IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 22, 2019, accepted October 12, 2019, date of publication October 18, 2019,

date of current version November 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948212

DroidARA: Android Application Automatic Categorization
Based on API Relationship Analysis

WENHAO FAN ", YE CHEN, YUAN'AN LIU, AND FAN WU

Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing

100876, China
Corresponding author: Wenhao Fan (whfan @bupt.edu.cn)

This work was supported in part by the National Natural Science Foundations of China under Grant 61821001, in part by the Yang Fan
Innovative and Entrepreneurial Research Team Project of Guangdong Province, in part by the Fundamental Research Funds for the Central
Universities, and in part by the Director Foundation of Beijing Key Laboratory of Work Safety Intelligent Monitoring.

ABSTRACT An application (app) market with well-managed categorization will help users with app search
and recommendation. Current categorization methods in app markets mainly rely on manual operation.
Existing approaches for automatic Android app categorization suffer from low efficiency and low accuracy
due to insufficient analysis of features, or inappropriate choice of features. This will mislead users to
download unrelated apps and is not conducive to market stability maintenance. In this paper, we propose
DroidARA, an efficient automatic categorization method for Android apps based on API relationships
analysis. Considering that the app category can be characterized by API relationships which represent the
combinations and links among APIs, we design a complete system to generate API call graphs, extract the
API relationships information, transform them into feature vectors and train the classifier. Firstly, the API
calls are obtained through static analysis to generate API call graphs that contain the relationships among
APIs. A novel matrix structure as well as related algorithm are designed to extract the API relationships
information from API call graphs. After that, the matrix is transformed into vector according to two feature
selection methods we designed for strengthening the use of effective information in the API relationships.
A convolutional neural network (CNN) model is then trained with labeled samples of such feature vectors.
To validate the feasibility of DroidARA, we conduct several categorization experiments on 19949 real apps of
Google Play. The results demonstrate that DroidARA can achieve an average 88.9% accuracy in categorizing

the apps into 24 categories, which outperforms existing methods by 18.5%.

INDEX TERMS Android, categorization, API relationship, static analysis.

I. INTRODUCTION
As the most widely used mobile operating system whose
market share has reached 86.7% [1], Android not only attracts
a large number of users but also attracts a large number
of developers. At present, people are accustomed to using
various mobile applications (apps) for daily activities such as
communication, trading, photography or working. App mar-
kets such as Google Play [2] and Amazon Appstore [3]
provide users with app download platforms. The number of
android apps in Google play has reached 2,700,000, and there
are still nearly 10,000 new apps added every month [4]. This
poses a challenge to the management of the market.

A well-managed app market will not only bring con-
venience to users, but also make developers profitable.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ahmed Farouk.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

App markets often divide the app into many categories. This
not only facilitates the quick search of the user, but also
allows the market itself to make app recommendations based
on categories. Therefore, the accuracy of the categorization
greatly affects the stability of the market. However, current
categorization systems have certain flaws. The app categories
provided by the app markets are often labeled manually
by app developers. This will cause two issues. On the one
hand, the category is likely to be wrong. The division of
the app category is determined by the app market owners,
and the developer may have a bias in understanding the
defined categories, resulting in a categorization error. And
many apps currently have some additional features that can
make categorization difficult. In addition, some adware will
deliberately choose popular categories such as photography
to boost their downloads, which will cause trouble or even
economic loss to users. On the other hand, the efficiency of

157987

https://orcid.org/0000-0001-5288-8708
https://orcid.org/0000-0002-1286-7141

IEEE Access

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

manual categorization is very low. When the category labels
need to be adjusted, it will introduce a huge amount of work,
which is not conducive to expansion and maintenance.

Existing research proposes the use of automated cate-
gorization techniques to categorize apps. Considering that
apps usually use text information to guide users to use their
functions, a large part of researches [5]—-[11] use natural lan-
guage processing to categorize apps by mining app descrip-
tion information, user comments, and so on. However, many
popular apps do not have adequate or accurate text descrip-
tions while the newly released app does not have suffi-
cient comments. This makes this approach very limited.
Besides text descriptions, other studies [12]-[16] also con-
sider the information inside the app. They extract the features
by decompiling the android app’s installation file named
Android app package(APK). One of the important features
is the Android API which is written in Java language, acts
as interfaces used by Android apps to communicate with
Android Framework. But most of them simply put these
features together without further analysis, so that the cat-
egorization results are based only on the binary values of
the features. In fact, there are many different categories of
apps that contain the same simple features, which leads to a
decrease in accuracy.

In order to improve the efficiency and accuracy of app cate-
gorization by mining further characteristic information inside
the app, we consider using the relationships among APIs
which are the combinations and links between APIs as the
core features to model the category of apps. Since the function
of an app is implemented by a series of Android APIs, the API
relationships are ideal features to reflect the functionality
of the app. Based on this opinion, we propose DroidARA,
an automatic Android app categorization method through
API relationships analysis. Aiming at efficiently extracting
the API relationships information and fully using them to
perform the categorization, four steps are included in the
system: 1. using static analysis technology to extract the API
call information of the app and generate API call graphs to
represent it. 2. a novel feature matrix for representing API
relationships is designed and assigned value by extracting the
API relationships from API call graphs. 3. two feature selec-
tion algorithm suitable for the obtained features are designed
to improve the efficiency and accuracy of the system. 4. train-
ing the classifier model with a deep learning algorithm and
use the model to categorize the app.

