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ABSTRACT The electrocardiogram (ECG) signals bear fundamental information for making decisions
about different kinds of heart diseases. Therefore, many efforts were made during decades to extract features
of heartbeats via ECG records with high accuracy and efficiency using different strategies and methods. In
this paper, we solve the problem in discrete-time state-space using a novel q-lag unbiased finite impulse
response (UFIR) smoother, which we adapt to the ECG signal shape via the time-varying optimal averaging
horizon. It is shown that the adaptive UFIR smoother performs better in applications to ECG signals than
the standard techniques such as the Savitsky-Golay, wavelet-based, low-pass, band-pass, notch, and median
filters. Applications are given for the PhysioBank data benchmark, which contains several records taken from
different databases such as the MIT-BIH Arrhythmia (MITDB). A complete statistical analysis is provided
via normalized histograms and statistical classifiers. It is shown in a comparison with other methods that the
adaptive UFIR smoother has a higher accuracy in denoising, features extraction, and features classification
for ECG records with normal rhythm and atrial fibrillation (AF).

INDEX TERMS Biomedical signal processing, electrocardiogram (ECG) signal denoising, ECG features
extraction, unbiased finite impulse response (UFIR) filtering.

I. INTRODUCTION
It is known that the electrocardiogram (ECG) signals bear
essential information about different kinds of heart diseases.
Therefore, different strategies have been developed during
decades to investigate ECG signals and extract critical fea-
tures with highest accuracy and efficiency [1]–[5]. Specifi-
cally, many algorithms have been designed to analyse and
extract fiducial features and rhythm variabilities in ECG
signals, noise detection based on agglomerative clustering
of morphological features, and information extraction about
the atrium behaviour.Morphological characteristics related to
ECG signals are typically learned through the P, QRS, and T
waves, using appropriate methods of ECG signal denoising
and features extraction [5]–[16]. Even so, it is still chal-
lenging to reach accurate results due to measurement errors
caused by data noise and artifacts induced by data acquisition
equipment.

Methods developed for denoising and features extraction
based on the Fourier transform assume that ECG signals
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are stationery and ignore time resolution. A better trade off
between the frequency and time is guaranteed by the wavelet
transform-based algorithms, provided that a proper wavelet
is chosen [7], [17]–[30]. Other methods can also be applied
to ECG signals, such as the empirical mode decomposi-
tion (EMD) and Hadamard transform [31], [32]. To increase
the accuracy, several authors combined the above methods
with approaches such as the principal component analysis
(PCA) [33], [34], support vector machine (SVM) [35], and
neural networks or deep learning techniques [30], [36].

In many cases, accurate features extraction of ECG sig-
nals requires more rigorous studies involving optimal meth-
ods mostly due to often unspecified noise attached to ECG
data. In this regard, optimal smoothing is recognized as
one of the most powerful techniques to remove noise while
retaining fundamental properties of ECG signals. Specifi-
cally, the smoothing technique developed by Savitsky and
Golay [37] is often applied to ECG signals [38]–[42].
A flaw is that the Savitsky-Golay smoother relates the esti-
mates to the middle of the averaging horizon. As has been
shown in [43], it provides suboptimal unbiased smoothing
only for odd-degree polynomials, while for the even-degree
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polynomials an optimal lag q must be taken from other
points. The theory of the p-shift, q = −p > 0, unbiased
finite impulse response (UFIR) filtering, which considers
the Savitsky-Golay smoother as a special case for odd-order
polynomials, is given in [43] and developed in [44], [45]. To
provide the best denoising effect, the approach suggests that
an optimal lag q must be set individually for each polyno-
mial and not obligatorily at the middle point. Furthermore,
it provides smoothing filtering by p < 0, filtering by p = 0,
and predictive filtering by p > 0. Let us also notice that the
Savitsky-Golay filter was recently modified to be optimal in
the minimum mean square error (MSE) sense [38], [40]. The
modification is akin to the optimal UFIR filter [46], which
produces a maximum likelihood estimate [47]. Because both
these solutions require information about noise, which is not
well studied in ECG signals, the use of the UFIR smoother
becomes more preferable.

A disadvantage of the batch p-shift UFIR filter [43] resides
in slow operation, which causes a computational burden and
complexity in denoising and features extraction [48]. More-
over, the UFIR [43] and Savitsky-Golay [37] smoothers were
designed to de-noise signal with no extra information about
the ECG signal state required to facilitate features extraction.
A more efficient state space iterative p-shift UFIR algorithm
using recursions was designed by Shmaliy in [48] and then
developed and applied with different purposes inmany papers
[43], [44]. Although the iterative UFIR smoother [48] pro-
vides much more information than the batch UFIR [43] and
Savitsky-Golay [37] structures, its development for features
extraction in ECG signals still has not been addresses in the
literature that motivates our present work.

