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ABSTRACT The activation functions play increasingly important roles in deep convolutional neural
networks. The traditional activation functions have some problems such as gradient disappearance, neuron
death and output offset, and so on. To solve these problems, we propose a new activation function in this
paper, Fast Exponentially Linear Unit (FELU), aiming to speed up exponential linear calculations and reduce
the time of network running. FELU has the advantages of Rectified Linear Unit (RELU) and Exponential
Linear Unit (ELU), leading to have better classification accuracy and faster calculation speed. We test five
traditional activation functions such as ReLU, ELU, SLU, MPELU, TReL U, and our new activation function
on the cifar10, cifar100 and GTSRB data sets. Experiments show that the proposed activation function
FELU not only improves the speed of the exponential calculation, reducing the time of convolutional neural
network running, but also effectively enhances the noise robustness of network to improve the accuracy of

classification.

INDEX TERMS Activation function, deep learning, exponential function.

I. INTRODUCTION

In recent years, deep learning has achieved remarkable
results in the field of computer vision application, such as
image classification [1]-[4], object detection [5]-[9], image
retrieval [10] and so on [11]. The convolutional neural net-
work is a trainable multi-layer network structure compos-
ing of multiple single-layer convolutional neural networks.
Each single-layer convolutional neural network consists of
three basic stages: feature extraction, nonlinear activation,
and downsampling. The activation function can retain the fea-
tures extracted by the convolutional layer, remove redundant
data, and map out the features by using nonlinear functions.
At present, many activation functions are applied in convo-
lutional neural networks, such as Sigmoid [12], Tanh [13],
ReLU [14], PReLU [15], RReLU [16], Leaky_ReLU [17],
ELU [18], etc. [19], [21]-[25]. The Sigmoid and Tanh func-
tions belong to the saturation activation function, which have
gradient disappearance problem in deep convolutional neu-
ral networks [20]. Using a non-saturated activation function
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instead of a saturation activation function lays the foundation
for solving this problem. The unsaturated activation function
can not only solve the gradient disappearance phenomenon,
but also accelerate the convergence speed.

Nair et al. [14] proposed a simple unsaturated activation
function ReLLU (Rectified Linear Unit) in 2010 to solve the
problem of vanishing gradient of the saturation activation
function. It produced profound effect on the development
of convolutional neural network. However, since the ReLU
function only keeps the positive part, the negative part is
always zero. This situation leads to neuron death and output
offset, which affects the convergence of the neural network.
In order to solve this problem, Anthimopoulos et al. [17]
proposed a new function LReLU (Leaky ReLU) in 2013,
which an improved version of ReL U function. It introduces a
function with a variable parameter on the negative part, which
can activate negative features, to effectively solve the problem
of vanishing gradient, but the experimental process is compli-
cated because the appropriate variable parameter needs to be
obtained through multiple training. He et al. [15] proposed
a Parametric Rectified Linear Unit (PReLU) in 2015, which
an improved version of LReLU. In PReLU, the slopes of
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FIGURE 1. Sigmoid function.

negative part are learned form data rather than predefined.
It is the key to transcending human classification. However,
the noise robustness of the network in the in-active state is
poor, owing to the existence of the linear function of the neg-
ative part. Clevert et al. [18] proposed an Exponential Linear
Unit (ELU) in 2015. Exponential operation on the negative
part leads the mean of output close to zero, which makes the
gradient closer to the natural gradient and enhances the noise
robustness. However, due to the large amount of calculation
in the gradient, ELU slows down the speed of the network
running. Li et al. [20] proposed a Multiple Parametric Expo-
nential Linear Unit (MPELU) in 2018. It can improve the
accuracy of classification by introducing multiple parameters
to control the exponential function on the negative part, but it
is slower in calculation.

Aiming at the current problems such as gradient disap-
pearance, output offset and slow running speed, the main
contribution of this work includes: we propose a new acti-
vation function FELU to improve the performance of the
convolutional neural network by optimizing the exponential
function on the negative part. In the negative part, using a
new exponential function that can speed up the calculation
effectively speeds up the network operation. Experiments
show that the network model based on FELU function has
faster running speed and better classification accuracy.

This paper is organized as follow. The related work is
reviewed in Section 2. The new activation function is pro-
posed in Section 3. The experimental results and analysis are
given in Section 4. Finally, Conclusion is given in Section 5.