Finally, we use the 19949 sample apps collected from
Google Play to perform the experiment. We use the category
labels originally defined by Google Play to classify these apps
into 24 categories. The experimental results show that our
classifier achieves an accuracy of 88.9%. It is 18.5% higher
than the reference method.

In summary, we highlight our main contributions made in
this paper as follows:

- We propose an automatic Android app categorization
method, called DroidARA, which contains a system that fully
use the relationships of Android APIs to effectively capture

157988

the function of the app. Furthermore, we design a novel
feature matrix to well represent API relationships.

- We implement a static analysis algorithm to generate
the API call graphs and transform them into our proposed
matrix. Besides, two relative feature selection methods are
designed respectively to increase the efficiency and remove
the redundancy of the system.

- We conduct real-world experiments to validate the fea-
sibility of DroidARA. DroidARA can achieve Android cate-
gory prediction with an 88.9% accuracy. It demonstrates that
DroidARA can be used on real-world app market.

The remainder of this paper is organized as follows:
section II shows the existing research works of app cate-
gorization; section III introduces the system model of our
proposed method in detail; section IV describes the experi-
ments, and compares and evaluates our classifier according
to the experiment results; section V concludes our work and
discusses the further work.

Il. RELATED WORKS

Recently, researches on app automation categorization focus
on two kinds of methods: 1. using the app’s metadata such
as descriptive information, user reviews, and other online
resources to categorize. 2. collecting information in the apk
files, mainly performed by decompiling the APK files to get
information such as APIs, strings and permissions.

A. METHODS OF USING APP’S METADATA

Dae [17] leveraged descriptions and user reviews to find out
the important features of apps. They proposed a probabilis-
tic model, named AppLDA, to generate app representations
while excluding noise in reviews. Inspired by their work,
Bajaj et al. [5] jointly modeled app descriptions and user
reviews to evaluate their use in predicting other indicators
like app categories and ratings. Then they proposed a multi-
task neural architecture to learn and analyzed the influence
of apps’ textual data to predict other categorical parameters.
Since the text data they obtained from the app market may
be not adequate, other studies tend to collect richer tex-
tual information from the Internet. Zhu et al. [18] enriched
the textual information of mobile Apps by exploiting the
additional Web knowledge from the Web search engine and
combine all the enriched textual information into the Max-
imum Entropy model to train a mobile app classifier, while
[10], [19] leveraged information publicly available from
the online stores where the apps are marketed. To comple-
ment the existing text-based approach for app categorization,
Singla et al. [6] presented an app categorization system that
uses object detection and recognition in images associated
with apps to generate a more accurate categorization. Con-
sidering that the original category labels of the market are not
fine-grained, Liu et al. [7] developed a framework to label the
apps with fine-grained categorical information. They discov-
ered the novel inter-class relationships among categories and
introduce a customized class hierarchy optimized for app cat-
egorization. Similar to them, Al-Subaihi et al. [11] clustered

VOLUME 7, 2019

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

IEEE Access

Static analysis

Call Graphs

fa

Selected API List

a, |

Smali Files [a @
1

FIGURE 1. System structure.

apps based on their claimed behavior to find the possible sub-
categorization of the categorization in the app markets.

These methods mainly used natural language process tech-
nology to utilize the textual information associated with apps.
However, the textual may not be accurate for the features of
the app. And the online resources are always insufficient for
newly released apps. What’s more, the language of the text
may be varied, which will introduce additional noise.

B. METHODS OF COLLECTING INFORMATION

IN THE APK FILES

Dong et al. [14] chose specific Android APIs as charac-
teristic API to represent the features of the app and gen-
erated vectors based on whether the app uses these APIs.
Different from them, Yuan et al. [16] extracted the used
permissions and strings that can reflect the app function to
automatically categorize apps based on Bayesian classifica-
tion. While Hamedani et al. [13] combined these features and
refined them into single vectors. They applied multi-machine
learning algorithm to find the best model for categoriza-
tion. To further improve the accuracy of the categorization,
Wang et al. [12] employed the ensemble of multiple clas-
sifiers with 11 types of static features to provide a com-
plete solution for the automated categorization of benign
apps.

Compared to the metadata, the information in the apk files
is sufficient and closed to the nature of the app. However,
there is a common issue between these methods. They simply
combined the binary value of the features without analyzing
the relationship among them. For example, according to the
researches [20], [21], there is a mapping relationship between
Android API and permission. So collecting both of them is
redundant. And nowadays, many apps contain varies func-
tions. The binary value vector may be too coarse-grained
to distinguish them. In our work, we further analyze the
relationship between the APIs used in apps and design a more
precise model to represent them to improve the categorization
accuracy.

