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ABSTRACT The arrival of Information Age, with its rapid development of information technology, has
provided a wide space for Data Analysis and Mining. Yet growth in this market could be held back by
privacy concerns. This paper addresses the problem of secure association rule mining where transactions
are distributed across sources. The existing solutions for distributed data(vertical partition and horizontal
partition) have high complexity of encryption and incomplete definition of attributes of multiple parties.
In this paper, we study how to maintain differential privacy in distributed databases for mining of association
rules without revealing each party’s raw transactions despite how strong background knowledge the attackers
have. We use a intermediate server for data consolidation without assuming it is safe. Our methods offer
enhanced privacy against various attacks model. In addition, it is simpler and is significantly more efficient
in terms of communication rounds and computation overhead.

INDEX TERMS Data mining, distributed databases, association rule mining, differential privacy, privacy
preserving.

I. INTRODUCTION
Data mining, at its core, is the transformation of large
amounts of data into meaningful patterns and rules. As it
extracting useful knowledge from large amount of data, data
mining technology has been widely studied and applied in
various research and commercial field [1], [2]. Association
rules mining is an important technique in it, which is used
to discover the implicit relationship between objects from
massive data, revealing the hidden association patterns and
then assisting in market operation and decision support sys-
tem. Look at the transaction of a group-buying website.
We may find that most of those who buy ‘‘cate’’ also buy
‘‘entertainment’’. Therefore, ‘‘cate->entertainment’’, which
means ‘‘buying cate implies buying entertainment’’ is one of
the candidate rule. Two metrics are defined to measure such
a candidate rule: confidence and support. Here confidence
means the number of transactions where both ‘‘cate’’ and
‘‘entertainment’’ are bought divided by the number of trans-
actions where ‘‘cate’’ is bought. Support means the number
of transactions where ‘‘cate’’ and ‘‘entertainment’’ are bought
divided by the overall number of transactions. A candidate
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rule is considered a valid association rule if both its confi-
dence and its support are sufficiently high [3].

This paper is concerned with a category of association
rules mining, namely mining of association rules in dis-
tributed databases. Go back to the example above, there
are two group-buying websites that hold partial transactions,
i.e., user i buy ‘‘cate’’ in group-buying website A and buy
‘‘entertainment’’ in group-buying website B or user j like to
buy in group-buying website A while user k like to buy in
group-buying website B. Using a key such as userID and date,
we can join these two websites to mining the global asso-
ciation rules. Traditionally, all these association rule mining
algorithms have been carried out within a centralized model,
with all data being gathered into a central site, and algorithms
being run against that data [4].

Privacy concerns arise because there is no fully trusted
third party(TTP) [5]. Third parties are often honest and curi-
ous, eager to get additional details of users and potentially
vulnerable to abuse [6]–[8]. The semi-trusted third party is
proposed to fix this problem. In this paper, we study the
mining of association rules in distributed datasets using the
semi-trusted intermediate server. Neither the server nor the
participant have access to other participants’ private trans-
actions. Informally, the goal defines a problem of secure
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multi-party computation. In such problem, there are M par-
ticipants that hold private transactions((x1, x2, . . . , xM )), and
they wish to securely compute y = f (x1, x2, . . . , xM ) for
some public function f. In this paper, function f is the associ-
ation rule mining algorithm and M = 2 for simplicity.
To the best of our know, Clifton and his students were

the first to study privacy-preserving distributed mining of
association rules/frequent itemsets. In [4], Vaidya and Clifton
gave a nice algebraic solution for vertically partitioned data.
However, the computational overhead of protocol for the
secure computation of union of private subsets is quadratic
in the number of transactions. Goldreich pointed out in [9],
generic secure computation protocols are highly expensive
for practical purposes. Furthermore, the solution in [10] only
works for three parties or more, not for two parties. Desseni
study hiding sensitive association rules through suggesting
a lattice like graph by declining support degree of frequent
item-sets [11]. In particular, many researches have addressed
the privacy issues in mining of association rules in various
fields [12]–[14]. However, most of these papers are high com-
putation complexity and ignored the background of attackers.

