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ABSTRACT Conventional collaborative beamforming (CB) with virtual node antenna array often results in
high maximum sidelobe level (SLL) due to the unexpected positions of the nodes. In this paper, a sidelobe
suppression approach (JSSA) to suppress the maximum SLL by jointly optimizing the locations and ampli-
tude weights of the nodes is proposed. JSSA organizes the node positions according to the concentric circular
antenna array for location optimization. Then, a novel algorithm called variation particle chicken swarm
optimization (VPCSO) is proposed to further optimize the amplitude weights of the selected CB nodes.
The proposed VPCSO introduces the variation mechanism and location learning mechanism to enhance the
performance of the conventional chicken swarm optimization algorithm. Simulations are conducted and the
results show that the proposed location optimization approach is effective, and the maximum SLLs of beam
patterns obtained by VPCSO are lower than that of other algorithms. Moreover, the energy consumption can
be saved by VPCSO. In addition, electromagnetic (EM) simulations are conducted to verify the performance
of the proposed JSSA in EM environments.

INDEX TERMS Collaborative beamforming, beam pattern, sidelobe level, swarm intelligence optimization,
wireless sensor networks.

I. INTRODUCTION
With the rapid development of the Internet of Things (IoT)
and the increasing number of the intelligent devices, wire-
less sensor networks (WSNs) are widely used for objective
monitoring as an important component of IoT [1]–[5]. WSNs
are characterized by a huge number of sensor nodes that ran-
domly deployed in a wide sensing field [6], [7]. In practical
applications, the amplitude of the nodes is limited because
of the limitations in size and energy of the nodes [8]. Thus,
the multi-hop has to be used to enhance the communication
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distance between a sensor node and a base station (BS) [9].
However, this results in the increased communication delay
and the reduced reliability [10]. In addition, replenishing the
energy to the sensors is always difficult because of the limited
application environment [11]. Therefore, to improve the com-
munication distance and to reduce the energy consumption
have become important issues in WSNs.

To improve the communication distance of a single node,
the sensor nodes are able to form a virtual node antenna
array (VNAA) and then communicate with the BS directly
through collaborative beamforming (CB) [12]–[14]. The
nodes in a VNAA can be divided into the source node and
the array nodes [14], respectively, and they could transmit the
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common data for up-link communications. Moreover, if N
nodes communicate with the BS through CB, then N 2 gains
can be obtained at the target location according to the super-
position principle of electromagnetic wave [13]–[15]. The
shapes of the conventional antenna array are fixed, however,
the sensor nodes are usually distributed in themonitoring area
randomly. Thus, compare to the fixed shape antenna arrays,
the VNAA composed of randomly located nodes cause higher
sidelobe level (SLL) of the beam patterns [16], [17], which
also increases the interference and reduces the amplitude
concentration of the mainlobe. Therefore, to suppress the
maximum SLL of the VNAA caused by the random dis-
tributed nodes has become the pivotal problem in effectively
utilizing CB.

In the antenna arrays, several parameters can be controlled
for the beam pattern synthesis such as the phase and the
amplitude of the elements [18]–[20]. The authors in [21]
propose a maximum SLL reduction method to suppress the
SLL of the VNAA. This method utilizes a node selection
approach by testing various combinations of the CB nodes.
Chen et al. [16] propose an CB array node optimizationmech-
anism based on the cross-entropy optimization for the maxi-
mum SLL reductions of CB. In reference [22], the nulls are
obtained in a certain direction of the beam patterns through
adjusting the phase of each antenna element. The authors
in [23] present a particle swarm optimization (PSO)-based
algorithm to calculate the distances between the array nodes
to achieve a lower maximum SLL. In the above mentioned
work, the amplitude weight of each node in the CB array are
all uniform.

However, the nodes cannot be moved after they are
deployed in many applications. Thus, the conventional
method for optimizing the array node spacings does not
work well. Moreover, the amplitude of the CB array nodes
is another a key factor that directly affects the beam pat-
terns. Recently, the nature-inspired approaches such as the
evolutionary computation and swarm intelligence optimiza-
tion algorithms become one of the main approaches for the
antenna array amplitude optimizations. For example, the PSO
algorithm [24], the genetic algorithm (GA) [25], the firefly
algorithm (FA) [26], the cuckoo search (CS) algorithm [27]
and the biogeography-based optimization (BBO) [28] have
been applied for the beam pattern optimizations of the fixed
shape antenna arrays. However, a sensor node in IoT usu-
ally has limited computing capacity. Thus, an optimization
approach has to have a higher accuracy and a faster conver-
gence rate for the beam pattern optimizations of CB, thereby
reducing the computing time and the communication delay.

The main contributions of this work are summarized as
follows:
• We propose a joint sidelobe suppression approach
(JSSA) for optimizing the locations and amplitude
weights of the array nodes in CB.

• We propose a concentric circular antenna array
(CCAA)-based array node selection mechanism in
JSSA for the location optimizations. Then, a novel

nature-inspired algorithm, namely, variation particle
chicken swarm optimization (VPCSO), is proposed to
determine the better amplitude weights of the selected
array nodes after the location optimization. VPCSO
introduces the position learningmechanism and the vari-
ation mechanism into the conventional chicken swarm
optimization (CSO), where the former can improve the
convergence rate and the latter is able to improve the
accuracy.

• Several extended simulations are conducted for the ver-
ification of proposed JSSA. Moreover, we also conduct
electromagnetic (EM) simulations to evaluate the perfor-
mance of JSSA in approximate practical applications.

A. ROADMAP
The rest of the paper is organized as follows. Section II
introduces the system models. Section III proposes JSSA.
Section IV gives the simulation results and Section V con-
cludes the paper.

II. SYSTEM MODELS
A. NETWORK MODEL
We assume that a WSN is covered by several isomorphic
smart devices (sensor nodes). The work ID of each node is
unique and the location coordinates of each node is known,
this can be achieved by several methods, e.g., a GPS module.
Moreover, all the nodes are statics which means that they
cannot move after initial deployment.

In addition, the network also has the following character-
istics [6], [15], [16], [21]:
A1: Each sensor node has a single omnidirectional antenna.
A2: The maximum amplitude of all the nodes are the

same, and hence the nodes have the same communication
radius (Rc). Moreover, the amplitude weight of each node is
adjustable.
A3: Only uplink transmission by using CB is considered

since the downlink communications that from the BS to
sensor nodes do not have big challenge.
A4: The network as well as the sensor nodes are synchro-

nized including the time, the carrier frequency and the initial
phase. This can be obtained by some previous synchroniza-
tion algorithms such as the method presented in [16].
A5: The channel can be considered as time-invariant

because the characteristics of the channel vary very slowly
with time [6], [16], [21] in an outdoor environment.

Note that in practical wireless networks, the interferences
to the transmitter are existed and can not be ignored. However,
for a transmitter equipped with an antenna array, there will
be a trade-off between the mainlobe and the sidelobe of the
beam pattern. This means that if the beam pattern has a
low sidelobe, the interference of the transmitted signal will
be reduced so that the power of the signal can focus on
the mainlobe. The goal of this work is to find a method to
optimize the VNAA so that the transmitter is able to generate
a better signal with a high directivity of the mainlobe and a
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FIGURE 1. Geometrical configuration of CB based on the VNAA.

low sidelobe toward the receiver. Therefore, no matter what
kind of channel it uses or what kind of interference it is,
the received signal noise ratio (SNR) will be improved if the
sidelobe can be effectively reduced.