IlIl. SYSTEM MODEL

A. OVERVIEW

The overall structure of the android app categorization system
we propose is depicted in the Fig. 1. The categorization task
is divided into four steps: static analysis, feature extraction,
feature selection and training classifier.

VOLUME 7, 2019

Feature extraction
API Relationship Matrix
a4 o A
ay axn o Ay

L N

Category Prediction

(1) In the static analysis step, the apps’ apk files are decom-
piled into the corresponding smali files by the Apktool [22].
From the smali files we are able to get the Android APIs that
each app contains using the string matching method. After we
count the APIs in each app category, the TF-IDF algorithm
is applied to assign the weight to each of the Android APIs.
Then we select the high-weight APIs as our selected API
list. Based on the selected API list, an analysis algorithm is
designed to generate API call graphs of an app from its smali
files.

(2) In the feature extraction step, the API call graphs
of each app are further parsed to collect the relationships
between APIs. To use these relationships as functional fea-
tures of the app, we propose a matrix structure. The value of
the matrix is assigned according to our conversion method.
Then every app can be represented as a matrix containing
features.

(3) In the feature selection step, we first remove the fea-
tures that are rarely appear based on the statistical results
to avoiding over-fitting. After this process, the matrix is
transformed into a vector that contains remain features. To
further increase the effectiveness of the features, we design
a search method to find the redundancy between features.
Then the redundant features are removed and the final feature
vector is obtained.

(4) In the training classifier step, using the feature vectors
of the apps as input and the original categories of the apps as
the labels, we train a classifier. Specifically, the CNN algo-
rithm is applied to obtain the classification model. Finally,
we can get the prediction results of the app categories by the
trained CNN model.

B. STATIC ANALYSIS

The main purpose of this step is to generate API call graphs
and to get a selected API list by analyzing the code structure
of the apps. We define the API call graph as follows. It is
a directed graph that each node in the graph represents an
API called in the app’s code. The directed edges in the graph
are used to represent the execution order between the APIs.
Branches in the same node represent different conditions for
program execution. For example, according to our definition,
the API call graph of the code depicted in Fig. 2(a) is shown
in Fig. 2(b). From this graph, not only the APIs that the
app uses is clearly revealed, but also the calling relationships
between APIs can be obtained. The APIs recorded in API call

157989

IEEE Access

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

public void caller() {
AQ);
if (conditon 1) {

B(O):
} else { °

callee();
| OO
}
public void callee() {

oo

if (condition 2) {

EQ);
} else { °

FQO>

o —

()

(@) (®)
FIGURE 2. Example code and corresponding API call graph.

Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)
@

FIGURE 3. Example API invoke statement in smali file.

graphs are all from our selected API list, which contains part
of the Android original APIs. The reason we do not use all
the Android APIs is that not all APIs are used when designing
apps. Besides this, some android APIs are not representative
of specific program features, which is not helpful for us to get
functional information. Therefore, we need to select an API
list to filter out the API with strong functionality.

In order to achieve these goals, we leverage decompile
technology to analyze the code in the app. We decompile the
apk file by using Apktool [22] which is a tool for reverse
engineering 3rd party, closed, binary Android apps. In this
process, we can get another form of the code file named
smali file, which is a middle code between Java and assembly
code. These files contain APIs that are used in the app. In
smali files, the syntax of an API call statement is shown in
the Fig. 3. The first part represents the class in which the
definition of the API is located, the second part represents
the name and the parameter list of the API, and the third part
is the type of the return value. Through the information in
these three parts, we can distinguish between the app cus-
tom APIs and Android APIs. For the custom APIs, further
search can be performed to figure out the Android APIs in its
definition. To select the APIs that are more beneficial to our
categorization, we apply TF-IDF(Term Frequency4A "Inverse
Document Frequency) algorithm to assign the weight to each
of the Android APIs. The code of the app is a special kind of
text, and the APIs can be seen as the choice of words in the
text. Then the weight calculation formula is:

Wi = & lo L (1)

PN 1) M,
where W;; represents the weight of API i in category j, S;;
represents the number of apps using API i in category j,
N; represents the total number of apps of category j, and L
represents the total number of apps. M; represents the number

157990

of apps that use API i in all apps. The size of W;; represent
the ability of the API i to distinguish category j with other
categories. All the value in the formula can be obtained by
scanning the smali files. The ideal APIs for us are the APIs
with category functionality, so we choose the top weighted
APIs in each categories to form our selected API list.

After determining the selected API List, we design an
algorithm to generate the API call graphs from the app’s smali
files. Since the Android app is executed by calling the lifecy-
cle functions of Android components [23] that are registered
in the AndroidManifest file, we use the lifecycle functions of
each component as entries to generate the corresponding API
call graphs. For each lifecycle function, by using string match
technology we obtain the statements from the code in it.
Follow the statements, we can either record the Android API
or find the code of the custom API. By recursively traversing
the statements, we could generate the API call graph. The
detail of this process is described in Algorithm 1.