Il. RELATED WORK

A. SATURATION ACTIVATION FUNCTION

The common saturation activation functions include Sigmoid
function [12] and Tanh function [13], and their curves are
shown in Fig. 1 and Fig. 2, respectively.

The Sigmoid function compresses all real numbers
between (0,1). It has a large gain from the middle region
and the output is bounded. When the input is large, the out-
put is closer to one, otherwise the output is closer to zero.
Its derivative function is simple to solve ant its mathematical
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form is shown in equation (1).

1

f0 =170 (1)
Sigmoid function is rarely used now. Firstly, the
Sigmoid function will occur the gradient disappearance phe-
nomenon when it is backpropagating. When the input is very
large or very small, the output enters the saturation region
of the function, and the derivative also tends to zero, which is
prone to occur gradient disappearance phenomenon, resulting
in the neural network unable to complete the training. And the
Sigmoid function has a characteristic of output zero mean,
which causes the gradient to either be positively updated or
negatively updated, which is detrimental to network con-
vergence [26]. Finally, the Sigmoid function involves the
power operation, which increases the training time of the
network. The appearance of the Tanh solves the problem of
non-zero mean of the Sigmoid function. It has better fault
tolerance, and it is superior to the Sigmoid function, but it
still has problems of vanishing gradient and power opera-
tion. The mathematical form of the Tanh function is shown

in Equation (2).

X _ X

e
X)= ———
f0 =S
Therefore, the Sigmoid and Tanh activation functions still
have significant limitations in gradient disappearance and the
time of training.

@)

B. UNSATURATION ACTIVATION FUNCTION

In order to solve the problem of saturation activation
function, the researchers propose a series of unsaturation
activation functions, including ReLU function [14], PReLU
function [15] and ELU function [18], and so on.

1) RELU ACTIVATION FUNCTION

The ReLU activation function is one of the most widely used
activation functions in neural networks [14], [21], [27], which
can effectively solve the problem of vanishing gradient and
slow training time of saturated S-type activation function.
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Its mathematical expression is as shown in equation (3).

Xi, Xi Z 3)

feo = {O, xi <0

When the input is greater than zero, the output is lin-
early mapped. Conversely, the output is forced to zero. This
enhances the sparseness of the network, reduces the interde-
pendence of parameters, and effectively alleviates the prob-
lem of the parameter over-fitting. The ReLU function does
not contain a power operation, so it can reduce the amount of
calculation and speed up the training time of the network [26].
However, the ReLLU function has a hard saturation property
because of the negative part of ReLU is always zero, which
makes the weight value of the input that input into the hard
saturated region to zero during training, and then results in
the problem of neuron death. The ReLU function also keeps
the output mean value of the function be greater than zero
because the negative part is always zero, which makes it
difficult for the network to find the direction with the fastest
gradient drop in the back propagation process, thus affecting
the network convergence [21].

2) PRELU ACTIVATION FUNCTION

The PReLU function was proposed in 2015, and it solved the
problem that the negative part of ReLU is always zero, and
its curve is shown in Fig. 3.

The negative part of the PReLU has a variable parameter
o, which can be learned from the network during the training
process, and its value range is between «. The PReL.U has
values of output on the negative part, which makes function
have a feature of the output zero-mean, ensuring the input
on the negative part can be activated. However, owing to the
parameter o needs to be learned from the training process,
the PReLu will increase the amount of computation of the
network, and also cause parameter over-fitting on small data
sets, affecting the final classification accuracy.

3) ELU ACTIVATION FUNCTION

Inspired by natural gradients [28], Clevert et al. [18] proposed
an activation function ELU based on exponential operation
in 2015. Similar to the PReLU function, there has values of
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output on the negative part. Unlike PReLU, an exponential
function is used on the negative part. Experiments have shown
that the gradients conveyed by the ELU are closer to the
natural gradient. Its curve is shown in Fig. 4.

The ELU function adopts the positive part of the ReLU
function, which can effectively avoid the gradient disappear-
ance phenomenon. Introducing an exponential function on
the negative part makes the ELU function have an output
zero-mean property, which prevents the occurrence of neu-
ronal death. However, due to the complicated calculation of
the exponential operation, the network is still much slower in
running time than the ReLU function.