Differential privacy [15], [16] is one of the privacy
protection concepts with strongest theoretical proof in
recent years that guarantees the output of an Algo-
rithm is indistinguishable of the change of one individual’s
data [17]–[20]. Differential privacy add noise to the real
output to satisfy the change of one individual is insensitiv-
ity to the final noisy output(in our case, the output is the
count of frequent items) [21]–[24]. The main advantage of
differential privacy attracted the attention of frequent item-
sets mining boffins, much researches have been done in this
field [25]–[27]. Li and Gan reduce the dimensionality by
projecting the data into a lower dimensional space and by
truncating the transactions, respectively. Cheng proposed a
differential private frequent itemset mining algorithm based
on transaction splitting.

In this paper, we propose an alternative protocol for the
secure mining of association rules in distributed databases.
The proposed protocol improves upon that in [4], [28] in
terms of simplicity and the theory of privacy, broadens the
range of 1-frequent itemsets with certain probability. In tra-
dition, the itemsets whose supports are above the minimal
support are used as frequent itemsets. However, those item-
sets whose support are near the minimal support have simply
been abandoned even with a few missing values or abnormal
data. Based upon this observation, we add Laplace noise into
the count of each candidate 1-frequent item. In particular,
our methods are robust against various attacks model. In this
work, we use the intermediate server for data processing and
integration without assuming it is safe. The proposed frame-
work is composed of two compositions: (i)association rules
discovery under Honest Cooperation(HC) and (ii)association
rules discovery under Malicious Spy(MS). In the first case,
all of the participants are sincere partners while there could
be amalicious participant who collude with the Third-party in
the second case. For the latter, the proposed algorithm injects

noise in mining of 1-frequent itemsets and construct FP-tree
data structure with these noisy value.

The rest of this paper is organized as follows: In Section 2,
we formally define the problem and give the notations and
definitions used throughout this article. Section 3 introduces
the overall framework, attack models and then propose cor-
responded mining algorithms. In Section 4, the performance
of our two algorithm are evaluated on multiple experiments.
Finally, Section 5 concludes our work.

II. PROBLEM DEFINITION AND PRELIMINARIES
Before describing the specific mining of association rules
algorithm, we first give the symbols and definitions used in
the paper and introduce a reasonable assumption, which will
help us to mining association rules in vertically distributed
databases with privacy control. According to the previous
section, we only use the Third-party without treating it as
highly trusted.

Association Rule: We adopt the following standard formu-
lation of association rule mining presented by [11]. Assume
that I = i1, i2, . . . , im is a set of elements, which are called
items. The database T = T1,T2, . . . ,Tn consists of a group
of transactions, where each transaction Ti ∈ T is a set of
items(Ti ⊆ I ). An association rule is of the form X ⇒ Y if X
and Y are a sub category of I and X ∩ Y = ∅. Equation 1-2
show the way of rule support and confidence calculation
respectively.

support(X ⇒ Y ) =
|X ∪ Y |
|T |

(1)

confidence(X ⇒ Y ) =
|X ∪ Y |
|X |

(2)

In traditionally, minimum support threshold (MST) and min-
imum confidence threshold (MCT) are the most applicable
criteria to evaluate the value of presented rules, which means
X ⇒ Y is valuable if and only if support(X ⇒ Y ) ≥ MST
and confidence(X ⇒ Y ) ≥ MCT strictly.
Definition 1 (Distributed Datasets):We consider our prob-

lem with respect to combination distributed datasets means
that each party owns some transactions that contains some
item of the set I while may has some rows in T . The following
example illustrates the form of data owned by parties A
and B.