Algorithm 1 Process of Generating an API Call Graph From
an Entry Function e,

Input: smali files, e,
Output: A directed graph and its entry node
initialize a node ng
for each statement s; in the smali code of ¢, do
if s5; is an API invoke statement then
mark the API as a,,
if a,, is in our selected list then
create a new node 7; contains a,,
else if a,, is a custom API then
search the code of a,,, recursively generate sub-
graph
end if
else if s; is a condition control statement then
search the code under the condition, recursively gen-
erate sub-graph
end if
end for
return n

C. FEATURE EXTRACTION

The objective of this step is to transform the API call graphs in
the previous step into a specific data structure that represents
the features of the app. The feature information we mainly
extract is the relationships between APIs. In order to store
the features for each app, a matrix data structure is proposed.
We define the matrix as:

arl a2 e Aaln
azl an e arn
M=1 . .) 2
: Coay
dnl an2 cc dpn

nxn

where a;; represents the relationship between the API i and
the API j in our selected API list. When the app does not use

VOLUME 7, 2019

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

IEEE Access

API i and API j or APIj is unreachable for API i in API call
graphs, a; = 0. When a;; > 0, it means that there is a path
from API i to APIj in API call graphs of the app and API j
will be executed after API i. This also shows a combination
relationship between API i and j. We use the numerical
magnitude of g;; to indicate the strength of this combination.
To evaluate the combination strength, we define a parameter
named distance. The distance is the number of edges included
in the shortest path between the two nodes. Assume that in the
function call graph, the closer the distance between the nodes
of the two APIs, the greater the combination strength, and
the farther the distance, the smaller the combination strength.
Based on this assumption, we define the attenuation function
of the combination strength as H(d), where d is the distance.
We add up all the combination strength calculated using H (d)
to assign value to ;. Taking H(d) = % as an example,
the matrix transformed from the API call graph in Fig. 2(b)
is shown in the Equ. (3). From the perspective of program
code, APIs that implement a function together are often called
together, and there may be no functional association between
the two APIs with large call intervals. Therefore, elements
with larger values in the matrix can reflect the combination
of APIs that play a major role in API call graphs. On the other
hand, the strength of the API combination also represents the
weight of each API combination in the app, which can reflect
the major functionality in the app so that the specific category
of the app can be predicted.

ABC D E F
Afl 1 1 1/4 1/2 1)2
Blo 1.0 0 0 0
cloo 1 12 1 1)
plo oo 1 o0 0
Eloo o 1 1 0
F\o oo 1 o0 1

To get the matrix of an app, the traversal of API call
graphs is needed. The specific conversion process is shown
in Algorithm 2. Taking the API call graphs as input and
the API relationship matrix as output. Starting with the entry
node of each graph, we perform breadth-first traversal in the
graph. Then recording the traversal depth in the traversal
process to represent the distance between nodes to calculate
the combined strength between the nodes using the attenu-
ation function, and then assign values to the corresponding
positions in the matrix. When the combination is repeated,
the value is added, indicating that the combination appears
multiple times and should occupy a higher weight in the
app. By recursively doing the same process to every node,
the traversal of the relationship between the nodes in the
whole graph can be completed, that is, the assignment of the
matrix is completed.

D. FEATURE SELECTION

This step aims to reduce the number of features in the matrix
to improve the stability and efficiency of our system. It is
done in two sub-steps. The first sub-step is to remove the

VOLUME 7, 2019

Algorithm 2 Process of Getting API Relationship Matrix
From API Call Graphs

Input: API call graphs
Output: API relationship matrix
initialize a matrix M with all elements = 0;
for each API call graph as g,, do
use deep-first traversal to get its nodes
for each node node; in call graph g, do
use breadth-first traversal to get all the subnodes
for each childnode subnode; of node; do
compute the distance d between subnode; and
node;;
get the index m, n of the two nodes in API list;
M[m][n] <= M[m][n] + H(d)
end for
end for
end for
return M

[
S
T

w
o
T

Frequency of the element (%)

0
0 0.5 1 1.5 2 2.5 3 3.5

Index of the element in the matrix %10%

FIGURE 4. Histogram diagram of the matrix elements.

invalid features. After the feature extraction, we have the API
relationship matrix for each app. Through our observation of
these matrices, we find that these matrices are sparse matrices
with a large number of elements that have a value of zero. This
situation indicates some of the API combinations are never
used in any app. These elements have no effect on the app cat-
egorization. To further find invalid elements, we perform a
statistical analysis to get the frequency of occurrence of each
element in the matrix. We sort the frequency of each element
and plot histogram diagram shown in Fig. 4. As can be seen
from the figure, in addition to the situation we mentioned,
there is also a part of the elements has a very low frequency.
This low-frequency element means that only a very small
number of apps will use such API combination. In order to
avoid over-fitting of classifiers and enhance stability, we have
to remove the elements in these two cases. In this process,
we filtered out a significant portion of the elements and then
re-arranged the features into a vector form.