Referring to the first results obtained in [49], [50], where
the batch UFIR smoothing filter has demonstrated a better
performance than several other well-recognized estimators,
in this paper we employ and develop an iterative UFIR
smoother in state space. An objective is to increase accuracy
of the features extraction and fiducial points detection.

The main contributions of the paper are the following:
• An optimal q-lag state-space UFIR smoothing algorithm
for ECG signals denoising and artifacts removal.

• An algorithm for ECG signal stable features evaluation
using different classifiers under the unknown noise.

• High-accuracy patterns classification for ECG signals
with atrial fibrillation (AF) and normal conditions.

To reach the goal, we first provide denoising of ECG
signals and compare the results obtained by thewavelet-based
and some standard filters. We then extract features of the
ECG-waves and analyse confidence intervals for particular
ECG records. The results are tested by different classifiers
and compared to others available from several machine learn-
ing techniques. The rest of the paper is organized as fol-
lows. Section II discusses the databases and signal model.
Section III presents the discrete-time state-space UFIR filter-
ing and smoothing approaches. In Section IV, we design an
adaptive UFIR smoothing algorithm for ECG signal features
extraction. Specifics of the UFIR smoother optimal tuning

and testing are given in Section V. Applications to ECG
signals are given in Section VI. Discussion of the results is
provided in Section VII and conclusions are finally drawn in
Section VIII.

II. ECG SIGNAL DATABASE AND MODEL
We base our investigation on the MIT-BIH Arrhythmia
benchmark [51], which contains several records taken
from different databases such as the MIT-BIH Arrhythmia
(MITDB). The MITDB comprises 48 records with normal
and abnormal rhythms taken from 47 subjects. The records
are sampled to 360Hz per lead with 11-bit resolution over
a 10mV range. This database provides the records in two
leads, where the most common is theMLII (modified lead II).
Other leads are also used, such as V1, V5, etc. A key issue is
to choose the lead that most clearly reflects the ECG signal
morphology.

A. MORPHOLOGICAL REPRESENTATION
OF ECG SIGNAL FEATURES
A heartbeat or the ECG complex contains different waves
divided among themselves by distinct intervals [52] (Fig. 1).

FIGURE 1. Features of a heartbeat pulse represented with fiducial points
related with durations and amplitudes.

The P-wave represents a depolarization in the right and left
atrial, which is provided by sinus node. Normally, the P-wave
is positive in most of the leads. In LII (Lead II), the P-wave
amplitude is registered to be larger [53]; it does not surpass
2, 5mV and its duration does not exceed 0.1 s. The QRS
complex follows by the P-wave and represents the ventricular
depolarization. This complex is composed by Q, R and S
points (sometimes called waves) and the duration of QRS
complex normally ranges from 0.06 s to 0.10 s, although it
varies with heartbeat rate (cardiac frequency) and is smaller
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in children. The T-wave starts from the isophasic line and can
adopt several forms such as tall, pointed, flattened, inverted
and biphasic. The T wave length varies considerably. How-
ever, habitually it mostly measures 2mm and is positive in
all of the leads, excepts for aVR that is negative. The nature
of the U-wave is still not well understood and it is hard to
recognize this wave in most of the leads. What follows from
many measurements is that this wave is positive.

B. ECG SIGNAL MODEL IN DISCRETE-TIME STATE-SPACE
To provide efficient denoising and features extractions, in this
subsection we model an ECG signal in discrete-time state-
space. We represent an ECG signal on a horizon [m, n] of N
points, from m = n − N + 1 to n, where n is the discrete
time index, with a degree polynomial as shown in [50].
The inherent ECG noise is still not well understood and its
incorrect description may cause estimation errors. Therefore,
we suppose that the underlying process in each ECG pulse is
time-invariant and deterministic. We also suppose that scalar
measurements of the ECG signal are provided in the presence
of zero mean noise having an unknown distribution (not
obligatorily Gaussian) and covariance.

Under such assumptions, we represent an ECG signal in
discrete-time state-space with the following state and obser-
vation equations, respectively,

xn = Fxn−1 , (1)

yn = Hxn + vn , (2)

where xn ∈ RK is the ECGprocess state vector, yn is the scalar
observation, vn is the scalar measurement noise, F ∈ RK×K

is the system matrix projecting the initial state xn−1 to xn and
given by [54]

F =



1 τ
τ 2

2
. . .