B. CB MODEL
Fig. 1 shows the sketch map of the distributed CB based on a
VNAA. The elevation angle is denoted as θ ∈ [0, π], whereas
the azimuth angle is denoted as φ ∈ [−π, π]. We assume
that the position of the target BS is (A, φ0, θ0) in a spherical
coordinate system and it can be set up in a way so that
φ0 = 0 and θ0 = 0. According to the electromagnetic
wave superposition principle, the array factor (AF) can be
approximated as follows [13]:

AF (φ, θ, ω) =
NCB∑
k=1

ωkej9k ej
2π
λ
dk (φ,θ) (1)

where NCB represents the number of sensor nodes, λ is the
wavelength, ωk is the amplitude weight, and 9k is the initial
phase of the kth node. 9k is expressed as follows:

9k = −
2π
λ
dk (φ0, θ0) (2)

where dk is the Euclidean metric between the kth sensor node
and the target BS. The expression of dk is as follows:

dk =
√
A2 + r2k − 2rkA sin(θ) cos(φ − ψk ) (3)

where rk and ψk are the polar form coordinates of the kth
node.

C. ENERGY CONSUMPTION MODEL
The following widely used energy consumption model in
WSN is adopted in this study [6], [15]:

ET = bEelec + bεfsl2 (4)

ER = bEelec (5)

where ET and ER represent the transmit and the receive
energy consumptions of the nodes, respectively. Eelec is the

FIGURE 2. Beam patterns of the LAA, PAA and CCAA with the same
number of elements.

electronic energy and it depends on several specific factors,
for example, the digital coding method, b is the bit num-
ber, εfs is the amplifier energy and it is usually affected by
the required sensitivity and the noise figure of the receiver,
respectively. l is the distance between the transmitter and the
receiver.

III. JOINT SIDELOBE SUPPRESSION APPROACH
A. ARRAY NODE LOCATION OPTIMIZATION
In typical WSNs, the positions of the nodes cannot move
after they have been deployed. However, selecting the sensor
nodes that are in the better positions from a large number
of candidate nodes to form a VNAA can reduce the max-
imum SLL. In VNAA, an array node influences not only
the EM field generated by its own amplitude but also by
other nodes. If the distance between the elements is small,
the electromagnetic coupling effects become greater, thereby
causing the shifted of the mainlobe and the increasing of the
maximum SLL [29]. In addition, the shapes of the antenna
array also affect the maximum SLL, and the maximum SLL
generated by a regularly-shaped antenna array is lower than
that of an VNAA with the same number of array elements.
Thus, we can first choose a group of array nodes based
on a certain fixed shape in large numbers of randomly dis-
tributed array elements to avoid the EM coupling as far
as possible, and then suppress the maximum SLL by fur-
ther optimizing the amplitude weights of the selected array
nodes.

Fig. 2 shows the 2D beam patterns of the linear antenna
array (LAA), the planar antenna array (PAA) and the CCAA
obtained with the same number of the array elements. It can
be seen from the figure that the CCAA has better sidelobe
performance than LAA and PAA. Thus, the CCAA can be
used as the guide array during the node selection optimization
process for CB. In addition, the communication coverage of
a node is usually a circular area in wireless communications.
Thus, the node selection method of VNAA based on CCAA
is more in accordance with the law and it is convenient to
dispatch.
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FIGURE 3. Mapping table created by Snode.

Distributed CB can be divided into two main stages: data
sharing and beamforming. Thus, the node selection strategy
of the location optimization in CB mainly consists of the
following steps:

Step 1: In the data sharing stage, the source node Snode
calculates the element positions of the ideal CCAA according
to the required node number NCB. Then, the selection control
message Mselection that includes the positions of the ideal
antenna elements is broadcasted in the range ofRc to all nodes
in the CB cluster.

Step 2: All candidate nodes in the cluster receiveMselection,
and calculate the distances between themselves and all ideal
positions. After the calculation, all candidate nodes will
return a feedback message Mresponse that includes the ID of
their nearest ideal nodes, the distances between themselves
and their nearest ideal nodes, their own coordinates, and the
candidate node ID to Snode.
Step 3: Snode receives Mresponse returned by the candidate

nodes. Then, Snode should select a set of array nodes that
best meet the optimized condition based on the content in
Mfeedback. The selection process is detailed as follows.

First, Snode needs to create a simple mapping table
between the ideal nodes and the candidate nodes according
to Mresponse. The sketch map is shown in Fig. 3. It can be
seen from the mapping table that each ideal position will have
a most suitable corresponding candidate node that with the
nearest distance from the ideal positions.

Second, Snode determines the array nodes from the map-
ping table. Obviously, the nodes with the nearest distances
from the ideal locations will selected as the array nodes
(which are the nodes marked red in Fig. 3).

Third, Snode determines the optimal amplitude weight of
each selected array node by using the optimization method
proposed in the next section.

Step 4: Snode broadcasts the beamforming message
Mbeamforming mainly includes the selected array node ID,
the information that needs to be sent to the BS, and the CB
time, only to the selected array nodes.

Step 5: The selected array nodes use CB to send infor-
mation to the BS, according to the CB time received
in Mbeamforming.

B. TRANSMISSION POWER OPTIMIZATION
To further optimize the performance of the beam pattern for
CB, the amplitude of the selected array nodes needs to be
optimized.

1) PROBLEM FORMULATION
To jointly reduce the maximum SLL of the beam pattern and
the amplitude so that saving energy, the following optimiza-
tion problem can be formulated:

min α ·

∣∣∣∣max |AF(θSL)|
AF(θML)

∣∣∣∣+ β · NCB∑
k=1

ωk (6a)

s.t. 0 6 ωi 6 1, ∀i ∈ NCB (6b)

θML = arg(max |AF(θ )|), θ ∈ [−π, π] (6c)

s.t. θSL ∈ [−π, θFN1) ∪ (θFN2, π] (6d)

s.t. SNR > ηthr (6e)

where θSL and θML represent the positions of the sidelobe and
the mainlobe, respectively, during the optimization process.
θFN1 and θFN2 are the two first nulls around the mainlobe. α
and β are the weight factors that can balance the optimization
between the SLL and the amplitude weight, α + β = 1.
The main purpose of our work is to reduce the maximum
SLL. Thus, we choose α = 0.7 and β = 0.3, respec-
tively [30]. Moreover, SNR is the signal-to-noise ratio (SNR)
at the receiver (e.g., intended BS), and it should be larger
than a threshold ηthr to guarantee that the amplitude weight
optimization does not cause the transmission to fall below the
required signal level. In the optimization process, the SNR
constraint will be handled by the widely used stochastic rank-
ing technique [31]. The goal of the formulated optimization
problem is to find a set of minimum amplitude weights ω of
a VNAA that can achieve a minimized maximum SLL.

The formulated optimization problem in Eq. (6) is NP-hard
and the proof is as follows.

Proof: For ease of analysis, the formulated continuous
optimization problem is first converted to a discrete form
(which means the solution can be only chosen as several fixed
values from 0 or 1), as follows:

min α ·

∣∣∣∣max |AF(θSL)|
AF(θML)

∣∣∣∣+ β · NCB∑
k=1

ω̂k (7a)

s.t. ω̂i ∈ �, ∀i ∈ NCB (7b)

θML = arg(max |AF(θ )|), θ ∈ [−π, π] (7c)

θSL ∈ [−π, θFN1) ∪ (θFN2, π] (7d)

SNR > ηthr (7e)

where � ∈ {0.1, 0.2, 0.3, . . . , 1.0} is a set with finite num-
bers of elements. Then, we will verify that the converted
optimization problem shown in Eq. (7) is a combinatorial
optimization problem (COP).