Although the features in the vector may be all valid
now, there may be redundancy between them. Based on
feature vectors, we conduct the second sub-step to remove

157991

IEEE Access

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

redundant features. The method we proposed to search for
redundant elements is described as follows. In all the feature
vectors, if there is a mapping relationship between two ele-
ments, then there is redundancy between them. This can be
written in formula as:

YW, Vo = f (Vi) “®

where v,;,, v, is the m-th and n-th elements in the vector. In this
case, we could remove v, and the final categorization result
will not be affected. Regarding the categorization problem
as a condition probability problem. The probability of an
app with vector V is predicted to be category C; is:

LV = ag)) (5)

To simplify, let us consider there are only two elements in the
vector. Equ. (5) can be rewrite as:

PCi|lV(vi =ay, ..

P(Cilvm = a,vn = b) (6)
According to the definition of conditional probability,

P(Ci, vy, = a,v, = b)
P(Cilvm = a, vy =b) = m;iavim
m — s Yn —

_ Py = b|Ci, vy = a)P(Ci, vy = a)
T Py = blvm = a)P(vy, = a)

According to Equ. (4), when there is a mapping relationship
between v, and v, then

b =f(a)
Pvy =blvyy=a) =1
P(vy =blvy=a,C) =1

(N

Equ. (7) can be transformed to
P(Cla Vm = a)
Pv,, = a)

So the probability is not affected when v, is removed from
the condition. This proof reveals redundancy between two
elements. When the probability is not affected, we should not
use so many features. So why there is such kind of redundancy
in our vector? A common situation is that app development
often uses third-party libraries; especially the same kind of
software may use the same library. Using the same library
will result in the same part of the call structure in the API
call graph, as shown in Fig. 5. When such a structure exists,
a fixed API combination and a call relationship occur. That
is, the combination of AB and BC always appears at the
same time or disappears at the same time. This will result in
redundancy in the API call relationship.

The detail of searching the redundancy between two ele-
ments is described in Algorithm 3. We denote n, m as the two
elements’ indices in the vector. Then traversing all the vectors
and recording the values of these two elements by using a map
structure. If the values of the two elements correspond one-
to-one, it means that there is a mapping relationship between
them. Otherwise, there is no redundancy between them.

= P(Cilvm = a) ®)

157992

FIGURE 5. Example of same structure in different graphs.

Algorithm 3 Determine Whether There Is a Mapping
Between Two Elements
Input: Vector index m,n, all feature vectors
Output: Boolean
initialize a empty map named map
for each feature vector v; in all feature vectors do
if v;[m] in map then
if map[v;[m]] != v;[n] then
return FALSE
end if
else
map.put(vi[m],vi[n])
end if
end for
return TRUE

E. TRAINING CLASSIFIER

During this step, the features extracted from the previous
step will be used to train the classifier. In order to explore
the mapping relationship between the feature vectors we
extracted and the app categories, we use CNN algorithm as
the classifier model. Firstly, a CNN model is trained with a
sufficient number of app feature vectors and corresponding
app category labels. The trained model is then used to catego-
rize unknown apps based on their feature vectors. The CNN
model contains a lot of hyperparameters that determine the
prediction results, and the parameters are constantly updated
based on the results each time we train. In our model, we used
the Adam optimizer to update the parameter values. We con-
ducted experiments with different structures and parameters,
and the final adjusted model structure is shown in the Fig. 6.
It consists of two convolution with maxPool layers and two
fully connected layers. The final output is a vector the length
of which is the same as the number of categories. Then the
softmax function is used to get the probability distribution of
each category, and finally the prediction result is obtained.
Suppose we denote p; . as the probability of predicting an
app i as category c. The loss function can be written as
Equ. (9) using cross-entropy loss [24]. During the training
process, as the parameters are updated, the value of the loss
function will continue to decrease. When the value is no
longer decreasing or fluctuating, the model is trained. That is,

VOLUME 7, 2019

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

IEEE Access

Output
Conv + fe1 24
Conv + maxPool /15 fc2 classes
maxPool 16x256 _
Input 8 x 2048 N

1x17768

FIGURE 6. The structure of CNN model.
TABLE 1. Category labels.

BOOKS AND REFERENCE
COMMUNICATION
FINANCE

BUSINESS COMICS

EDUCATION ENTERTAINMENT
HEALTH AND FITNESS LIBRARIES AND DEMO
LIFESTYLE MEDIA AND VIDEO MEDICAL

MUSIC AND AUDIO NEWS AND MAGAZINES PERSONALIZATION
PHOTOGRAPHY PRODUCTIVITY SHOPPING

SOCIAL SPORTS TOOLS
TRANSPORTATION TRAVEL AND LOCAL WEATHER

we can use it to predict the category.
N-1

1
Loss = N IZ(; logpi.c)

IV. EVALUATION

A. EXPERIMENT SETUP

To evaluate the feasibility and performance of our pro-
posed method, we conduct several experiments. DroidARA is
implemented using Java (J2SE 1.8) with Apktool (v2.4.0) and
Python (v3.6.5) with Pytorch (v1.2) which is an open source
machine learning framework. It runs in a Dell PowerEdge
R720 server with a 2.8 GHz Intel Xeon E5-2680 CPU and
96 GB RAM, which runs Ubuntu 16.04 LTS 64-bit.