τK−1

(K − 1)!

0 1 τ . . .
τK−2

(K − 2)!

0 0 1 . . .
τK−3

(K − 3)!
...

...
...

. . .
...

0 0 0 . . . 1


. (3)

For a scalar measurement, we assign the observation matrix
as H = [ 1 0 · · · 0 ] ∈ R1×K and suppose that noise vn is
zero mean with unknown distribution and other statistics. The
batch UFIR filter can now be applied to (1) and (2) to provide
state estimates as in the following.

III. UFIR FILTERING AND SMOOTHING OF ECG SIGNALS
Provided modeling of an ECG signal in discrete-time state
space, in this section we discuss the UFIR filter and smoother
first in the batch form and then in a fast iterative form
using recursions. Because the optimal averaging horizon is
shape-varying for ECG signals, we also discuss its adaptive
structure.

A. BATCH UFIR FILTER AND SMOOTHER
On a horizon [m, n] of N ECG data points, the batch UFIR
filtering estimate xn , x̂n|n of xn is given by [48]

x̂n = (WT
m,nWm,n)−1WT

m,nYm,n , (4)

where the extended observation vector Ym,n and augmented
measurement matrixWm,n are, respectively,

Ym,n = [ yTm yTm+1 . . . y
T
n ]T , (5)

Wm,n =


H(Fn−m)−1

...

HF−1

H

 . (6)

In the discrete convolution-based form, estimate (4) can be
represented as

x̂n = Hm,nYm,n , (7)

where the UFIR filter gain matrixHm,n given by

Hm,n = (WT
m,nWm,n)−1WT

m,n (8)

can be rewritten as

Hm,n = GnWT
m,n , (9)

where Gn is the generalized noise power gain (GNPG),

Gn = Hm,nHT
m,n = (WT

m,nWm,n)−1 . (10)

Given the UFIR filtering estimate x̂n , x̂n|n of xn by (7),
the q-lag UFIR smoothing estimate can be obtained by pro-
jecting x̂n into x̂n−q as shown in [43],

x̂n−q|n = F−qx̂n|n , (11)

where qopt =
⌊N
2

⌋
is a digital optimal lag for odd-degree

UFIR smoothers and qopt must be set individually following
Fig. 8 in [43] for each even-degree. Let us notice again that
the Savitsky-Golay solution ignores this specific and suggests
taking lags from the middle points of [m, n] for all degrees
that introduces errors.

B. ADAPTED OPTIMAL HORIZON Napt
Of importance is that the UFIR filter is able to minimize the
MSE on [m, n], if the horizon N is set optimally as Nopt [55].
To make it possible in the absence of the reference signal
(ground truth), we follow [55] and find Nopt for ECG signals
by minimizing the trace of the derivative of the mean square
value (MSV) of the measurement residual matrix V(N ) as

N̂opt = argmin
N

∂ trV(N )
∂N

+ 1 . (12)

A solution to the optimization problem (12) has been pro-
vided in our early paper together with an algorithm [50],
which we will further use. It has been found out in [50] that
an optimal horizon Nopt = 21 serves for the 2-degree polyno-
mial corresponding to three states, K = 3, and database [51]
exploited in this paper.
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An important specific is that Nopt varies on different parts
of the ECG signals [49]. Therefore, we will make Nopt adap-
tive (Napt) to range from Nmin = K = 3 to Nopt as

Nmin 6 Napt 6 Nopt ,

where Nmin is a minimum horizon applied to a fast excursion
between Qp and Sp (Fig. 1). To this end, we recognize five
parts in the ECG signal separated with the following points
in Fig. 1: Qint, Qp, Sp, and Sint. Up to Qint, a smooth part
of the ECG signal is processed with Nopt. Between Qint and
Qp, the horizon Napt linearly reduces from Nopt to Nmin. The
QRS complex, between Qp and Sp, is processed with Nmin
to follow exactly a fast excursion around Rp. From Sp to
Sint, the horizon Napt linearly increases from Nmin to Nopt,
The horizon finally becomes Nopt above Sint. Accordingly,
adaptive UFIR smoothing is provided as

x̂n−q|n =



x̂n−q|n(Nopt) , 1 6 n 6 Qint − 1 ,
x̂n−q|n(Napt) , Qint 6 n 6 Qp − 1 ,
x̂n−q|n(Nmin) , Qp 6 n 6 Sp ,
x̂n−q|n(Napt) , Sp + 1 6 n 6 Sint ,
x̂n−q|n(Nopt) , Sint + 1 6 n 6 T ,

(13)

where T represents the heartbeat length. Provided Napt,
we can next design an iterative UFIR smoothing algorithm
using recursions, which reduces the computational load.