Differential Privacy: Two databases D1 and D2 are
referred to as neighboring if one can be obtained by
adding or removing one tuple from the other, i.e.,
|(D1 − D2) ∪ (D2 − D1)| = 1. Informally, differential pri-
vacy ensures that the outcome should be insensitive to the
presence or absence of any particular tuple in D which is
bounded by a constant ratio.
Definition 2 (ε-Differential Privacy):A randomized mech-

anism M is ε-differential private if for all neighboring
databases D1 and D2, ∀S ⊆ Range(M )

Pr[M (D1) ∈ S] ≤ exp(ε)Pr[M (D2) ∈ S] (3)
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where the privacy budget ε controls the amount of noise injec-
tion. A smaller ε enforces a stronger privacy guarantee ofM .
Laplace mechanism is one of the most general method for
preserving ε-differential privacy of any function F , where the
output ofF is a vector of numeric data. In fact, themechanism
exploits the global sensitivity of F over any two adjacent
datasets, denoted as 1f . Given 1f , the Laplace mechanism
ensures ε-differential privacy by injecting noise η into each
value in the output of F(D), where η fetch its value from
Laplace distribution with zero mean and scale 1f /ε.
Definition 3 (Global Sensitivity): The global sensitivity of

a query function f is defined as

1f = max
D1,D2

|f (D1)− f (D2)| (4)

where D1 and D2 are neighboring databases.
One nice property of differential privacy is that it is com-

posable. Specifically, if the domain of input records is parti-
tioned into disjoint sets, independent of the actual data, and
the restrictions of the input data to each part are subjected
to differential private analysis, the ultimate privacy guarantee
depends only on the worst of the guarantees of each analysis,
not the sum [29].
Assume 1: Frequent itemsets can be expanded softly.
Assuming that the frequency of X is K and the

support(X ) < MST . However, support(X ) ≥ MST is sat-
isfied when K = K + 1. In this case, the traditional rigid
standards will filter out this item X though minimal differ-
ence. In reality, data loss or corruption even delay on data
acquisition that can cause such error. In this paper, we soften
the criteria so that some candidates with minimal difference
have the chance to be frequent.

FP-tree is a compressed representation of the input data.
It is constructed by reading the dataset one transaction at a
time and mapping each transaction onto a path in the FP-tree
structure. As different transactions can have same items,
their paths may overlap. The steps of FP-tree structure is as
follows:
Definition 4 (Soft-Frequent): The frequent candidate item

X is Soft-Frequent if supportsoft (X ) =
|X |+η
|T | ≥ MST .

Meanwhile this mechanism satisfies ε-differential privacy.
Proof:

Pr[supportsoft (X ∈ D) = O]
Pr[supportsoft (X ∈ D′) = O]

=

ε
21f e

−
|O−|XD||ε

1f

ε
21f e

−
|O−|XD′ ||ε

1f

= e
ε|XD−XD′ |

1f ≤ eε

III. FRAMEWORK AND MINING ALGORITHMS
In this section, we present the overall framework of secure
mining of association rules in distributed datasets and pro-
posed two discovery algorithm of getting 1-frequent itemsets
safely under two attack models. We use the intermediate
server for data consolidation without assuming it is safe.
Besides, no one in our framework is assumed to be trusted.

Algorithm FP-Tree Construction Algorithm
Input: Transaction data set D, the minimum support
threshold minsup
Output: FP-tree
1.Scan the transaction dataset D once to get the support
of each of the frequent items F . All the frequent items in
F are sorted in descending order according to the support
expressed as L;
2.Create a root node T of the FP-tree, marked ‘‘null’’;
3.for each transaction Trans ∈ D do
4. Sort all frequent items in Trans in the order of L;
5. The sorted frequent item list is represented in the
format of [p|P], where p is the first item and P is the
frequent item list after removing p;
6. Call the function inserttree([p|P],T );
7.end for
inserttree([p|P], root)
1.If root has child N and N .item− name = p.item− name
then
2. N .count ++;
3.Else
4. create a new node N ;
5. N .item− name = p.item− name;
6. N .count ++;
7. p.parent = root;
8. Point N .node − link to the node in the tree with the
same node name;
9.End if
10.If P 6= Ø then
11. Assign the first item of P to p and remove it from P;
12. Recursively call the function inserttree([p|P],N );
13.End if

For simplicity, at this point we only discuss two-party dis-
tributed mining, suppose that the two parties are A and B.
Definition 5 (Attack Models): In the principles introduced

earlier, no party in this system is fully trusted, so that
data(even count) should be securely transfered. In this
section, we present two secure mining of 1-frequent item-
set algorithms for two attack models called Honest Coopera-
tion(HC) and Malicious Spy(MS). In HC model, both A and
B are honest and eager to share each other’s data securely to
learnmore accurate association rules. However, inMSmodel,
A and B don’t trust each other and maybe a malicious spy
who collaborates with the third-party to grab the private data
of another. In both attack models, we assume that the attacker
has the strongest background knowledge.