The apps we use are all collected from Google Play. In
order to make our system easy to maintain the category
structure of the existing market, we use the category labels
originally defined by Google Play to classify these apps into
24 categories listed in Table 1 and take the label of the
app assigned by Google Play as the ground truth. To avoid
data imbalance, we obtain the same number of sample apps
from each category. After removing invalid data(empty file or
cannot be decompiled), we get 19949 apps. Then we choose
20% of the data as our test set and 80% as our train set. Using
the pre-mentioned device environment, it takes 319.4s to train
the CNN model and 53.2s to test the model. On average,
DroidARA takes about 1.2ms for each prediction. The metric
of our experiment is the accuracy of the prediction for the
app category since it directly reflects performance of the
system. we define accuracy as follows. We denote N7 as
the number of the predictions that are same with the ground
truth, and Ny as the number of all the predictions. Then the
accuracy can be calculated as:

Nt

acc = .
Nait

B. PERFORMANCE OF APP CATEGORIZATION

1) NUMBER OF APIs IN SELECTED API LIST

As mentioned in Section III, in static analysis step, we select
top-weighted APIs in each category to form our selected

VOLUME 7, 2019

100

95

90

85

80

Accuracy(%)

75

70r

65

60 | i I i i
16 18 20 22 24 26 28 30 32 34

Number of APIs chosen from each category

FIGURE 7. Accuracy changes under different APl quantities.

80 -

Accuracy(%)
(2] ~
o o

33
S
T

IS
o

30
H1 H2 H3 H4

Different H(d)

FIGURE 8. Accuracy of different attenuation functions.

0.2

Distance d

FIGURE 9. Function graphs with different attenuation functions.

API list. The number of chosen APIs in each category will
affect the prediction result. To assess this impact, we select
different numbers of APIs for experiments. Fig.7 depicts the
results of these experiments. As can be seen from the figure,
when the number of selected API is small, as the number
increases, the prediction accuracy also increases. When the
number reaches a certain value, increasing the number will
not improve the performance. It means that while more APIs
can introduce more information, there is a ceiling. So the best
value to choose is 24.

157993

IEEE Access

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

100 1983 97.42 98.07

95.18
90.36
84.93

80
68.07 69.27

60

Accuracy(%)

40

20

(P P xA (P 0
?Se“q;\ﬁ“& 00‘\; S V“ﬁk*‘* q\“ﬁoo\a?@‘w
P v@?\ oO‘N %e «e o ;} & &
OO

FIGURE 10. Prediction accuracy in each category.

TABLE 2. Expressions of different attenuation functions.

Function ~ Expression
H1 1
1
H2 In(d+e—1)
H3 %
H4 PICEE)

2) DIFFERENT ATTENUATION FUNCTIONS

In feature extraction step, we define an attenuation func-
tion H(d) to calculate the combination strength. Considering
that different functions produce different calculation results,
we test several different attenuation functions and recorded
the corresponding prediction results. In general, the attenua-
tion function should be a monotonically decreasing function.
We choose three typical decreasing functions for testing and
use a constant function as a reference. The expressions of
these functions are shown in Table 2.

As shown in Fig.8, All three decreasing functions per-
form better than constant function. It indicates that the
attenuation calculation we proposed is valid. Among them,
H?2 performs the best. To further explore the reasons for this,
we put together the function graphs of the three functions
for comparison in Fig. 9. When d > 5, the value of H4 is
nearly zero, and the value of H2 is above 0.5. This means
that the H4 decreases too fast and H2 decreases too slow.
A faster decline will cause some near-combination effects to
be over-eliminated while a slower drop will make the effects
of attenuation too small. In contrast, H3 is more able to reflect
the attenuation of the combination strength.

3) FEATURE SELECTION

In feature selection step, we remove the features that have
a very low frequency. The way to determine if it has low
frequency is to compare the frequency that it appears to a

157994

90.36

O oW 0O «° <t
£ 0\0 W \>1‘\ Q\O @v* @\ ?Q\x*

N\\ﬁ\\‘f ‘@ @50
©

97.57 97.23 9879
m 91.56

97.58 97.53 96,75 97.25

94.57

86.14
84.93 8313

70.48

o\& @«9 O@ \o\‘ e

W &\ o

qﬁ,\%‘? q@‘

Category

Accuracy(%)

0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
Threshold value(%)

FIGURE 11. Accuracy at different thresholds.

TABLE 3. Features used in different methods.

Method Features
Proposed API relationships
Ref 1 [14] API
Ref 2 [16] permission, string and description
Ref 3 [13] API, permission, string, .etc

threshold value. In order to adapt the method to different size
data sets, we set the threshold as a percentage of the total
amount of data. We test the results of removing features at
different scales which is depicted in Fig. 11. In the beginning,
when we remove the features the accuracy increases. But if
we continue to remove more features, some valid features are
removed too, which causes the accuracy to decrease. So in
this case, we choose the threshold value that performs best.