In summary, although ELU solves the problem of neuronal
death and output offset of ReLU, and also has the advantages
of ReLU, which can prevent the gradient disappearing phe-
nomenon. However, the neural network with ELU function
runs much slower than with the ReLU function. Since the
running speed plays an important role in the real-time of
the application of the convolutional neural network, a new
activation function is needed to solve this problem. There-
fore, we propose a new activation function to improve the
ELU function, which not only maintains the advantages of
the ELU function, but also speeds up the network operation.

Ill. NEW ACTIVATION FUNCTION (FELU)

In this section, we propose a new activation function FELU
to improve ELU function. The contribution of FELU is using
a fast exponential function that approximates the natural gra-
dient calculation in the negative part, which can speed up the
calculation to reduce the running time of network by speeding
up the calculation of exponent.

A. FAST EXPONENTIAL CALCULATION

The exponential function is the most typical nonlinear func-
tion in the neural network. The application in the neural
network often uses most of the time in calculating. The typical
exponential functione® is calculated by using the power series
expansion, and the approximate calculation of summing the
first n terms is shown in equation (4).

x2 X xt x"

X
X - - - P —
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The standard math library of exp function has a high
precision. The e is an infinite loop number, which value
is 2.718281828459...... , and the exp function takes a long
time to calculate, so we need to find a fast exponential
function to speed up the calculation. Schraudolph et al. [29]
proposed a fast exponential calculation method based on
floating-point number, and the mathematical formula of EXP
macro operation is as shown in equation (5).

& = 2%(1 + x/In(2) — k) among k = |x/In(2)| (5)

y = ¢ -1n(2)/2%°, where |u] represents the largest integer
less than or equal to u, c is an optimal constant obtained after-
multiple calculations. We use simple displacement bits and
integer algebra operations to achieve exponential fast approx-
imation based on the representation of IEEE-754 floating-
point number calculation [30]. Floating point calculation
is divided into single precision and double precision. The
single-precision floating-point number is 32 bits, and the
double-precision floating-point number is 64 bits, both con-
tain the sign bit S, the exponent bit E, the mantissa bit M,
and the exponential offset value Z. If the difference between
single precision and double precision is ignored, the format
of the floating-point number can be expressed as shown in the
equation (6).

Y=(-1'-0+M)-2X, X=E—-Z (6)

The value of Z of the single-precision is 127, and the value
of Z of the double-precision is 1023. If the values of S and
M both are 0, the equation will become equation ¥ = 2X,
If you just want to obtain the value of 2¥, you only need to
store x in the position of the high 32 bits that belongs to the
exponent bit. At this time, e* can be reduced to a power-based
operation form of base 2, as shown in equation (7).

=2/ =" H=x/ln2+Z )
where y represents the number of bits that can be moved.
If x/In2 is divisible, then H is stored in the exponent bit
without causing loss of precision. Conversely, it will generate
a decimal place. At this time, H is shifted to the left by
y bits and the fractional part is stored in the mantissa M.
The specific proof process is cumbersome and it has been
stated in the literature [29], we will no further proof here.
The literature [29] also proves that the running speed on each
machine with the EXP floating-point calculation method is
faster than the standard math library, the results as shown
in Fig. 5.

The expansion of 2%/ 112 is the same as the expansion of e*,
however, due to the use of the idea of floating-point calcula-
tions, the new function not only can accelerate the exponential
calculation, but also achieve the purpose of quickly approx-
imating ¢*. Inspired by this research, it can be considered
that 2*/1"2 is an exponential function that can achieve the
fast exponential calculation. Therefore, the value of ¢* of the
activation function ELU on the negative part is optimized
to 2°/"2 generating a new activation function in this paper,
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in this way, it can achieve the same as the classification
accuracy of ELU and achieve the purpose of accelerating
calculation.

B. IMPROVED ACTIVATION FUNCTION FELU

In order to speed up the calculation of the exponential func-
tion, according to the fast exponential function obtained in
Section 3.1, the mathematical form of the new activation
function is shown in Equation (8), and its curve is shown
in Fig. 6.