A COP can be represented by the following three factors
that are (F,G,D) [32], whereF is the cost function (Eq. (7a)),
G represents the feasible solution region, and it is a set
of constraint functions (Eq. (7b)), and D is the domain of
solutions (Eqs. (7c)-(7d)). Thus, the converted optimization
problem can be regarded as a COP, which is NP-hard [33].
The converted optimization problem in Eq. (7) is one of the
situations of the original optimization problem formulated in
Eq. (6), and hence the problem in Eq. (6) is NP-hard. �
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2) CSO
Swarm intelligence optimization algorithms are the effective
methods to solve the NP-hard problems. CSO [34] is one of
the these algorithms and it is based on three basic rules:
(1) The chickens are usually divided into different groups.

In Each group, there are a dominant rooster and a cou-
ple of hens and chicks with mother-child relationships.
A competitive relationship exists between each group.

(2) The fitness values determine the identities of the chick-
ens including rooster, hens and chicks. Specifically,
the chicken with several best fitness values can be
regarded as the roosters, the chicken with several worst
fitness values are defined as the chicks, and other
chicken are the hens. Moreover, the mother-child rela-
tionship between the hens and the chicks is randomly
established. In addition, competition occurs among indi-
viduals in the foraging process, and the dominant indi-
viduals could snatch food foraged by other individuals.

(3) The hens need to follow the rooster in the same group
to forage for food within a certain range, whereas the
chicks search for food around their mother. Obviously,
the dominant individuals have the advantages in com-
peting for getting food.

In CSO, different position update methods are used for the
individuals with different identities, and the dominant indi-
viduals have the advantage compared with other individuals.
To achieve this case, we can simulate that the roosters can
forage for food in a wider area. Thus, the position update
method of the roosters can be formulated as follows:

x t+1i,j = x ti,j · (1+ Gauss(0, σ
2)) (8)

where x ti,j represents the individual position at tth iteration,
Gauss(0, σ 2) is a Gaussian distribution with mean zero and
standard deviation σ 2.

For the hens, they should follow the group mate roosters to
find food. Moreover, they need to snatch better food foraged
by other individuals. This phenomenon can be simulated by:

x t+1i,j = x ti,j + exp
fi − fri

(abs(fi)+ ε)
· Rand · (x tr1,j − x

t
i,j)

+ exp(fr2 − fr1) · Rand · (x tr2,j − x
t
i,j) (9)

where f is the fitness value, Rand is a random number
between 0 and 1. r1 ∈ [1, . . . ,N ] is the rooster index,
whereas r2 ∈ [1, . . . ,N ] is the chicken index and it is
randomly selected from the swarm, r1 6= r2. ε is the smallest
constant in the computer, and it is adopted to avoid the zero-
division-error.

For the chicks, they can only move around the hens, and
this can be described as follows:

x t+1i,j = x ti,j + FL · (x
t
m,j − x

t
i,j) (10)

where x tm,j stands for the position of the ith hen, FL is used
to represent that the chicks follow their mother to search for
food. Given the differences among individuals, FL of each
chick would be randomly chosen between 0 and 2.

3) LOCATION LEARNING MECHANISM
CSO is able to improve the convergence rate effectively
through different location update mechanisms. To further
improve the performance and make it applicable to opti-
mize the amplitude weights for distributed CB, the position
learning mechanism of the PSO algorithm is introduced to
obtain an improved solution by learning the history solution.
A historical update position mainly includes the local optimal
and the global optimal solutions. The position update method
by introducing the learning mechanism can be expressed as:

yti,j = Factor1 · Rand · (pBestx t−1 − x ti,j)

+Factor2 · Rand · (gBestx − x ti,j) (11)

x t+1i,j = x ti,j + y
t
i,j (12)

where Factor1 and Factor2 are learning factors, pBestx is
the local optimal solution, and gBestx is the global optimal
solution.

This mechanism is used when the newly generated solution
is worse than the previous one. For example, for a minimiza-
tion optimization problem, if f (xt ) < f (xt+1), then we say
that the newly generated solution xt+1 is worse compared
to xt . At this time, the proposed location learning mechanism
is adopted to improve the solution quality.

4) VARIATION MECHANISM
Historical record of the global best solution may introduce
a tenacity towards premature convergence, which reduces the
performance of the algorithm. To overcome this shortcoming,
the variation mechanism is used to change one of the value of
the worst individual in the population, and eventually to form
a new individual [24]. The variation operator may prevent
the algorithm from converging into the local optima. If the
algorithm is in a stagnant state, which means that the global
optimal solution was kept for the same value after several
iterations, the worst individual in the population is variated,
and the variation operator is as follows:

x ti,j = Lb + (Ub − Lb) · rand(1, numd) (13)

where Lb and Ub are the minimum and maximum values of
the solutions, respectively. numd represents the dimension of
the solution.

5) STEPS OF THE VPCSO FOR AMPLITUDE
OPTIMIZATION IN JSSA
The steps of the proposed VPCSO algorithm with variation
and location learning mechanisms are shown in Algorithm 1.
Using VPCSO to obtain the optimal amplitude weight for
each array node can be described as follows.

Step 1: Population Initialization and parameter settings.
The source node initializes a population of NCB chickens,
each value of the chicken in the populationmeans a amplitude
weight ωk . Then, setting the parameter values used in the
algorithm. G is the updating time step of the hierarchy and
mother-child relationship after the competition.
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Algorithm 1 VPCSO
Input: A population of Npop chickens
Output: Best solution xbest

1 Initialize the parameters;
2 Set the objective function f (x), x = (x1, . . . , xn)T ;
3 Calculate the objective function values of the Npop
chickens;

4 while t < tmax do
5 if t%G = 0 then
6 Establish a hierarchal order in the population

according to the values of objective functions;
7 Divide the population into different groups;
8 Determine the relationship between mother hens

and the chicks in each group;
9 end
10 for i = 1 to Npop do
11 if i = Indexrooster then
12 Use Eqs. (8) to update;
13 end
14 if i = Indexhen then
15 Use Eqs. (9) to update;
16 end
17 if i = Indexchick then
18 Use Eqs. (10) to update;
19 end
20 Evaluate the new generated solution;
21 if the new generated solution is worse than the

previous one then
22 Update the new solution using learning

history update location (Eqs. (11) and (12));
23 end
24 end
25 if the number of the global optimal solution is kept

for the same value during several iterations then
26 Variate the solution by Eq. (13);
27 end
28 Keep the best solution xbest ;
29 end
30 return xbest ;

Step 2: Fitness value evaluation. Snode should evaluate the
population by using the fitness function described in Eq. (6a),
then rank the fitness values of the chickens and establish a
hierarchal order in the swarm.

Step 3: Solution updating.
Sub-step 3.1: Snode updates the solution using different

equations described in Eqs. (8)-(13) according to the corre-
sponding identities of the solutions. Then, Snode evaluates the
new solutions.

Sub-step 3.2: If the new generated solution is better
than the previous one, then update it. While if the new
solution is worse than the previous one, the source node
needs to update the new solution by the location learning
mechanism.

FIGURE 4. Energy overhead in the node selection stage.

Step 4: Variation operation. If the number of the global
solution is kept for the same value during several iterations,
the algorithm may fall into local optima. Hence, the source
node should use the variation mechanism shown in Eq. (13)
to update the solutions.