4) COMPARISON WITH EXISTING METHODS

In order to demonstrate that our proposed method is
an improvement of the existing work, we use some of
the methods proposed in the reference to conduct some

VOLUME 7, 2019

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

IEEE Access

100 T T T T

Accuracy(%)

Proposed method Ref 1 Ref 2 Ref 3
Methods

FIGURE 12. Comparsion of different methods.

comparative experiments. In specific, we use the features
chosen in [13], [14], [16] and the corresponding classifica-
tion methods to evaluate their performance, respectively. The
difference between methods is shown in Table 3. We choose
three existing methods that use different types of features, and
the accuracy of each method is shown in Fig. 12.

It can be seen from the results that our proposed method
has an improvement in performance than the existing meth-
ods. As mentioned in Section II, these methods only simply
combine the binary value of the features into vectors and do
not obtain further information. Since there are many apps
containing the same such features, that will result in the loss
in accuracy. And although Ref 3 combines many types of
features together, they didn’t remove the redundant between
features so their method has little improvement. In contrast,
our proposed method not only mine the relationships between
APIs but also assigns values to it in real number range which
makes apps more distinguishable.

5) TOTAL PREDICTION RESULTS

The prediction result of each category app is shown in Fig. 10.
The highest accuracy is 98.7% while the lowest is 51.2%.
And the average accuracy is 88.9%. In our categorization,
most categories perform well. The low accuracy of some
categories may due to the unclear category definition. For
example, the category LIBRARIES AND DEMO performs
worst, while it is hard to determine what functions should be
included in this category according to the name. So there may
be many miscategorized apps. Compared to this, some cate-
gories such as WEATHER perform well when their names
directly reflect the function.

V. CONCLUSION
In this paper, we introduced DroidARA, an automatic
Android app categorization system based on API relation-
ships analysis. To our best knowledge, it is the first approach
to categorize apps by analyzing the information of relation-
ships between API calls.

Given a new app, firstly the API call graphs will be
constructed using our designed analysis method. Then the

VOLUME 7, 2019

relationships between API calls are extracted from these API
call graphs and a matrix structure data is generated. Two
feature selection methods are designed for the matrix to rein-
force the feature elements so that the accuracy and efficiency
of the system will be improved. After that, the matrix is
transformed into a feature vector as the input of a trained CNN
model. Finally, the CNN model will output prediction for the
category of this app.

In experiments, we tested 19949 apps collected from
Google Play. Using the original category labels, we divided
the apps into 24 categories. After the system parameters
adjusted according to the experiment, Droid ARA achieved an
average 88.9% accuracy which outperformed existing meth-
ods. This result demonstrated that Droid ARA could be used
in real-world app market.

In the future, we aim at mining more further information
inside the application to make more use of other types of
feature such as text. And exploring some ways to improve
the system. For example, finding a more suitable attenuation
function or extending the selection method to widely use for
removing redundancy.

REFERENCES

[1] (2019). Smartphone os Market Share. [Online]. Available: http://www.

idc.com/prodserv/smartphone-os-market-share.jsp

[2] Google. Play Store. Accessed: 2019. [Online]. Available: https://play.

google.com/store

[3] Amazon. Appstore. Accessed: 2019. [Online]. Available: https://www.

amazon.com

AppBrain. (2019). Android Apps on Google Play. [Online]. Available:

https://www.appbrain.com/stats/number-of-android-apps

[S] A. Bajaj, S. Krishna, H. Tiwari, and V. Vala, “Learning mobile app
embeddings using multi-task neural network,” in Proc. Int. Conf. Appl.
Natural Lang. Inf. Syst. Cham, Switzerland: Springer, 2019, pp. 29-40.

[6] K. Singla, N. Mukherjee, and J. Bose, ‘“Multimodal language independent
app classification using images and text,” in Proc. Int. Conf. Appl. Natural
Lang. Inf. Syst. Cham, Switzerland: Springer, 2018, pp. 135-142.

[7]1 X. Liu, H. H. Song, M. Baldi, and P.-N. Tan, ‘“Macro-scale mobile app
market analysis using customized hierarchical categorization,” in /EEE
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1-9.

[8] V. Radosavljevic, M. Grbovic, N. Djuric, N. Bhamidipati, D. Zhang,
J. Wang, J. Dang, H. Huang, A. Nagarajan, and P. Chen, ““Smartphone app
categorization for interest targeting in advertising marketplace,” in Proc.
25th Int. Conf. Companion World Wide Web, Apr. 2016, pp. 93-94.

[9] D. Surian, S. Seneviratne, A. Seneviratne, and S. Chawla, “App miscate-
gorization detection: A case study on Google play,” IEEE Trans. Knowl.
Data Eng., vol. 29, no. 8, pp. 1591-1604, Aug. 2017.

[10] G. Berardi, A. Esuli, T. Fagni, and F. Sebastiani, ‘““Multi-store metadata-
based supervised mobile app classification,” in Proc. 30th Annu. ACM
Symp. Appl. Comput., Apr. 2015, pp. 585-588.

[11] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and
Y. Zhang, “Clustering mobile apps based on mined textual features,” in
Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., Sep. 2016,
Art. no. 38.