A. OVERALL FRAMEWORK
We present the design of the proposed association rules min-
ing algorithm, the overview framework is shown in Figure 1
which contains two compositions: Association Rules Min-
ing Under HC(ARHC) and Association Rules Mining Under
MS(ARMS).
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FIGURE 1. Sample of two parties A and B.

In ARHC model, the Third-party generates some initial-
ized data and sends it to A, A calculate the result of its private
dataset and permutes it by certain rules and then sum with
the initialized data from the Third-party, then sends the result
and permutation rules to B. B calculate the result of its private
dataset and do the same permutation. Finally, B sends the end
result to the Third-party. Since the count number of each item
or pattern is real value, this mining algorithm is lossless.

In ARMS model, the Third-party do the same operations
to send some initialized data to A, A adds laplace noise to
real statistical results of each candidate 1-frequent item and
use these noisy counts as the node value of noisy FP-tree, and
then sends noisy FP-tree to B. Since B also distrust A or the
Third-party, he adds noise to his count of each 1-frequent item
and use A’s noisy FP-tree to generate the final noisy FP-tree.
The Third-party can work out all candidate patterns in this
noisy tree without access each party’s private dataset.

B. ASSOCIATION RULES MINING UNDER HC(ARHC)
Recall that, in the problem of mining 1-Frequent itemset
under HC, I = i1, i2, . . . , im is a set of items. A has a private
dataset TA = Ti,Ti+1, . . . ,TM and B has a private dataset
TB = Tj,Tj+1, . . . ,TN , where Tk is a transaction and there
may be overlap between TA and TB.

1) MINING OF 1-FREQUENT ITEMSET
The steps to mining 1-Frequent itemset under HC model are
as follow:

(1) The Third-party generates an m-dimension vector C =
c1, c2, . . . , cm randomly and each column represents the
count of a item, then sends vector C to A.
(2) A counts the number of each item according to its

own private dataset, and generates the m-dimension vector
A = a1, a2, . . . , am firstly. Then, permutes this vector to get
a new m-dimension vector A′ = ai, aj, . . . , ak and record
the index of each item. Finally, sum vector C and A′ as
Â = c1 + ai, c2 + aj, . . . , cm + ak , then send Â and the
permutation rule to B.

(3) B counts the number of each item according to its
own private dataset and permutes this vector according to the

rule received from A, to generates the disturbed m-dimension
vector B′ = be, bs, . . . , bd . Then, sum vector ÂC and B′ as
B̂ = c1 + ai + be, c2 + aj + bs, . . . , cm + ak + bd and sends
B̂ to Third-party.

(4) The Third-party received the m-dimension vector B̂
and minus the vector initialized C , then calculate support(B̂i)
where i is the ith item of B̂. Finally, the Third-party sends
the final index set S = I1, I2, . . . , Ii|support(B̂i) ≥ MST to
party A and B.

(5) A and B get the final index set of 1-Frequent item and
since both A and B know the original index of each item,
so 1-Frequent itemsets can be calculated.

Privacy Analysis Since the m-dimension vector that B
received is the sum of vector A and vector C of the third
party, the true statistical result of A is not disclosed. Similarly,
the m-dimension vector that Third-party received is the sum
of A and B, the true result of B is not exposed.

Secondly, A and B use the same permutation method. The
Third-party can get the final statistics of each index but cannot
know the real item represented by the index value.

