1

· z̃k (45)

and the following two hypotheses:
Null hypothesis γ0: the system is normally operating;
Alternative hypothesis γ1: there exist measurement errors

in the estimation system.
The statistical function θk obeys a χ2 distribution with

m degree of freedom. For a chosen significance level
α(0 < α ≤ 1), from

P(χ2 > χ2
α,m) = α (46)

a threshold value χ2
α,m can be determined and the statistical

function θk will be greater than the threshold value χ2
α,m if the

alternative hypothesis is correct, that is

γ0 : θk ≤ χ
2
α,m ∀k

γ1 : θk > χ2
α,m ∃k (47)

Consequently, based on the above derivations, the flow
chart of the proposed IO-RUKF is depicted in Fig. 1. It can
be seen that the procedure for implementing the IO-RUKF
involves the following main steps:

Step 1. Initiate the filter with the state estimate x̂k−1 and
the error covariance matrix P̂k−1;
Step 2. Execute the derivative UKF from (18) to (23);
Step 3. Calculate the innovation vector through (29) and

detect the measurement errors using the hypothesis test
described by (45)-(47);

If a measurement error is detected, do the following two
operations:
• Compute the robust factor through (44) and replace
P̂ẑk/k−1 with its modified type P̂∗ẑk/k−1 = sk P̂ẑk/k−1 as
presented in (28).

• Then complete the update procedure as (24)-(27).
Otherwise, complete the derivativeUKF procedure directly

as (24)-(27).
Step 4. Repeat Steps 1 to 3 for the next time step.
Remark 1: In addition to (28), the inflation of the covari-

ance of predicted measurement can also be conducted in the
following two different forms:

P̂∗ẑk/k−1 = sk ·
2n∑
i=0

ωi
(
γ i,k/k−1 − ẑk/k−1

)
×
(
γ i,k/k−1 − ẑk/k−1

)T
+ Rk (48)

and

P̂∗ẑk/k−1 =
2n∑
i=0

ωi
(
γ i,k/k−1 − ẑk/k−1

)
×
(
γ i,k/k−1 − ẑk/k−1

)T
+ sk · Rk (49)

Although (28), (48) and (49) provides different ways to cal-
culate the robust factor, they play a similar role in rescaling
the Kalman gain and enhancing the UKF robustness against
measurement errors.
Remark 2: Different from the empirical determination of

the scaling factors [26], the robust factor in the proposed IO-
RUKF is obtained based on the innovation orthogonality in
the framework of the derivative UKF. Therefore, the robust
factor of the proposed IO-RUKF is of optimality in theory.
Remark 3: From (23) and (28), we represent the modified

covariance of predicted measurement as

P̂∗ẑk/k−1 = P̂ẑk/k−1 + (sk − 1) P̂ẑk/k−1 (50)

Since sk ≥ 1, (sk − 1) P̂ẑk/k−1 is a nonnegative defi-
nite matrix. In addition to the instrumental diagonal matrix
αk introduced in (37), similar to our previous work [31],
an instrumental matrix γ k ∈ Rm×m can also be used to
describe the approximation error for calculating P̂x̂k/k−1 ẑk/k−1 .
Thus (50) can be rewritten as

P̂∗ẑk/k−1 = γ
T
k αkHk P̂k/k−1HT

k αkγ k + R∗k + (sk − 1) P̂ẑk/k−1

= γ Tk αkHk P̂k/k−1HT
k αkγ k + R∗∗k (51)
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FIGURE 1. Flow chart of the proposed IO-RUKF.

where R∗∗k = R∗k + (sk − 1) P̂ẑk/k−1 ; and R∗k is the
equivalent measurement noise covariance defined by
equation (25) in [31].

Accordingly, the sufficient conditions to guarantee the
stochastic stability of the proposed IO-RUKF can be easily
obtained by applying the result ofTheorem 1 reported in [31].
The details are presented as follows.

Consider the nonlinear stochastic systems given by (15),
and (16) as well as the IO-RUKF derived in Part B,
Section III. Let the following conditions hold for every k ≥ 0:
(i) There exist real constants fmin, fmax, cmin, cmax, hmin,

hmax, ηmax, κmax > 0 such that the following bounds are
fulfilled:

fmin ≤
∥∥Fk/k−1∥∥ ≤ fmax (52)

cmin ≤

∥∥∥γ Tk αkHk

∥∥∥ ≤ cmax (53)

hmin ≤ ‖αkHk‖ ≤ hmax (54)

max
i,j=1,2,···,n

[∣∣∣∣(HT
k αkγ k

)
i,j

∣∣∣∣] ≤ ηmax (55)

max
i,j=1,2,···,n

[∣∣(αkHk)i,j
∣∣] ≤ κmax (56)

where hmin ≤ cmax.
(ii) There exist real constants r∗min, r

∗
max, rmax, qmin, qmax,

pmin, pmax > 0 such that the following bounds on various
matrices are fulfilled:

r∗minI ≤ R∗k ≤ r
∗
maxI (57)

Rk ≤ rmaxI (58)

pminI ≤ P̂k ≤ pmaxI (59)

qminI ≤ Qk ≤ qmaxI (60)
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(iii) There exists a real constant εmax > 0 such that the
following matrix norm is bounded via∥∥∥γ Tk αkHk − αkHk

∥∥∥ ≤ εmax (61)

where ε2max ≤
r∗min

φ2max
(
pmax+p2maxφ

2
max

/
qmin

) , and ‖·‖ denotes the
Euclidian norm.