Step 5: End check. If the maximum iteration tmax arrives,
the algorithm should stop. However, if the expected solutions
are not obtained, the source node should go back to step 2 for
a loop.

C. ENERGY CONSUMPTION ANALYSIS OF JSSA
According to the energy consumption model presented in
section II-C, the energy overhead of the node selection
method in JSSA mainly include four parts:

Part 1: Snode broadcasts a message Mselect for initializing
the node selection process. The energy consumption is:

Econ_1 = ET_source + Ncandi · ER_candi (14)

Part 2: All the candidate nodes receives Mselect and
respond the feedback messageMfeedback to Snode. The energy
consumption of this process is:

Econ_2 = Ncandi · ET_candi + ER_source (15)

Part 3: Snode broadcasts CBmessageMbeam to the selected
CB array nodes. The energy consumption of this part is:

Econ_3 = ET_source + NCB · ER_CB (16)

Part 4: The CB node array utilizes CB for data transmis-
sion. The energy consumption of this part is:

Econ_4 = NCB · Ebeamforming (17)

We define Eselection as the energy consumption of the node
selection stage, and define Etotal as the total energy con-
sumption of a whole CB process. Moreover, we set a ratio
ρ =

Eselection
Etotal

. For simplification, the distance between each
CB array nodes and Snode is set asRc. Thus, ρ can be extended
to Eq. (18), as shown at the bottom of the next page. In this
equation, Ncandi is the number of the candidate nodes, NCB
is the number of the selected CB array nodes, ks is the bit
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length of the control message, and kbeam is the bit length of
the data that need to be transmitted. We suppose ks = 50 bit,
kbeam = 500 bit, Ncandi = 100, NCB = 10, Rc = 10 m.
Fig. 4 shows the change of ρ with the distance between the
BS and the CB array. As can be seen, when the BS is located
far away from a CB array, the value of ρ is small, which
indicates that the control overhead of the CB process can
even be disregarded. However, the control overhead becomes
larger when the distance between the CB array and the BS is
close. Therefore, CB is not applicable in small scale WSNs.

IV. SIMULATIONS AND ANALYSIS
In this section, the proposed JSSA is simulated by Matlab.
The hardware platform used for the simulation is a desk-
top, the CPU is CORE i5 and the RAM is 4G. Moreover,
the operating system of this computer is Window 10. The
simulation is set as the single BS network scenario, and the
beam patterns of the VNAA obtained by JSSA are first com-
pared to the beam patterns obtained by the randomly selected
nodes. Then, to evaluate the performance of the proposed
VPCSO algorithm, the beam patterns obtained byVPCSO are
compared to those obtained by other optimization algorithms.
In addition, the performance of the proposed VPCSO are
analyzed. Finally, EM simulations are conducted to verify the
performance of the proposed JSSA in approximate practical
real world applications.

A. PARAMETER TUNING AND SETUPS
The parameter settings of a nature-inspired algorithm for
different problems are markedly different because different
optimization problems have various characteristics. Thus,
selecting a set of better parameters of the proposed VPCSO is
necessary to achieve a better performance. In our simulations,
the introduced learning factors which areFactor1 andFactor2
are changed during the tuning process to determine their
optimal values in VPCSO. It can be seen from Fig. 5 that
the optimal values of Factor1 and Factor2 are 0.8 and 3,
respectively.

Moreover, the population size Npop is also a pivotal param-
eter for an swarm intelligence algorithm. Although larger
population size may improve the accuracy of the solution,
this may also increase the overhead of the algorithm. Thus,
Npop should be determined. In this work, we changed the
population sizes from 10 to 50 to determine which one is
better for solving the CB optimization problem, and the
results are shown in Fig. 6. As can be seen, the population
size of 50 achieves a little bit better result, but it increases

FIGURE 5. Parameter tunings for Factor1 and Factor2.

FIGURE 6. Parameter selections of population sizes of VPCSO for
NCB = 16 and NCB = 128.

the computing overhead of the algorithm, which may be
not suitable for the nodes with limited hardware resources
in WSNs. In addition, the population size of 30 is widely
used in many swarm intelligence algorithms since it has been
demonstrated that this size can achieve an acceptable results
of the problem [35]. Therefore, we use Npop = 30 in this
paper.

In this paper, BBO, CSO and PSO are selected as the
comparison algorithms. Moreover, a new civilized swarm
optimization with variation (CiSOV) algorithm which com-
bines civilized swarm optimization [36] and the proposed
variation mechanism is adopted to test if the variation mech-
anism is useful to deal with the global optimal trap. The key

ρ =
Eselection_stage

Eselection_stage + Ebeam_stage
=

Econ_1 + Econ_2 + Econ_3
Econ_1 + Econ_2 + Econ_3 + Econ_4

=
ksEelec(2Ncandi + NCB + 3)+ ksεfsR2c(Ncandi + 2)

ksEelec(2Ncandi + NCB + 3)+ ksεfsR2c(Ncandi + 2)+ kbeamNCBEelec + NCB(
kbeamεfsd2t

N 2
CB

)
(18)
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TABLE 1. Parameter settings of different algorithms.

parameter selections of these comparison approaches are
listed in Table 1. Pmodify, I , and E mean habitat modifica-
tion probability, maximum immigration rate, and maximum
emigration rate in BBO algorithm, respectively. c1, c2 and
w indicate the learning factors and weighted factors in PSO.
RN , HN , CN and MN represent the number of the roosters,
the hens, the chicks and the mother hens in conventional CSO
and VPCSO, respectively. The ratio of roosters, hens and
chicks are suggested by [34] since this work verifies that this
ratio achieves better results for most optimization problems.
For CiSOV, Ns is the number of societies, wmax and wmin
represent the inertia weight, and CL , CSL1, CSL2, CSM1 and
CSM2 are acceleration coefficients. In addition, we set the
iterations of all the algorithms as 200 for the sake of fairness.

B. VERIFICATION OF THE IMPROVED FACTORS IN VPCSO
A test is conducted to verify the effectiveness of the intro-
duced improved factors in VPCSO. In this test, the beam
patterns of the 16-node CB array are optimized by using CSO,
variation-CSO (VCSO) and particle-CSO (PCSO), respec-
tively. Each optimization approach is run independently for
100 times and the average convergence rates during the
optimization process are presented in Fig. 7. As can be
seen, the introduced location learning mechanism is able to
improve solution accuracy of the conventional CSO algo-
rithm. This is because that the location learning mechanism
can use globe optimal solution to guide the searching direc-
tion. Moreover, it also can be seen from Fig. 7 that the
variationmechanism can effectively improve the convergence
rate because if the global optimal solution is kept for the
same value after several iterations, the worst individual in
the population will be variated. Therefore, by combining the
location learning and variation factors, the proposed VPCSO
has better performance in terms of both accuracy and conver-
gence rate.

C. BEAM PATTERNS
As shown in Fig. 8, 128 nodes are randomly distributed in an
area, and a BS is located far away from this area. The location
of BS does not have an impact on the selection of nodes for
constructing the CB array. This is because the constructed CB
VNAA is actually a planar antenna array, thus the mainlobe
of its beam pattern can point in any direction of the space by
controlling the parameters. Therefore, if the location of BS is
changed, the performed CB array only needs to change the

FIGURE 7. Verification of the improved factors in VPCSO.