Algorithm Association Rules Mining Under HC
Input: The set of items I , MST , MCT , initialized
m-dimension vector C , |U | × |I | boolean matrix D, m
transactions T , the ultimately count of each item counti,
the final FP-tree Tree′ and the final |U |×|I | booleanmatrix
D′;
Output: The 1-frequent itemsets S, all association rules R
satisfying MST and MCT ;
1.for each i ∈ I do:
2. if counti − Ci > MST
3. S.add(i);
4.for each entry in D′ do:
5. OR operation with the entry in D in the same position
to D̄;
6. for any itemsets I ′ do:
7. if D̄i = 1|i ∈ T ′

8. count(I ′1, I
′

2 . . .)++;
9.for each branch of Tree′

10. calculate the count of each candidate itemset I ′′;
11.for each candidate frequent itemset a do:
12. if counta > MSTandconfidenceai→aj > MCT ;
13. R.add(ai→ aj);
14.return R;

2) MINING OF FREQUENT ITEMSET
Defined in the above section, A has a private dataset
TA = Ti,Ti+1, . . . ,TM and B has a private dataset TB =
Tj,Tj+1, . . . ,TN . In this section, we extend the definitions
of A and B as:

TA = Tui ,Tuj , . . . ,Tuk
TB = Tul ,Tum , . . . ,Tun (5)
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where Tui is the transaction of user ui and there may also be
overlap (same user) between TA and TB. Since A and B are
both vertically and horizontally partitioned, mining of fre-
quent itemset should be considered separately. First, we need
to get the common user between them.

Mining of common userU : A and B use the same encryp-
tion method to encrypt the users identity in their private
dataset and then send them to the Third-party, who compares
and returns the same ciphertext. For the common userU , both
A and B transactions should be considered when mining of
association rules, and not vice versa.

The steps to mining association rules under HC model are
as follow:

(1) Sort by the frequency of the 1-frequent items obtained
in the previous section represented as R.
(2) The Third-party generates m transactions TC =

Tu1 ,Tu2 , . . . ,Tum of non-common users and for each i ∈ I ,
Ranki = Ri|i ∈ TC where ui /∈ U and Ranki is the order of
item i.

(3) The Third-party generates |U |× |I | boolean matrixDC
randomly and then send TC and DC to A.

(4) A divides the private dataset horizontally and extracts
the transaction set of non-common users as T ′A. A generates
the FP-tree Tree′A according to the rank R, where i ∈ T

′
A∪TC .

(5) A extracts the transaction set of common users and
generates |U |×|I | booleanmatrixDA. Each row of the matrix
corresponds to a transaction, while each column corresponds
to an item. Amatrix elementD(i; j) is 1 if the ith transaction Ti
contains the jth item Ij, and it is 0 otherwise. Then transpose
the rows and columns of the matrix following certain regula-
tions and do OR operation with each of the entries in matrix
DC then get the result as D′A. Finally, sends transposition
regulations and D′A and Tree′A to B.

(6) B divides the private dataset horizontally and extracts
the transaction set of non-common users as T ′B. B generates
FP-tree Tree′B on the basis of Tree′A according to the rank R,
where i ∈ T ′A ∪ TC ∪ TB.

(7) B extracts the transaction set of common users and
generates |U | × |I | boolean matrix DB and do the same
transposition as A, then do OR operation with each of the
entries in matrix D′A to get the result as D′B. Finally, sends
Tree′B and D′B to the Third-party.
(8) The Third-party received the Tree′B and subtract the

branch that initializes in the transaction set TC to get the
FP-tree of all non-common users’ transactions.

(9) The Third-party received the D′B and do OR operation
with each entry in matrix DC , then get the common users’
|U | × |I | boolean matrix.
Privacy Analysis
Since the |U | × |I | boolean matrix D′A that B received is

the OR operation of matrix A and matrix C of the Third-
party, the Tree′A that B received is the unit of transactions
T ′A and TC . The true common users’ statistical result or
non-common users’ statistical result of A is not disclosed.
Similarly, the final result that Third-party received is the sum

of A and B or the OR of A and B, the true result of B is not
exposed.

Secondly, A and B use the same permutation method. The
Third-party can get the final statistics of each index but cannot
know the real item represented by the index value same as the
above section.