Then stochastic stability of the IO-RUKF is ensured, i.e,
the estimation error x̃k of the IO-RUKF is exponentially
bounded in mean square.

IV. SIMULATIONS AND RESULTS
Simulations were conducted to comprehensively evaluate
the performance of the proposed IO-RUKF for tightly cou-
pled INS/GNSS integration in hypersonic vehicle navigation.
The typical measurement errors, i.e. outliers in pseudorange
observations and non-Gaussian noise distribution caused by
hypersonic vehicle’s high maneuverability, are considered.
The comparison of the proposed IO-RUKF with the deriva-
tive UKF (DUKF) and robust UKF (RUKF) in [26] is also
discussed.

Fig. 2 depicts the dynamic flight trajectory of a hypersonic
vehicle, which was designed to involve various flight maneu-
vers such as climbing, pitching, rolling and turning. The
simulation parameters are shown in Table 1. The simulation
timewas 1000s and the filtering period was 0.1s. To detect the
measurement error, χ2

α,m in the proposed IO-RUKF was set
as 9.488 which was acquired from the χ2 distribution under
4 degrees of freedom (m = 4) and 95% confidence level
(α = 0.05). The simulation trials were conducted for the
two typical measurement errors, i.e. outliers in pseudorange
observations and the non-Gaussian distribution of measure-
ment noise.

FIGURE 2. Flight trajectory of a hypersonic vehicle.

Through the simulation analysis, the overall estimation
error and its corresponding mean squared error (MSE) for
Monte Carlo runs were adopted to evaluate the navigation
accuracy for DUKF, RUKF and IO-RUKF. The overall
estimation error is defined as the norm of the navigation

TABLE 1. Simulation parameters.

parameters estimation error∥∥1x̂∥∥ = √1x̂2E +1x̂2N +1x̂2U (62)

where 1x̂E , 1x̂N and 1x̂U are the components of 1x̂ in
East, North and Up, respectively. The MSE of the overall
estimation error for each Monte Carlo run is defined by

MSE(mS )=
1
T

T∑
k=1

(∥∥1x̂(k)∥∥)2 (mS=1, · · ·,M ) (63)

where T is the time steps involved in the filtering process and
M is the number of Monte Carlo runs.

A. OUTLIERS IN PSEUDORANGE OBSERVATIONS
To evaluate the performance of the proposed IO-RUKF in
terms of outliers in pseudorange observations, a pseudorange
observation error of 80m was artificially introduced into (10)
every 200s.
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FIGURE 3. Attitude error of hypersonic vehicle for the case with
observation outliers.

FIGURE 4. Velocity error of hypersonic vehicle for the case with
observation outliers.

FIGURE 5. Position error of hypersonic vehicle for the case with
observation outliers.

Figs. 3∼5 illustrate the overall attitude errors, velocity
errors and position errors obtained by the DUKF, RUKF and
IO-RUKF. When the observation outlier appears at the time
points 200s, 400s, 600s, 800s and 1000s, the performance
of DUKF degrades seriously due to the influence of outlier.
RUKF improves DUKF by incorporating scaling factors in
the measurement noise covariance to adjust the Kalman gain
matrix, leading to the improved filtering result for naviga-
tion. However, because the scaling factors are determined by
empiricism, RUKF still has pronounced estimation errors in
the case of observation outlier. In contrast, since the proposed
IO-RUKF determines the robust factor based on the innova-
tion orthogonality principle, its resultant errors in attitude,
velocity and position are the smallest. Furthermore, for the

FIGURE 6. MSE of attitude error for the case with observation outliers.

FIGURE 7. MSE of velocity error for the case with observation outliers.

time periods without the observation outlier, RUKF has poor
navigation accuracy in comparison to DUKF and IO-RUKF.
This is because RUKF does not involve the detection of
observation outlier, that is, it still embeds the scaling factors in
the filtering process even if the observation is accurate, thus
deteriorating the filtering solution. The mean overall errors
in attitude, velocity and position for the times with the outlier
and the other time periods by the three filters are given in
Table 2, which verifies the above phenomenon.

Besides, by repeating the above simulation for 50 runs,
Monte Carlo method have also been employed to eval-
uate the IO-RUKF robustness from a statistical perspec-
tive. Figs. 6∼8 show the MSEs of attitude error, velocity
error and position error achieved by the DUKF, RUKF and
IO-RUKF. From Figs. 6∼8, the similar conclusion with the
Figs. 3∼5 can be obtained. In the case of observation with
outliers, the proposed IO-RUKF performs the best compared
with DUKF and RUKF, since it has the capability to detect
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FIGURE 8. MSE of position error for the case with observation outliers.