X x>0

a¥M@ _1) x<o0 ®)

f(x):{

Due to achieving the fast approximation, the curve trend is
basically consistent with the ELU, which ensures that the new
activation function does not change the accuracy advantage of
the ELU.

It can be seen from Fig. 6 that the function of FELU
introduces a new exponential function in the negative part.
The curve of this function is smooth respect to the linear
function, and it has the advantage of being differentiable
everywhere and output zero mean, which can effectively
avoid the occurrence of output offset. So you can find the
direction in which the gradient drops faster. At the same
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time, the parameterc is a variable parameter learned through
training, which is used to control the soft saturation region
of the negative part to determine the activation degree of the
feature in the negative region. Fig. 6 shows the curve of the
exponential function corresponding to the case that the value
of @ is 1, 0.5, 0.25 in the negative part, respectively. It can be
seen from the figure that the smaller the activation function is,
the closer it is to the ReLU function, and the more likely the
neuron death problem occurs, on the contrary, the function is
closer to the linear function near the origin, which can speed
up the convergence of the network. In order to alleviate the
phenomenon of neuronal death and activate more features
that fall in the negative part, it is necessary to find a suitable
value of « during training.
The derivative of Equation (8) is shown in Equation (9).

a1

dx |« -2¢/In2

x>0

x<0

©))

Its curve is shown in Fig. 7.

It can be seen from Figure 7 that when the input is greater
than zero, the derivative of the function is always equal to
one, so that the gradient does not have an attenuation prob-
lem, and it can also effectively alleviate the occurrence of
vanishing gradient. We introduce a fast exponential function
on the negative part, and retain a partial gradient, then the
input can be effectively activated after entering the negative
region, and the feature information of part of the image can
be retained. Gradient calculation is the calculation process
of the network in the back propagation. The negative part
continuously passes the information obtained by the gradient
calculation to the previous layer, and updates the information
of the gradient. Therefore, the larger the negative saturation
region is, the more the eigenvalues are activated, the more
gradient information is forwarded, and the gradient update is
more accurate, so we can more effectively alleviate the occur-
rence of neuron death. When the value of « is 1, it can not
only maximize the negative soft-saturated region to activate
more negative features, but also make the activation func-
tion linearly at the origin to accelerate network convergence,
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TABLE 1. Experimental parameter settings.

Learning Rate (base_Ir) 0.01
Learning strategy (Ir_policy) inv
Training iterations (max_iter) 40000
Training batch (base_size) 64
Testing iterations (test_iter) 500
Testing batch (base_size) 100
weight decay 0.0005
Optimization type (type) SGD

so we think that the value of « is 1 is an optimal value to
achieve the optimal result in theory. In the negative part,
the output value of the function is kept between [0, 1), which
can reduce the influence of the output information of the
previous layer on the output information of the next layer,
and has good noise robustness to improve the classification
accuracy.

It can be seen that FELU can effectively solve the problem
of output offset, enhance the noise robustness, speed up the
network calculation, improve the classification accuracy, and
reduce the network running time.

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENT SETTINGS

This paper uses the caffe framework environment to com-
plete experiments on a Linux machine with Centos Linux
release 7.4, NVIDIA Tesla-PCIE-16GB. The test content
selects the traffic identification of the current research hot-
spot image classification field. In this paper, the traditional
ReLU [14], ELU [18], SLU [19], MPELU [20], TReLU [21]
and the FELU function proposed in this paper are trained
and verified on the authoritative data sets such as cifarl0,
cifar100 and GTSRB. Due to the different activation func-
tions and data sets, there will be differences in network
runtime and classification accuracy. The parameter settings
after the optimization obtained in this paper are shown
in Table 1.

B. NETWORK STRUCTURE

In this paper, we uses a simple neural network that is not easy
to cause information loss as our experimental network, which
consists of two convolutional layers, two pooling layers and
two fully connected layers. Each convolution layer uses a
filter which size is 5*5. The first layer of convolutional layer
outputs 20 channels, the second layer outputs 50 channels,
their strides are 1. The pooling layer uses a filter which size is
2*2, their strides are 2. The first fully connected layer outputs
500 channels, and the second fully connected layer acts as
a classifier, which select the corresponding number of out-
put channels according to the data set category (10/100/43).
The network structure and parameter settings are shown
in Fig. 8.
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FIGURE 8. Network structure and parameter settings.
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FIGURE 9. The o experimental results on three data sets.