Complexity Analysis
Computational Overhead FP-tree algorithm needs to

scan the database for only twice and avoid amass of candidate
generation, which improves the efficiency of traditional asso-
ciation rules mining algorithm (Apriori). Besides, the process
of generating FP-tree can be distributed between A and B
synchronously, which can further reduce the calculation time.

For A or B, the matrix representation of the common
user can be obtained in the first scan, and the transposition
operation and OR operation can be performed in linear time.
The distributed system is not applicable to mining associa-
tion rules of common users, and the encrypted matrix rep-
resentation of A and B needs to be perform in sequential
implementation.

Communication Overhead For FP-tree construction of
non-common users, the Third-party sends initialize transac-
tions set TC , which length is |TC |. Besides, there are M − 1
rounds of communication, where in each one of them each of
theM parties sends to the next party a message. In this paper,
there are two user and a Third-party, so the rounds is two and
the message is a FP-tree.

For common users, there are three rounds of communi-
cation between two user and a Third-party, which length is
|U | × |I |.

C. ASSOCIATION RULES MINING UNDER MS(ARMS)
Recall that, in the problem of mining 1-Frequent itemset
under MS, party A and B have its own private datasets TA
and TB same as the above section and there may be overlap
between TA and TB. In the MS model, there maybe a spy in
party A and B who collude with the Third-party to usurp the
private data of another party. We assume A or B distrust each
other and there maybe a spy between them. where counti =
ciA + LapA(ε) + ciB + lapB(ε), thus we can figure out the
expectation according to the joint probability density func-
tion. λ is the threshold of expectation value which balance
the granularity of frequent patterns. In this article, we assume
that A and B distrust each other and add noise to their private
count value respectively. While, there maybe some smart
tricks like game theory or adding noise hierarchically can
reduce the noise which will considered in later paper.

1) MINING OF 1-FREQUENT ITEMSET
The steps to mining 1-Frequent itemset under MS model are
as follow:

(1) The Third-party generates an m-dimension vector C =
c1, c2, . . . , cm randomly and each column represents the
count of a item, then sends vector C to A.
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Algorithm Association Rules Mining Under MS
Input: The set of items I , MST , MCT , initialized
m-dimension vector C , m transactions T , the ultimately
count of each item counti, the final FP-tree Tree′, threshold
parameter λ;
Output: The 1-frequent itemsets S, all association rules R
satisfying MST and MCT ;
1.for each i ∈ I do:
2. if E(counti − Ci −MST > 0) > λ

3. S.add(i);
4.for each branch of Tree′ do:
10. calculate the count of each candidate itemset I ′′;
11.for each candidate frequent itemset a do:
12. if counta > MST and confidenceai→aj > MCT ;
13. R.add(ai→ aj);
14.return R;

(2) A counts the number of each item according to
its own private dataset, and generates the m-dimension
vector A = a1, a2, . . . , am firstly. Then, add laplace
noise(Lap(1f /ε)) in each dimension where 1f = 1
to generate the new noisy m-dimension vector An =

a1 +11, a2 +12, . . . , am +1m. Finally, sum vector C and
An as Â = c1 + a1 +11, c2 + a2 +12, . . . , cm + am +1m,
then send Â to B. The permutation is useless if B colluded
with the Third-party.

(3) B counts the number of each item according to its
own private dataset and add laplace noise(Lap(1f /ε)) in
each dimension where 1f = 1 to generate the new noisy
m-dimension vector Bn = b1 +1′1, b2 +1

′

2, . . . , bm +1
′
m,

and then sum vector Â and Bn as:

B̂ = c1 + a1+11+b1 +1′1, c2 + a2 +12 + b2 +1′2, . . .

cm + am +1m + bm +1′m (6)

and then send B̂ to the Third-party.
(4) The Third-party received the m-dimension vector B̂

and minus the vector initialized C . The noisy m-dimension
vector of A and B is received. Given a probability thresh-
old λ, X is a 1-frequent item if E(support(X ) > MST ) > λ,
where support(X ) = AX+1+BX

T + 1′, T is the total
number of transactions, 1 and 1′ obey the Laplace
distribution.