FIGURE 8. Node selection optimization results obtained by JSSA (select
16 array nodes from the total of 128 nodes).

direction of mainlobe to the direction of this BS. Moreover,
the communication radius Rc is normalized to the wavelength
and we assume Rc = 1 which refers to several previous
works [25], [37]. Thus, the actual CB radius can be extended
to other values by using different wavelengths in real-life
applications. For example, if we use a signal with very high
frequency (VHF), the wavelength will be 10 m to 1 m, and
the CB ring radius will be 10 m to 1 m, which is practical for
the outdoor environments.

In addition, in this simulation case, we assume 16 nodes
need to be selected to form a VNAA for CB. The light
green nodes in the figure are the array nodes selected by the
proposed JSSA, the dark green nodes are the array nodes
selected randomly, and the red nodes are the candidate nodes
that have not been selected.

Then, we use the proposed VPCSO algorithm to further
optimize the amplitude weights of 16 nodes selected by the
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FIGURE 9. 3D beam patterns obtained by uniform amplitude weights and
VPCSO NCB = 16 and Rc = 1. (a) Uniform amplitude weights. (b) VPCSO.

position selection optimization process and compared its per-
formancewith that obtained by using other optimization algo-
rithms. Fig. 9(a) and 9(b) show the three dimensional (3D)
beam patterns obtained by the uniform amplitude weights
and the proposed VPCSO, respectively, and Fig. 10 shows
the two dimensional (2D) beam patterns of the CB array
obtained by BBO, CSO, PSO, CiSOV and VPCSO. Note that
the beam pattern optimizations are based on the entire three
dimensional (3D) beam patterns [38], and here we show a
selected 2D plane to show the results of different algorithms
in a clearer way. In addition, the beam patterns without any
optimizations andwith only location optimization but without
amplitude weight optimization are also shown in Fig. 10.
The maximum SLL obtained by the proposed VPCSO is
−13.8054 dB, and that by BBO, CSO, PSO and CiSOV are
−12.7875 dB, −11.7754 dB, −11.1153 dB and −12.7634,
and the maximum SLL is increased to −6.7680 dB and
−8.2700 dB when obtained without any optimizations and
with only location optimization, respectively. The maximum
SLL obtained by only position optimization is lower than that
without any optimizations. Moreover, VPCSO obtains the
optimal SLL performance by further optimizing the ampli-
tude weight, resulting in better results than that of all other
optimization algorithms.

FIGURE 10. 2D beam patterns obtained by different algorithms for
NCB = 16 and Rc = 1.

FIGURE 11. 3D beam patterns obtained by uniform amplitude weights
and VPCSO NCB = 128 and Rc = 1. (a) Uniform amplitude weights.
(b) VPCSO.

To verify that VPCSO is able to maintain a better optimiza-
tion performance when the number of nodes increases, which
also leads to the increased solution dimensions, additional
nodes are selected to form the VNAA. The chosen sample
in Fig. 11 is one of the results obtained with NCB = 128
and Rc = 1, and the corresponding 2D results are shown
in Fig 12. Note that all the nodes in the area are selected if
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FIGURE 12. 2D beam patterns obtained by different algorithms for
NCB = 128 and Rc = 1.

the number of nodes increases to 128, and hence the problem
of the node selection is not considered in this simulation.
Moreover, Fig. 12 shows that the proposed VPCSO algorithm
successfully reduces the maximum SLL of the beam pattern
by approximately 7.1718 dB compared to the case without
any optimizations, whereas the improvement by BBO, CSO,
PSO and CiSOV are only 6.3103 dB, 4.8011 dB, 0.8999 dB
and 4.7078 dB, respectively.

It also can be seen from these beam pattern figures that
there are no grating lobes of the CB array. As we known,
the grating lobe of a symmetrical antenna array will appear
if the spacing between the elements is large than λ

2 . How-
ever, it has been demonstrated that the grating lobe of a
planar antenna array can be avoided by using the aperiodic
arrays which means that allocating the antenna elements
alternately [39]–[41]. This is also confirmed by [42], which
uses genetic algorithm to add perturbations to the position of
each element so that makes the array become aperiodic. Thus,
the VNAA consists of sensor nodes may avoid grating lobes
since the element placements are aperiodic naturally.

Fig. 13 shows the convergence rates of the five optimiza-
tion algorithms. The proposed VPCSO algorithm has the
highest solution accuracy and the fastest convergence rate
compared to other algorithms in 16 node array. Moreover,
we can see that although the number of the array nodes
increases and it becomes a 128 node array, VPCSO also has a
faster convergence rate and higher accuracy compared to the
other algorithms. Therefore, VPCSO still has better optimiza-
tion performance in large-scale CB optimization problems.

The distributions of the amplitude weights on the CB nodes
obtained by different algorithms are shown in Fig. 14. The
total amplitude weights of all the array nodes obtained by
BBO, CSO, PSO, CiSOV are 8.9864, 8.3907, 12.6128 and
7.2368, whereas that obtained by VPCSO is 7.2125. In addi-
tion, the amplitude weight of each node is one for the con-
ventional VNAA without any optimizations, and we define it
as the uniform amplitude weights. Thus, the total amplitude
weights obtained by the conventional beamforming method
is 16. In summary, the total amplitude weights of CB nodes
obtained by VPCSO decreased by 19.74%, 14.04%, 42.81%,

FIGURE 13. Convergence rates obtained by different algorithms.
(a) NCB = 16 and Rc = 1. (b) NCB = 128 and Rc = 1.

54.78% and 54.92% compared with that obtained by BBO,
CSO, PSO, CiSOV and the conventional method, respec-
tively. Thus, VPCSO reduces the amplitude and energy con-
sumption of the nodes.

D. PERFORMANCE ANALYSIS OF VPCSO
1) STABILITY VERIFICATION OF VPCSO
To verify the stability of VPCSO, 20 independent trials are
run for optimizing the maximum SLL. Fig. 15 shows the trial
results for NCB = 16 and NCB = 128, and Tables 2 and
3 show the numerical results of the best SLLs, the worst
SLLs, the average values and the standard deviation (SD)
obtained from the tests, for different values of NCB, respec-
tively. As can be seen from the table, the proposed VPCSO
has the best accuracy performance as well as the stability.
Moreover, the SD obtained by VPCSO for both cases are the
lowest which indicates that it has the best stability.

2) INFLUENCES OF THE NUMBER OF THE NODES
Fig. 16 shows the maximum SLL of all the four optimization
methods with different values of NCB. It can be seen that
the proposed VPCSO algorithm has a better optimization
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FIGURE 14. Amplitude weights of each array node obtained by different algorithms. (a) Uniform amplitude weights. (b) BBO. (c) CSO. (d) PSO.
(e) CiSOV. (f) VPCSO.

TABLE 2. Statistical results of different algorithms (K = 16).

TABLE 3. Statistical results of different algorithms (K = 128).

effect than other algorithms with the increasing number
of NCB.

3) MAXIMUM SLLS RELATIVE TO DIFFERENT Rc

The maximum SLLs obtained by different optimization algo-
rithms and communication radius are shown in Fig. 17. This
figure shows that the proposed VPCSO algorithm has a better
optimization result than other algorithms. However, the opti-
mization effect decreases when the communication radius
increases because that the mutual coupling affects the SLL of
the VNAA if the average spacing between the array elements
is less than 0.5 [29]. However, with the increasing of Rc,
the spacing between the array nodes can be kept more than
0.5. Thus, the effect of mutual coupling can be reduced so
that the SLL performances are better in larger Rc conditions
naturally. For this reason, a higher improvement of the max-
imum SLL is achieved for smaller Rc.