C. PARAMETER « EXPERIMENT AND ANALYSIS

In this paper, we use 15 parameters to test the parameter
o, and the 15 parameters are set to 0, 0.01, 0.05, 0.1, 0.2,
0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively.
We use the network structure and training test parameters
of this paper to conduct experiments on the data sets of
cifar10, cifar100, and GTSRB, and select the optimal value
of « that can get better results on three sets of data sets. The
experimental results are shown in Fig. 9.

The experimental results show that when the parameter o
is 1, the accuracy of the FELU is the highest, which is
better than the accuracy of the ReLU under the same data set
(when « is 0), no matter which set of data sets. The
optimal value of o obtained by experiment is consistent
with the optimal o value obtained in theory. Therefore,
we used the FELU function with the value of parameter «
of 1 to compare with other activation functions in the next
experiment.

D. ACTIVATION FUNCTION EXPERIMENTAL ANALYSIS

In this paper, we compare and analyze different activa-
tion functions on the cifarl0, cifarl00 and GTSRB data
sets.

151364

TABLE 2. The experiment results of training cifar10 data set.

Activation Accuracy The running The time of The time of
Function time of forward backward
Network propagation propagation
(ms) (ms) (ms)
ReLU™! 0.6280 568.28 0.538604 0.472928
ELUM 0.6464 738.96 0.733771 0.474207
SLUR 0.3888 863.90 0.892081 0.621134
MPELUR! 0.6492 1483.61 1.174470 0.844734
TReLUR? 0.6516 1069.39 0.744291 0.576131
FELU(paper) 0.6904 481.54 0.452731 0.408947
Train less vs. Iters
25 — difarlo_ReLU
2 — cifarlo_ELU
cifar10_SLU
— cifarl0_MPELU
— cifarl0_TRelU
20 — cifarlo_FELU
15
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/ \
\ /
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O3l AN
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FIGURE 10. The training loss value decline curve of cifar10 data set.

1) CIFAR10 DATA SETS

The cifar10 dataset consists of 60,000 color images, the size
of each image is 32*32 and it has 10 categories in total.
Of these, 50,000 were used for training and 10,000 were used
for testing. The results of the network training on cifar10 data
set in this paper are shown in Table 2.

The experimental results show that FELU has better classi-
fication accuracy on cifar10 data set than the other activation
functions under the same environment and parameter settings,
and FELU is faster than other activation functions in time
of network running and gradient calculation. The curve of
classification accuracy of the test set and the curve of loss
function of the training are shown in Fig. 10 and Fig. 11,
respectively.

It can be seen from the curve of the accuracy and the
loss function that the classification accuracy of FELU on
cifarl0 data set is better than other activation functions after
40K iterations, and the decline degree of loss value in training
is also the largest.

2) CIFAR100 DATA SETS

The cifar100 data set is similar to the cifarl0 data set, but
the cifar100 data set has 100 categories, and each category
has 500 training images and 100 test images. Its results of the

network training on cifar100 data set in this paper are shown
in Table 3.
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FIGURE 12. The accuracy curve of the cifar100 test data set.

TABLE 3. The experiment results of cifar100 data set.

Activation Accuracy The running The time of The time of
Function time of forward backward
Network propagation propagation
(ms) (ms) (ms)
ReLUM! 0.2220 545.40 0.534817 0.413282
ELU!M™ 0.2224 770.82 0.614922 0.524191
SLURY - - - R
MPELUR! 0.2304 1064.66 0.993751 0.713898
TReLUP? 0.2288 953.62 0.847064 0.600892
FELU(paper) 0.2338 444.93 0.42723 0.373044

The experimental results show that the classification accu-
racy of FELU on the cifarl00 data set is better than the
other activation functions. The classification result of FELU
is about 1% higher than that of ReLU, ELU and TReLU,
and is closer to MPELU. Whether it is in the time of net-
work running or the time of gradient calculation, FELU is
faster than other activation functions, especially faster than
MPELU. The curve of classification accuracy of test set and
the curve of loss function in training are shown in Fig. 12 and
Fig. 13, respectively.
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FIGURE 13. The training loss value decline curve of cifar100 data set.

TABLE 4. The experiment results of GTSRB data set.