Privacy And Utility Analysis Since the m-dimension vec-
tor that B and C gotten is a noisy m-dimension vector. After
adding noise((Lap(1f /ε))) to real statistics of each item,
ε-differential privacy is satisfied.

Secondly, we use the expectation of noise as the method
to calculate the support of frequent items. For the item with
minimum difference, it can be output as frequent with a
probability.

2) MINING OF FREQUENT ITEMSET
Since noise has been added to the statistics of 1-frequent
items in private dataset of A or B in the previous section,

which is the value of the node in FP-Tree and the statistics
of association rules of multi-items are also noisy, the asso-
ciation rules of common users is not considered in this
section.

Loss Function of FP-Tree: Given two FP-Trees TA
and TB, the loss function is the quantification of the difference
between these two trees. The difference between two trees
is the sum of the differences of every two nodes under each
branch.

L(A,B) = distance[TA,TB] (7)

Optimal generation of FP-Tree:Given the real FP-Tree and
the noisy count of each 1-frequent item, the count of nodes
with the same name is same as that of frequent items after
adding noise. On this basis, satisfying minimum difference
as:

Lmin(A,B) =
∑
τi,τj∈I

∑
b∈τ

λ
|1(ni, nj)|

max(CA(ni, nj),CB(ni, nj))
(8)

where τ is the set of all branches of A’s FP-Tree, 1(ni, nj) is
the count difference of node i and j in branch b between TA
and TB and λ is the hyper-parameter to measure the degree of
difference. The optimal generation of noisy tree is a NP-hard
problem. In this paper, greedy algorithm is used to reconstruct
FP-Tree from the minimum frequent item to achieve local
optimization. Figure 2 shows the example of generating the
noisy FP-Tree.

The steps to mining association rules under MS model are
as follow:

(1) Sort by the frequency of the 1-frequent items obtained
in the previous section represented as R.

(2) The Third-party generates m transactions TC =

Tu1,Tu2, . . . ,Tum and for each i ∈ I , Ranki = Ri|i ∈ TC
where ui /∈ U and Ranki is the order of item i. Then sends TC
to A.

(3) The noisy count of each item of A is c′i. Then A
generates the FP-Tree TreeA according to the rank R, where
i ∈ TA. For each node name Ai of FP-Tree TreeA, compare the
count of Ai and noisy value c′i. If countAi > c′i, the pruning
strategy is used. Otherwise, the FP-Tree should be extended
appropriately.

(4) A generates optimal FP-Tree Tree′A on the basis of TreeA
satisfying Lmin, where i ∈ TA∪TC and sends FP−Tree′A to B.

(5) B do the similar operations and generates optimal
FP-Tree FP − Tree′B on the basis of FP − Tree′A according
to the rank R, where i ∈ T ′A ∪ TC ∪ TB.
(6) The Third-party received the FP-Tree FP − Tree′B and

subtract the branch that initializes in the transaction set TC to
get the FP-Tree of all users’ transactions. where ‘‘calculate
upward’’ means only consider the patterns between node i
and its parent and ancestor nodes, and ‘‘calculate downward’’
indicates only consider the patterns between node i and its
child and grandchild nodes.PrivacyAnalysis Since the count
of each 1-frequent item is noisy obtained by the above section
and the FP-Tree generated is based on these noisy value,
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FIGURE 2. The overview framework.

FIGURE 3. Construction of noisy FP-Tree.

the final noisy FP-Tree is robust even if the attacker has the
strongest background knowledge. Complexity Analysis

Computational OverheadThe greedy noisy FP-Tree gen-
eration algorithm need to scan the database for only twice
and generate FP-Tree in the order of R. Besides, for each
1-frequent item where the noise is not 0, the algorithm finds
the minimum loss branch that contains the item which costs
linear time.

As the final FP-Tree is noisy, vertical partitioning of com-
mon user attributes is not considered in this section, which
can further reducing the computational overhead.

Communication Overhead For FP-Tree construction of
users, the Third-party send initialize transactions set TC ,
which length is |TC |. Besides, there are M − 1 rounds of
communication, where in each one of them each of the M

TABLE 1. Dataset description.

parties sends to the next party a message. In this paper, there
are two user and a Third-party, so the rounds is two and the
message is a FP-Tree.