TABLE 2. Mean overall navigation errors of hypersonic vehicle navigation
for the case with observation outliers.

the outlier and adjust the Kalman gain matrix online to
inhibit the undesirable influence of measurement error on
the navigation accuracy. For the time without observation
outlier, the DUKF outperforms the RUKF and IO-RUKF.
This result is not surprising, because in this case the DUKF
is optimal based on the minimum mean-square error sense.
Nevertheless, it is notable that since the IO-RUKF involves
the observation outlier detection process, the proposed
method achieves preferable navigation accuracy comparing
to RUKF.

B. NON-GAUSSIAN NOISE DISTRIBUTION
To evaluate the performance of the proposed IO-RUKF in
terms of the non-Gaussian characteristics of noise statis-
tics, the measurement noise is suddenly changed to a Gaus-
sian mixture distribution in the following form for the time
period (400s, 600s)

vk ∼ (1− µ)N (0,Rk )+ µN (0, 15 · Rk ) (64)

where µ is set to 0.3.

FIGURE 9. Attitude error of hypersonic vehicle navigation for the case
with non-Gaussian measurement noise.

FIGURE 10. Velocity error of hypersonic vehicle navigation for the case
with non-Gaussian measurement noise.

FIGURE 11. Position error of hypersonic vehicle navigation for the case
with non-Gaussian measurement noise.

Figs. 9∼11 show the overall attitude errors, velocity
errors and position errors obtained by the DUKF, RUKF
and IO-RUKF for the case with non-Gaussian measurement
noise. During the time interval (400s, 600s), due to the influ-
ence of the non-Gaussian measurement noise, DUKF has the
poor navigation accuracy comparing to RUKF and IO-RUKF.
This is because DUKF has no ability to inhibit the influence
of the non-Gaussian noise distribution on the state estimation.
The RUKF and IO-RUKF can resist the disturbance of the
non-Gaussian measurement noise by introducing the scaling
factors and robust factor to adjust the Kalman gain, respec-
tively. Nevertheless, as expected, the navigation accuracy
achieved by IO-RUKF is superior to that of RUKF. This is
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TABLE 3. Mean overall navigation errors of hypersonic vehicle navigation
for the case with non-Gaussian measurement noise.

FIGURE 12. MSE of attitude error for the case with non-Gaussian
measurement noise.

because the robust factor in IO-RUKF is obtained in an opti-
mal manner, while the scaling factors in RUKF is determined
empirically. In the time segments without the non-Gaussian
noise, the simulation results of the three filters are similar to
those in the case of observation outliers. Table 3 lists themean
overall errors in attitude, velocity and position for the times
with the non-Gaussian measurement noise and the other time
periods, which confirms the abovementioned phenomenon
as well.

The MSEs of attitude error, velocity error and posi-
tion error obtained by the DUKF, RUKF and IO-RUKF
for the case with non-Gaussian measurement noise are
depicted in Figs. 12∼14, which indicate the similar con-
clusion with the Figs. 9∼11. When the measurement noise
is non-Gaussian, the DUKF is not robust, leading to the
degraded navigation performance. Furthermore, compared to
the RUKF, the proposed IO-RUKF has superior navigation
accuracy due to the optimal determination manner of robust
factors. For the time without non-Gaussian noise, the above

FIGURE 13. MSE of velocity error for the case with non-Gaussian
measurement noise.

FIGURE 14. MSE of position error for the case with non-Gaussian
measurement noise.

three filters show the similar trend as in the case of observa-
tion outliers.

The above simulations and analysis demonstrate that the
proposed IO-RUKF can effectively inhibit the influences
of themeasurement errors on system state estimation by using
the robust factor to adjust the Kalman gain matrix, leading to
the higher navigation performance than DUKF and RUKF for
tightly coupled INS/GNSS integration for hypersonic vehicle
navigation.

V. CONCLUSION
This paper presents a new IO-RUKF for tightly cou-
pled INS/GNSS integration for hypersonic vehicle navi-
gation. It addresses the disturbance on system state from
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measurement errors caused by highly dynamic maneuvers of
a hypersonic vehicle. The proposed IO-RUKF restrains the
influences of measurement errors on the filtering solution
by incorporating a robust factor to inflate the covariance of
the predicted measurement and further decrease the Kalman
gain such that the contribution of the measurements in error
are less weighted to achieve the filtering robustness. Since
the robust factor in the proposed IO-RUKF is derived based
on the innovation orthogonality principle, it is optimal in
theory, while the scaling factors in RUKF are determined
empirically without consideration of optimality [26]. The
simulation results and comparison analysis demonstrate that
the proposed IO-RUKF has higher accuracy and robustness
than DUKF and RUKF for tightly coupled INS/GNSS inte-
gration for hypersonic vehicle navigation.

Future researchworkwill focus on enhancement of the pre-
sented IO-RUKF. The presented IO-RUKF will be extended
to handle intermittent measurement data for hypersonic vehi-
cle navigation.
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