Activation Accuracy The running The time of The time of
Function time of forward backward
Network propagation propagation
(ms) (ms) (ms)
ReLUM™! 0.9388 625.13 0.429670 0.391889
ELUI 0.9374 702.778 0.638701 0.611220
SLuk - - - -
MPELUR! 0.9438 1106.11 0.882970 0.870629
TReLUP? 0.9456 920.12 0.818195 0.698743
FELU(paper) 0.9572 507.96 0.522658 0.408434

It can be seen from the curve of accuracy and the loss
function that the classification accuracy of FELU on the
cifar100 data set increases with the number of iterations, and
reaches the optimal after 40K iteration. The loss value in
training decreases by a similar magnitude to the TReL.U. The
classification accuracy of ELU is undulating with increasing
number of iterations and it is lower than FELU accuracy
after 40K iteration. The classification accuracy of MPELU
is similar to that of FELU, but its speed is slower more
than 2 times.

3) GTSRB DATA SETS

The GTSRB data set is a traffic sign data set based on the
German standard. There are 43 categories, including 39,209
training images and 12,630 test images. The sample images
contain traffic signs and surrounding areas, ranging in size
from 15x15 to 250x250. The results of the network training
on GTSRB data set in this paper are shown in Table 4.

The experimental results show that FELU has the highest
classification accuracy rate on the GTSRB data set, which
is about 2% higher than RELU and ELU, and about 1%
higher than MPELU and TReLU. The FELU function is the
fastest regardless of the time of the network running or com-
puting. Experiments show that this activation function can
improve the speed of the network while effectively improving
the accuracy of classification. The curve of classification
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accuracy of the test set is shown in Fig. 14, where (a) shows
the global curve of the accuracy, (b) shows the partial enlarge-
ment curve of the accuracy. The curve of loss function in
training is shown in Fig. 15.

It can be seen from the curve of classification accuracy in
testing and the loss decline in training that the classification
accuracy of FELU proposed in this paper on the GTSRB data
set has been at the leading position with the increase of the
number of iterations, and it is consistent with other activation
functions in terms of loss value convergence.
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TABLE 5. The experiment results of GTSRB data set.

Network  Activation Accuracy The The time of The time of
Function running forward backward
time propagation propagation
of (ms) (ms)
Network
(ms)
VGG16  ReLUM! 0.9366 286.79 0.2901 0.2485
ELUI 0.9372 290.14 0.3904 0.2583
FELU(pap  0.9444 286.07 0.2906 0.2462
er)
ResNet ReLUIMI 0.9208 15856.5 15.8191 16.0356
50 ELUI 0.9424 16138.6 15.9285 16.2907
FELU(pap  0.9557 15675.2 15.8505 15.7677
er)

The above experimental results show that the FELU acti-
vation function is significantly faster than other activation
functions in terms of network running time and computing
time, even more than twice as fast as MPELU. In terms of
classification accuracy, the FELU activation function has a
significant improvement over the other activation functions
on the three sets of data sets. Therefore, the experiment proves
that FELU proposed in this paper can achieve faster running
speed and better classification accuracy when the value of
parameter « is 1.

E. THE ANALYSIS ON COMPLEX NETWORK APPLICATION
In order to effectively verify the advantages of the activation
function of this paper, the VGG16 and ResNet50 networks
are used to train the data set GTSRB, and the classic ReLU
function, ELU function and FELU function are compared.
The experimental results are shown in Table 5.

The experimental results show that the activation function
FELU proposed in this paper also has good experimental
results in the complex networks VGG16 and ResNet50. It has
faster speed and higher accuracy. Therefore, FELU can be
applied to both simple networks and complex networks.

V. CONCLUSION

This paper proposes a new activation function named FELU
for improving ELU function to deal with the slow speed of
calculation. By using the fast exponential function on the
negative part, it effectively alleviates the problems of neuron
death and output offset, and effectively reduces the time of
network operation and calculation. The experimental results
show that the new activation function can achieve the fastest
running time and the best classification accuracy on all three
data sets, and the new activation function also achieves better
results in other network structures (such as VGG, ResNet,
etc.). So FELU proposed in this paper has certain practical
value in deep convolutional neural networks, and we will
plan to further improve the real-time performance in future
research.
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