IV. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed
algorithm ARHC and ARMS on a variety of synthetic dataset
based on the real transaction datasets. The datasets used in
the experiments are described in Table 1. All experiments
are conducted on an Intel(R) 2.5GHz machine with 8G of

VOLUME 7, 2019 155331



Q. Han et al.: Secure Mining of Association Rules in Distributed Datasets

FIGURE 4. Execution time.

FIGURE 5. F score by varying ε.

Algorithm Greedy Noisy FP-Tree Generation Algorithm
Input: noisy count of each 1-frequent item c′i, the FP-Tree
of A TreeA, the sorted frequent item list R;
Output: noisy FP-Tree Tree′A;
1.Sort R in descending order, named as R′;
2.for each i in 1-frequent items do:
3. compare the noisy count of each 1-frequent item c′ and
real value c;
4. if(c′i > ci)
5. increasing the value of the optimal node satisfying
Lmin(−i) that calculate upward;
6. else
7. pruning the optimal node satisfying Lmin(−i) that
calculate downward;
8.return noisy FP-Tree Tree′A

physical memory. To obtain an average performance esti-
mate, each experiment was run 10 times. To compare the per-
formance of the algorithms, we employ F score and Relative
error(RE) as measures of utility. DEFINITION 5 (F Score).
Let F and F̂ be the set of correct and published association
rules, respectively. The F score is defined as follows:

Fscore = 2×
precision ∗ recall
precision+ recall

(9)

where precision = TP
TP+FP and recall = TP

TP+FN .

Definition 6 (Relative Error): The relative error of pub-
lished frequent pattern set F̂ is defined as

RE = AvgX∈F̂ (
|σ̂ (X )− σ (X )|

σ (X )
) (10)

where σ (X ) is the real frequency of pattern X and the σ̂ (X ) is
the noisy frequency of the pattern X [25].

Figure 4 shows the execution times for the two datasets by
increasing values of minimum support under HC . The min-
imum confidence was set to 0.6 and we run the experiments
with data transmission time and computing time respectively.
These results are indicated as ‘‘transfer’’ and ‘‘calculate’’
and ‘‘total’’ in the figure. The execution times increase as
the minimum support threshold(MST) is reduced because the
total number of large and candidate itemsets increase. Also,
as the average length of transactions increase, the number of
large and candidate itemsets also increase.

Figure 5 shows the F scores for the two datasets by increas-
ing values of ε under MS. The minimum confidence was set
to 0.6 and we run the experiments setting different minimum
support threshold(MST). Observe that the proposed algo-
rithm shows stable performance for different privacy budget
and MST . The F scores rapidly increase at lower privacy
levels(larger ε). As the value of ε is increased, the F scores
started to level off because the influence of noise has waned.
Also, as the minimum support threshold(MST) increased,
the higher F scores is imposed.
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FIGURE 6. Relative error by varying ε.

Figure 6 describes the change of RE on different values
of ε. The minimum confidence was also set to 0.6 and we run
the experiments setting different minimum support thresh-
old(MST). The RE decrease as ε is increased because of the
less noise. Also, as the minimum support threshold(MST)
increased, the lower RE is imposed because the count of each
candidate itemsets is increased and the influence of noise has
waned.

V. CONCLUSION
we have proposed two algorithms for mining association
rules underHC andMS attack models. The mining algorithm
under HC transfer the statistics of more than one partici-
pants and the mining algorithm under MS is in a differen-
tially private way. Each party enables the algorithm to use
the remaining privacy budget to efficiently and effectively
built a differentially private FP-tree with the noisy counts of
1-frequent itemset. Then the Third-party and other partici-
pants can calculate the supports of all frequent patterns with-
out access the private dataset.

In this paper, we assume participant have no idea of each
party’s background and generate the noisy FP-tree in a differ-
entially private way. We believe that taking advantage of the
theory of game or generating the noisy FP-tree hierarchically
are likely to enhance the performance.
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