4) 3 db BEAMWIDTH
Fig. 18 shows the 3 dB beamwidth of all the six methods with
different values of Rc. If Rc < 5, the 3 dB beamwidth of the

beam pattern obtained with only location optimization is the
lowest, and the gap among other algorithms is not evident.
However, if Rc > 5, different algorithms can almost achieve
a similar 3 dB beamwidth. They are all higher than the beam
patterns without any optimizations.

5) CCDF
The CCDF of the beam pattern is defined as the probabil-
ity that the average transmit power at a certain direction θ
exceeds a threshold power P0. Thus, CCDF can be written as
follows [30]:

CCDF = 20log10(
AF(θ, ω)
AF(θML , ω)

) > P, θ ∈ [−π, π] (19)

The 3 dB beamwidth obtained by VPCSO is similar to
that obtained by the other algorithms. The sidelobe range
produced by VPCSO is larger than that of the beam patterns
obtained without any optimizations. However, the proposed
VPCSO algorithm achieves the better CCDF performance,
as shown in Fig. 19. Thus, VPCSO still has a good direction
performance.

6) ENERGY CONSUMPTION COMPARISON
Fig. 20 shows the average energy consumptions of the
low energy adaptive clustering hierarchy (LEACH) [43],
the hybrid, energy-efficient, distributed (HEED) clustering
approach [44] and the proposed JSSA. The source node is
about 1000 m away from the BS. It can be seen from the
figure that the proposed JSSA has advantages in the average
energy consumption compared to LEACH and HEED. This
is because the BS can achieve an increase of N 2

CB by using
CB, and the power of each sensor node in the network will be
reduced to 1/N 2

CB. Thus, JSSA based on CB can save energy.
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FIGURE 15. Maximum SLLs obtained from 20 independent trials.
(a) NCB = 16. (b) NCB = 128.

FIGURE 16. Comparisons of the maximum SLL and NCB obtained by
different algorithms.

However, Fig. 20 also indicates that the proposed JSSA
consume more energy than other algorithms in the network
initialization stage. The reason is that when the network is ini-
tializing, JSSA has to spend more energy for selecting the CB

FIGURE 17. Comparisons of the maximum SLLs related to Rc obtained by
different algorithms.

FIGURE 18. Comparisons of 3 dB beamwidth with the increasing of Rc .

array nodes and for the inner array communications. How-
ever, according to the analysis in section III-C, the energy
consumption overhead of the node selection process can be
basically disregarded compared to the energy consumption
overhead of the CB stage.

E. EM SIMULATION
In this work, the mutual coupling between the antenna ele-
ments are ignored when formulating the maximum SLL sup-
pression problem, as with the existing works on the beam
pattern optimizations of CB. However, the effects of the
mutual coupling exist in the real world applications. Thus,
in this section, we conduct EM simulations based on ANSYS
Electromagnetics 2016 (HFSS) to verify the beam pattern
performances of the VNAAs obtained by different algorithms
in the approximate EM environment. In this EM simulation,
a VNAA is constructed and each element in the VNAA
is designed with the same physical structure. Moreover,
the number and the locations of the elements are the same
with the simulation results obtained from Section IV-C (select
16 array nodes from the total of 128 nodes). For the ampli-
tude, similar to [25], [45], the optimized amplitude weights
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FIGURE 19. Comparisons of CCDF obtained by different algorithms.

FIGURE 20. Average energy consumption of different approaches.

in ideal condition obtained by Matlab without considering
the mutual coupling is plugged into HFSS, which can be
regarded as a more practical environment, to evaluate that if
the solution obtained by the ideal conditions is effective for
the practical VNAA which considers the EM factors.

Fig. 21 shows the two-dimensional (2D) polar coordinate
form beam patterns of the VNAA with the random selected
nodes and the location optimized nodes, and the amplitude
weights of these two VNAAs are both uniform. As can be
seen, the mainlobe beamwidth of the VNAAwith the random
selected nodes is too wide. Thus, the beam pattern of the
VNAAwith the location optimized nodes is much better than
that of the random selected nodes. Fig. 22 shows the 2D polar
coordinate form beam patterns of the VNAA with different
amplitude weights obtained by different algorithms including
uniform, BBO, CSO, PSO, CiSOV and the proposed VPCSO,
respectively. As can be seen, the maximum SLL obtained by
VPCSO is the lowest among all the approaches. Therefore,
similar to the simulations of the theoretical VNAA for CB,
the proposed method can get a lower maximum SLL in
practical environment, and hence, similar to the conclusion
in [25], the beam pattern optimizations in an ideal condition
are able to provide a general overview of the effectiveness of
different optimization algorithms.

FIGURE 21. Beam patterns obtained by the random selected nodes and
the location optimized nodes in EM simulation.

FIGURE 22. Beam patterns based on different amplitude weights
obtained by different algorithms in EM simulation.

V. CONCLUSION
In this paper, a joint sidelobe reduction method called JSSA
is proposed to suppress the maximum SLL of CB in WSNs.
JSSA uses a node location optimization mechanism based on
CCAA to compensate for the node position errors caused by
the random distributions of the nodes. Then, the amplitude
weights of the selected CB array nodes are further optimized
by the proposedVPCSO algorithm. Simulation are conducted
and the results show that the proposed location optimization
method of JSSA can effectively reduce the maximum SLLs
of the beam patterns compared to the conventional VNAA,
and the amplitude weights optimized by VPCSO can further
suppress the maximum SLL with various communication
radii. The accuracy and the convergence rate of VPCSO are
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better than those obtained by BBO, CSO, and PSO. More-
over, the energy-saving performance of VPCSO is better
than those of the other algorithms, and several performance
analysis tests show that the proposed VPCSO has the best
performance. Finally, we conduct EM simulations to verify
the performance of the proposed JSSA. The results show that
JSSA may be also effect in practical real world applications.

ACKNOWLEDGMENT
A previous version of this paper is accepted for publica-
tion at the IEEE 90th Vehicular Technology Conference
(VTC2019-Fall).

REFERENCES
[1] Q. Ju, G. Sun, H. Li, and Y. Zhang, ‘‘Collaborative in-network processing

for Internet of battery-less things,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 5184–5195, Jun. 2019.

[2] O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah,
M. Prasad, and S. Prakash, ‘‘Virtualization in wireless sensor networks:
Fault tolerant embedding for Internet of Things,’’ IEEE Internet Things J.,
vol. 5, no. 2, pp. 571–580, Apr. 2018.

[3] T. O. Olasupo and C. E. Otero, ‘‘A framework for optimizing the deploy-
ment of wireless sensor networks,’’ IEEE Trans. Netw. Service Manage.,
vol. 15, no. 3, pp. 1105–1118, Sep. 2018.

[4] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. M. Leung,
and Y. L. Guan, ‘‘Wireless energy harvesting for the Internet of Things,’’
IEEE Commun. Mag., vol. 53, no. 6, pp. 102–108, Jun. 2015.

[5] W. Wei, H. Gu, K. Wang, X. Yu, and X. Liu, ‘‘Improving cloud-based
IoT services through virtual network embedding in elastic optical inter-DC
networks,’’ IEEE Internet Things J., vol. 6, no. 1, pp. 986–996, Feb. 2019.

[6] G. Sun, Y. Liu, A. Wang, J. Zhang, X. Zhou, and Z. Liu, ‘‘Sidelobe control
by node selection algorithm based on virtual linear array for collabora-
tive beamforming in WSNs,’’ Wireless Pers. Commun., vol. 90, no. 3,
pp. 1443–1462, Oct. 2016.