[12] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android
malicious apps and categorizing benign apps with ensemble of classifiers,”
Future Gener. Comput. Syst., vol. 78, pp. 987-994, Jan. 2018.

[13] M.R.Hamedani, D. Shin, M. Lee, S.-J. Cho, and C. Hwang, “AndroClass:
An effective method to classify Android applications by applying deep
neural networks to comprehensive features,” Wireless Commun. Mobile
Comput., vol. 2018, Sep. 2018, Art. no. 1250359.

[14] F Dong, Y. Guo, C. Li, G. Xu, and F. Wei, “ClassifyDroid: Large scale
Android applications classification using semi-supervised Multinomial
Naive Bayes,” in Proc. 4th Int. Conf. Cloud Comput. Intell. Syst. (CCIS),
Aug. 2016, pp. 77-81.

[4

157995

IEEE Access

W. Fan et al.: DroidARA: Android Application Automatic Categorization Based on API Relationship Analysis

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis for
classifying Android applications using machine learning,” in Proc. Int.
Conf. Comput. Intell. Secur., Dec. 2010, pp. 329-333.

C. Yuan, S. Wei, Y. Wang, Y. You, and S. ZiLiang, “Android applica-
tions categorization using Bayesian classification,” in Proc. Int. Conf.
Cyber-Enabled Distrib. Comput. Knowl. Discovery (CyberC), Oct. 2016,
pp. 173-176.

D. H. Park, M. Liu, C. Zhai, and H. Wang, “Leveraging user reviews to
improve accuracy for mobile app retrieval,” in Proc. 38th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr., Aug. 2015, pp. 533-542.

H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian, “Mobile app classification
with enriched contextual information,” IEEE Trans. Mobile Comput.,
vol. 13, no. 7, pp. 1550-1563, Jul. 2014.

D. L. Ben Lulu and T. Kuflik, “Wise mobile icons organization: Apps
taxonomy classification using functionality mining to ease apps finding,”
Mobile Inf. Syst., vol. 2016, Nov. 2015, Art. no. 3083450.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android permission specification,” in Proc. ACM Conf. Comput. Commun.
Secur., Oct. 2012, pp. 217-228.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permis-
sions demystified,” in Proc. 18th ACM Conf. Comput. Commun. Secur.,
Oct. 2011, pp. 627-638.

C. T. R. Wi Sniewski, Official Site of Apktool. Accessed: 2019. [Online].
Available: https://ibotpeaches.github.io/apktool/

Android Developers. Application Fundamentals. Accessed: 2019.
[Online]. Available: http://developer.android.com/guide/components/
fundamentals.html

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). New York, NY, USA: Springer, 2006.

WENHAO FAN received the B.E. and Ph.D.
degrees from the Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2008 and 2013, respectively. He is currently an
Associate Professor with the School of Electronic
Engineering, BUPT.

His main research interests include network and
information security, parallel and distributed com-
puting, and computer networks.

157996

ol —
A

A

=
,"ﬁ; \\t / |

YE CHEN received the B.E. degree from the
Beijing University of Posts and Telecommuni-
cations (BUPT), Beijing, China, in 2017, where
he is currently pursuing the master’s degree with
the School of Electronic Engineering. His main
research interests include network and informa-
tion security, android software, and computer net-
works.

YUAN'AN LIU received the B.E., M.Eng., and
Ph.D. degrees in electrical engineering from the
University of Electronic Science and Technol-
ogy, Chengdu, China, in 1984, 1989, and 1992,
respectively.

He is currently a Professor with the Beijing Uni-
versity of Posts and Telecommunications (BUPT),
Beijing, China, where he is also the Dean of
the School of Electronic Engineering. His main
research interests include network and information

security, pervasive computing, wireless communications, and electromag-

netic compatibility.

Prof. Liu is a Fellow of the Institution of Engineering and Technology,
U.K., the Vice Chairman of the Electromagnetic Environment and Safety of
the China Communication Standards Association, the Vice Director of the
Wireless and Mobile Communication Committee, Communication Institute
of China, and a Senior Member of the Electronic Institute of China.

FAN WU received the B.E. degree from the
University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2004, and the
Ph.D. degree from the Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2009. She is currently an Associate Profes-
sor with the School of Electronic Engineering,
BUPT. Her main research interests include net-
work and information security, and wireless sensor
networks.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORKS
	METHODS OF USING APP'S METADATA
	METHODS OF COLLECTING INFORMATION IN THE APK FILES

	SYSTEM MODEL
	OVERVIEW
	STATIC ANALYSIS
	FEATURE EXTRACTION
	FEATURE SELECTION
	TRAINING CLASSIFIER

	EVALUATION
	EXPERIMENT SETUP
	PERFORMANCE OF APP CATEGORIZATION
	NUMBER OF APIs IN SELECTED API LIST
	DIFFERENT ATTENUATION FUNCTIONS
	FEATURE SELECTION
	COMPARISON WITH EXISTING METHODS
	TOTAL PREDICTION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	WENHAO FAN
	YE CHEN
	YUAN'AN LIU
	FAN WU