C. ITERATIVE UFIR SMOOTHING
Like the Kalman filter (KF), iterative computation of the
batch UFIR estimate (7) is provided recursively in two
phases: predict and update [48]. In contrast to the KF,
the UFIR algorithm does it with no requirements for the noise
statistics and initial values and is thus more suitable for ECG
signals in view of generally unknown heartbeat noise.

At the predict phase, the UFIR algorithm computes the
prior state estimate x̂−n = Fx̂n−1 and ignores the prior error
covariance, unlike the KF. At the update phase, the UFIR
algorithm updates the GNPG Gn as Gn = [HTH +
(FGn−1FT )−1]−1, the measurement residual zn = yn−Hx̂−n ,
the bias correction gain Kn = GnHT , and the state estimate
x̂n = x̂−n +Knzn. A pseudo code of the UFIR smoothing algo-
rithm [48] adapted to ECG signals is listed as Algorithm 1.

Provided ECG data yn, adaptive horizon Napt, and opti-
mal lag qopt for a chosen filter degree, Algorithm 1 starts
self-computing the initial GNPG Gs and initial state x̃s at s,
which corresponds to a short initial horizon of K points. This
is required to overcome singularities in the UFIR filter gain
on shorter horizons. Estimate x̂n at time index n is computed
iteratively, using an auxiliary time variable l, which starts
with l = n − Napt + K + 1 and finishes when l = n. The
estimate x̂n obtained in such a way minimizes the MSE and
is called the optimal UFIR estimate. Provided x̂n, the UFIR
smoothing estimate with a lag q is obtained by a projection
from n to n− q as [48]

x̂n−q = F−qx̂n (14)

Algorithm 1 Adaptive Iterative UFIR Smoothing
Algorithm for ECG Signals
Data: yn, N = Napt, q = qopt
Result: x̂
1: Begin:
2: for n = N − 1,N , . . . do
3: m = n− N + 1, s = n− N + K
4: Gs = (WT

m,sWm,s)−1

5: x̃s = GsWT
m,sYm,s

6: for l = s+ 1 to n do
7: x̃−l = Fx̃l−1
8: Gl = [HTH+ (FGl−1FT )−1]−1

9: Kl = GlHT

10: x̃l = x̃−l + Kl(yl −Hx̃−l )
11: end for
12: x̂n = x̃n
13: x̂n−q = F−qx̂n
14: end for

and we notice again that lag q must be set optimally as qopt
to reach minimum possible smoothing errors.

IV. ECG SIGNAL FEATURES EXTRACTION IN STATE SPACE
Features extraction from ECG signals in state space using
Algorithm III-C is provided in five stages (Fig. 2): 1) detrend-
ing, 2) QRS-complex detection, 3) segmentation, 4) adaptive
iterative UFIR smoothing, and 5) windowing of ECG waves.

1) DETRENDING
At this state, Algorithm III-C is applied on a large horizon
N � Nopt to remove artifacts from the external systems.

2) QRS-COMPLEX DETECTION
The QRS-complex is detected using annotations of the
arrhythmia MIT-BIH database following the approach pro-
posed by Tompkins and Pan and Tompkins [56]. Note that
a majority of annotations detect the QRS complex with a
probability of 99.3%.

3) SEGMENTATION
Localized the QRS-complex, a closest point to the R-peak is
detected in each heartbeat. Next, by taking 100 samples to
the left and 200 samples to the right, a window is created to
outline a heartbeat as in Fig. 1. If this window does not cover
all points of interest (P-wave, QRS-complex, and T wave),
its width is increased. The segmentation process is organized
heuristically with the aim of analysing the morphological
waves. We refer to this technique described in [57]–[59].

4) ITERATIVE UFIR SMOOTHING
SpecifiedNopt andNapt for the database used as shown in [50],
the horizon Nopt = 21 is applied beyond the QRS complex.
To avoid large bias errors, Napt specified by (13) is applied
over all EGC signal. Provided UFIR filtering, smoothing with
a lag q is organized using (14).
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FIGURE 2. Block-diagram of features extraction of the ECG signal in state space using an UFIR smoother.

5) WINDOWING OF ECG WAVES
The UFIR smoother provides denoising and estimation of
the ECG signal three states as shown in Fig. 3 for the first
state (de-noised ECG signal), second state (time derivative of
the de-noised signal), and third state (second time derivative
of the de-noised signal). Using information about the ECG
signal states, the R-peak, QRSmax, and QRSmin are deter-
mined and a window is applied to cover the QRS complex.
The P-waves detection is provided beginning from Q until
the heartbeat ends. Here, a window is applied to cover Pon,
P-peak, Poff points, which are determined by Pmax and Pmin
in the second state. Similarly, the T-wave is detected, in which
case Ton and Toff are covered by a window created for Tmax
and Tmin (Fig. 3b).