[7] D. Wang, W. Li, and P. Wang, ‘‘Measuring two-factor authentication
schemes for real-time data access in industrial wireless sensor networks,’’
IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4081–4092, Sep. 2018.

[8] R. E. Mohamed, W. R. Ghanem, A. T. Khalil, M. Elhoseny, M. Sajjad,
and M. A. Mohamed, ‘‘Energy efficient collaborative proactive rout-
ing protocol for wireless sensor network,’’ Comput. Netw., vol. 142,
pp. 154–167, Sep. 2018.

[9] E. Alnawafa and I. Marghescu, ‘‘New energy efficient multi-hop routing
techniques for wireless sensor networks: Static and dynamic techniques,’’
Sensors, vol. 18, no. 6, p. 1863, Jun. 2018.

[10] G. Sun, Y. Liu, H. Li, A. Wang, S. Liang, and Y. Zhang, ‘‘A novel
connectivity and coverage algorithm based on shortest path for wireless
sensor networks,’’Comput. Elect. Eng., vol. 71, pp. 1025–1039, Oct. 2018.

[11] Q. Ju, H. Li, and Y. Zhang, ‘‘Power management for kinetic energy har-
vesting IoT,’’ IEEE Sensors J., vol. 18, no. 10, pp. 4336–4345, May 2018.

[12] H. Jung and I.-H. Lee, ‘‘Secrecy performance analysis of analog coop-
erative beamforming in three-dimensional Gaussian distributed wire-
less sensor networks,’’ IEEE Trans. Wireless Commun., vol. 18, no. 3,
pp. 1860–1873, Mar. 2019.

[13] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh, ‘‘Collaborative beamform-
ing for distributed wireless ad hoc sensor networks,’’ IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4110–4124, Nov. 2005.

[14] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, ‘‘Distributed and
collaborative beamforming in wireless sensor networks: Classifications,
trends, and research directions,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 4, pp. 2092–2116, 4th quart., 2017.

[15] G. Sun, Y. Liu, J. Zhang, A. Wang, and X. Zhou, ‘‘Node selection opti-
mization for collaborative beamforming in wireless sensor networks,’’ Ad
Hoc Netw., vol. 37, pp. 389–403, Feb. 2016.

[16] J.-C. Chen, C.-K. Wen, and K.-K. Wong, ‘‘An efficient sensor-node selec-
tion algorithm for sidelobe control in collaborative beamforming,’’ IEEE
Trans. Veh. Technol., vol. 65, no. 8, pp. 5984–5994, Aug. 2016.

[17] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, ‘‘PSOGSA-Explore:
A new hybrid metaheuristic approach for beampattern optimization in
collaborative beamforming,’’ Appl. Soft Comput., vol. 30, pp. 229–237,
May 2015.

[18] G. Sun, Y. Liu, Z. Chen, A. Wang, and Y. Zhang, ‘‘Radiation beam pattern
synthesis of concentric circular antenna arrays using hybrid approach
based on Cuckoo search,’’ IEEE Trans. Antennas Propag., vol. 66, no. 9,
pp. 4563–4576, Sep. 2018.

[19] E. Tohidi, M. M. Nayebi, and H. Behroozi, ‘‘Dynamic programming
applied to large circular arrays thinning,’’ IEEE Trans. Antennas Propag.,
vol. 66, no. 8, pp. 4025–4033, Aug. 2018.

[20] X. Zhang, D. Lu, X. Zhang, and Y. Wang, ‘‘Antenna array design by a
contraction adaptive particle swarm optimization algorithm,’’ EURASIP J.
Wireless Commun. Netw., vol. 2019, p. 57, Dec. 2019.

[21] M. F. A. Ahmed and S. A. Vorobyov, ‘‘Sidelobe control in collaborative
beamforming via node selection,’’ IEEE Trans. Signal Process., vol. 58,
no. 12, pp. 6168–6180, Dec. 2010.

[22] A. Chatterjee, G. K. Mahanti, and B. C. Mahato, ‘‘Sidelobe reduction of
a scanned and broadside central element fed concentric ring array antenna
with fixed first null beamwidth using novel particle swarm optimisation,’’
Int. J. Signal Imag. Syst. Eng., vol. 5, no. 4, pp. 290–294, 2012.

[23] N. Nik Abd Malik, M. Esa, S. S. Yusof, S. A. Hamzah, and
M. K. H. Ismail, ‘‘Circular collaborative beamforming for improved radi-
ation beampattern in WSN,’’ Int. J. Distrib. Sensor Netw., vol. 9, no. 7,
Jul. 2013, Art. no. 125423.

[24] G. Ram, D. Mandal, R. Kar, and S. P. Ghoshal, ‘‘Pencil beam pattern
synthesis of time-modulated concentric circular antenna array using pso
with aging leader and challenger,’’ J. Electromagn. Waves Appl., vol. 29,
no. 12, pp. 1610–1629, Jun. 2015.

[25] S. Jayaprakasam, S. K. A. Rahim, C. Y. Leow, T. O. Ting, and A. A. Eteng,
‘‘Multiobjective beampattern optimization in collaborative beamforming
via NSGA-II with selective distance,’’ IEEE Trans. Antennas Propag.,
vol. 65, no. 5, pp. 2348–2357, May 2017.

[26] G. Ram, D. Mandal, R. Kar, and S. P. Ghoshal, ‘‘Optimized hyper beam-
forming of receiving linear antenna arrays using Firefly algorithm,’’ Int. J.
Microw. Wireless Technol., vol. 6, no. 2, pp. 181–194, Apr. 2014.

[27] S. Liang, T. Feng, and G. Sun, ‘‘Sidelobe-level suppression for linear and
circular antenna arrays via the cuckoo search–chicken swarm optimisation
algorithm,’’ IET Microw., Antennas Propag., vol. 11, no. 2, pp. 209–218,
Jan. 2017.

[28] A. Sharaqa and N. Dib, ‘‘Design of linear and elliptical antenna arrays
using biogeography based optimization,’’ Arabian J. Sci. Eng., vol. 39,
no. 4, pp. 2929–2939, Apr. 2014.

[29] V. Agrawal and Y. Lo, ‘‘Mutual coupling in phased arrays of randomly
spaced antennas,’’ IEEE Trans. Antennas Propag., vol. AP-20, no. 3,
pp. 288–295, May 1972.

[30] G. Sun, Y. Liu, J. Li, Y. Zhang, and A.Wang, ‘‘Sidelobe reduction of large-
scale antenna array for 5G beamforming via hierarchical cuckoo search,’’
Electron. Lett., vol. 53, no. 16, pp. 1158–1160, Aug. 2017.

[31] T. P. Runarsson and X. Yao, ‘‘Stochastic ranking for constrained evolution-
ary optimization,’’ IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284–294,
Sep. 2000.

[32] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, ‘‘Hybrid metaheuristics
in combinatorial optimization: A survey,’’ J. Appl. Soft Comput., vol. 11,
no. 6, pp. 4135–4151, 2011.

[33] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
‘‘Mixed-integer nonlinear optimization,’’ Acta Numer., vol. 22, pp. 1–131,
2013.

[34] X. Meng, Y. Liu, X. Gao, and H. Zhang, ‘‘A new bio-inspired algorithm:
Chicken swarm optimization,’’ in Proc. Int. Conf. Swarm Intell. Hefei,
China: Springer, 2014, pp. 86–94.

[35] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, ‘‘A micro-
GA embedded PSO feature selection approach to intelligent facial emo-
tion recognition,’’ IEEE Trans. Cybern., vol. 47, no. 6, pp. 1496–1509,
Jun. 2017.

[36] A. I. Selvakumar and K. Thanushkodi, ‘‘Optimization using civilized
swarm: Solution to economic dispatch with multiple minima,’’ Electr.
Power Syst. Res., vol. 79, no. 1, pp. 8–16, Jan. 2009.

[37] O. Ben Smida, S. Zaidi, S. Affes, and S. Valaee, ‘‘Robust distributed collab-
orative beamforming for wireless sensor networks with channel estimation
impairments,’’ Sensors, vol. 19, p. 1061, Mar. 2019.

[38] S. Das, R. Bera, D. Mandal, S. P. Ghoshal, and R. Kar, ‘‘Evolutionary
algorithms based synthesis of low sidelobe hexagonal arrays,’’ Swarm
Evol. Comput., vol. 38, pp. 139–157, Feb. 2018.

[39] T. Suda, T. Takano, and Y. Kazama, ‘‘Grating lobe suppression in an array
antenna with element spacing greater than a half wavelength,’’ in Proc.
IEEE Antennas Propag. Soc. Int. Symp., Jul. 2010, pp. 1–4.

151816 VOLUME 7, 2019



S. Liang et al.: JSSA: JSSA for CB in WSNs

[40] I. D. H. Sáenz, R. Guinvarc’h, R. L. Haupt, and K. Louertani, ‘‘A dual-
polarized wideband planar phased array with spiral antennas,’’ IEEE Trans.
Antennas Propag., vol. 62, no. 9, pp. 4547–4553, Sep. 2014.

[41] R. L. Haupt, ‘‘Optimized element spacing for low sidelobe concentric
ring arrays,’’ IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 266–268,
Jan. 2008.

[42] M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, ‘‘Opti-
mization of thinned aperiodic linear phased arrays using genetic algorithms
to reduce grating lobes during scanning,’’ IEEE Trans. Antennas Propag.,
vol. 50, no. 12, pp. 1732–1742, Dec. 2002.

[43] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
‘‘An application-specific protocol architecture for wireless microsensor
networks,’’ IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[44] O. Younis and S. Fahmy, ‘‘HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,’’ IEEE Trans. Mobile
Comput., vol. 3, no. 4, pp. 366–379, Oct./Dec. 2004.

[45] G. Sun, Y. Liu, H. Li, J. Li, A. Wang, and Y. Zhang, ‘‘Power-pattern
synthesis for energy beamforming in wireless power transmission,’’Neural
Comput. Appl., vol. 30, no. 7, pp. 2327–2342, Oct. 2018.

SHUANG LIANG received the B.S. degree in
communication engineering from Dalian Poly-
technic University, China, in 2011, and the M.S.
degree in software engineering from Jilin Univer-
sity, China, in 2017, where she is currently pur-
suing the Ph.D. degree in computer science. Her
current research interests include wireless commu-
nication and design of array antennas.

ZHIYI FANG received the Ph.D. degree in com-
puter science from Jilin University, Changchun,
China, in 1998. He was a Senior Visiting Scholar
with The University of Queensland, Australia,
from 1995 to 1996, and with the University of Cal-
ifornia at Santa Barbara, Santa Barbara, CA, USA,
from 2000 to 2001. He is currently a Professor in
computer science with Jilin University. His current
research interests include distributed/parallel com-
puting systems, mobile communication, and wire-

less networks. He is a member of the China Software Industry Association
and the Open System Committee of China Computer Federation.

GENG SUN (S’17–M’18) received the B.S.
degree in communication engineering fromDalian
Polytechnic University, China, and the Ph.D.
degree in computer science from Jilin University,
China, in 2011 and 2018, respectively. He was a
Visiting Researcher with the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, USA. He is currently a Postdoctoral
Researcher with the College of Computer Sci-
ence and Technology, Jilin University. His current

research interests include wireless sensor networks, antenna array, and col-
laborative beamforming and optimizations.

YANHENG LIU received the M.Sc. and Ph.D.
degrees in computer science from Jilin University,
China. He is currently a Professor with Jilin Uni-
versity. His current research interests include net-
work security, network management, and mobile
computing network theory and applications.

XIAOHUI ZHAO (M’14) received the bachelor’s
andmaster’s degrees in electrical engineering from
the Jilin University of Technology, Changchun,
China, in 1982 and 1986, respectively, and the
Ph.D. degree in control theory from the Univer-
site de Technologie de Compiegne, Compiegne,
France, in 1993. He is currently a Professor with
the College of Communication Engineering, Jilin
University, Changchun. He has authored or coau-
thored two books and various articles in the fields

of cognitive radio and signal processing. His current research interests
include signal processing, nonlinear optimization, and wireless communi-
cation. He is a member of the IEEE Communications Society. He is an
Editor of the Chinese Journal of Communications, the Chinese Journal
of Signal Processing, and the Journal of China Universities of Posts and
Telecommunications.

GUANNAN QU (M’10) received the B.E. degree
in computer science and technology from Jinan
University, Guangzhou, China, in 2003, and the
M.S. and Ph.D. degrees in computer science from
Jilin University, Changchun, China, in 2007 and
2010, respectively. She was financially supported
by the China Scholarship Council as a Visiting
Scholar with The University of Texas at Dallas,
from 2008 to 2010. She is currently a Lecturer in
computer science and technology with Jilin Uni-

versity. Her current research interests include computer system architecture,
performance analysis, and quality-of-service issues in high-speed networks.

YING ZHANG (M’07–SM’15) received the M.S.
degree in materials engineering from the Univer-
sity of Illinois at Chicago, in 2001, theM.S. degree
in electrical engineering from the University of
Massachusetts Lowell, in 2002, and the Ph.D.
degree in systems engineering from the University
of California at Berkeley, in 2006. She is currently
an Associate Professor with the School of Elec-
trical and Computer Engineering, Georgia Insti-
tute of Technology. Her current research interests

include sensors and smart wireless sensing systems, power management
for energy harvesting wireless sensor networks, intelligent monitoring and
diagnostic systems, artificial intelligence, information retrieval and data
mining, and computer-aided optimal design.

VICTOR C. M. LEUNG (S’75–M’89–SM’97–
F’03) was a Professor of electrical and computer
engineering and the TELUS Mobility Research
Chair with The University of British Columbia
(UBC), Vancouver, BC, Canada, in 2018. He is
currently a Distinguished Professor of computer
science and software engineering with Shenzhen
University, Shenzhen, China, and a Professor
Emeritus with UBC. His current research inter-
ests include wireless networks and mobile sys-

tems. He has coauthored more than 1200 journals and conference papers
and book chapters. Dr. Leung is serving on the editorial boards of the
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, IEEE ACCESS, the IEEE NETWORK, and
several other journals. He received the IEEE Vancouver Section Centennial
Award, the 2011 UBC Killam Research Prize, the 2017 Canadian Award
for Telecommunications Research, and 2018 IEEE TCGCC Distinguished
Technical Achievement Recognition Award. He received the 2017 IEEE
ComSoc FredW. Ellersick Prize, the 2017 IEEE Systems Journal Best Paper
Award, the 2018 IEEE CSIM Best Journal Paper Award, and the 2019 IEEE
TCGCCBest Journal Paper Award for his coauthored articles. He is a Fellow
of the Royal Society of Canada, the Canadian Academy of Engineering,
and the Engineering Institute of Canada. He is named as Highly Cited
Researchers in the current Clarivate Analytics list.

VOLUME 7, 2019 151817