A. FIDUCIAL POINTS DETECTION AND FEATURES
EXTRACTION
In this section, we use the above results to provide fiducial
points detection and features extraction, such as the durations
and amplitudes of different detected fiducial points. Provided
windowing of the P-wave, QRS-complex, and T-wave, we use
the fiducial point Pon as an initial point of P-wave, P as a
P-peak, Poff as a final point of P-wave, Q as an initial point
of QRS complex, R as a R-peak, S as a final point of QRS
complex, Ton as a initial point of T-wave, T as T-peak, and
Toff as a final of T-wave. The fiducial points are extracted as
follows.

1) QRS-COMPLEX
The fiducial points for a QRS-complex are determined by
finding a maximum QRSmax and a minimum QRSmin in
the second state (Fig. 4b), which are corroborated by the third
state at zero cross points (Fig. 4c). Two variables ‘‘dqrs1’’ and
‘‘dqrs2’’ are introduced to calculate the initial and final points
of a QRS-compex. The R-peak is detected as R̂ at a zero cross
point of the second state and is corroborated by QRSmin of
the third state.

2) P AND T WAVES
The fiducial points for P and T waves are determined by
finding Pmax, Tmax, Pmin, and Tmin in the second state
(Fig. 3b), which are corroborated by the third state at zero
cross points (Fig. 3c). Two variables ‘‘dp1’’ and ‘‘dp2’’
are introduced to calculate the initial and final points of

FIGURE 3. Fiducial features of a single heartbeat extracted along with the
spacial points in state space using the UFIR approach: (a) first state,
(b) second state, and (c) third state.

the P-wave. Similarly, two variables ‘‘dt1’’ and ‘‘dt2’’ are
introduced for the T-wave. The P-peak and T-peak assigned
as P̂ and T̂, respectively, are detected at the zeros cross of
the second state. These points are confirmed by Pmin and
Tmin in Fig. 3.

Provided the fiducial points P̂onp , P̂, P̂offp , Q̂, R̂, T̂on
p , T̂, T̂off

p
to represent the relevant points1 in Fig. 1, the ECG wave
durations and amplitudes are calculated for the P-wave as

Pdur = Poffp − Ponp ∼= P̂offp − SP̂onp , (15)

Pamp = S(Pp)− S(Ponp ) ∼= P̂− S(P̂onp ) , (16)

for the QRS-complex as

QRSdur = Sp − Qp ∼= Ŝp − Q̂p , (17)

QRSamp = R− S(Qp) ∼= R̂− ˆS(Qp) , (18)

1The points Pp, Qp, Rp, Sp and Tp are time indexes that determine the
peaks P-peak, Q-point, R-peak, S-point and T-peak in the heartbeat.
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and for the T-wave by

Tdur = Toff
p − Ton

p
∼= T̂off

p − T̂on
p , (19)

Tamp = S(Tp)− S(Ton
p ) ∼= T̂− S(T̂on

p ). (20)

Note that estimates P̂onp , P̂offp , ˆS(Qp), T̂
on
p , and T̂off

p represent
points, which belong to the base line of an ECG signal.

V. TUNING AND TESTING
In order to achieve the best smoothing effect, in this section
we tune the UFIR smoother to the ECG signals in terms
of optimal lags related to optimal horizons. As benchmarks,
we will employ the wavelet-based, low-pass, high-pass,
median, and notch filters employed in [8], [28], [60]–[63].

A. OPTIMAL LAG FOR UFIR SMOOTHER
It has been shown in [43] that an optimal lag qopt for
odd-order polynomial UFIR smoothers must be taken from
the middle of an optimal averaging horizon of Nopt points.
Accordingly, we specify qopt as

qopt =
⌊
Nopt − 1

2

⌋
, (21)

where bxc means the floor of x, i.e. the largest integer less
than or equal to x.
For even-order polynomials, [43] suggests that qopt must

be set individually. For the second-order UFIR smoother we
thus follow [43] and set

qopt =
Nopt − 1

2
−

1
2

√
N 2
opt + 1

5
. (22)

In this regard, let us notice that even though the
Savitsky-Golay smoother [37] was derived from differ-
ent prospectives, it has a similar structure with the UFIR
smoother and similar properties such as adaptability to signal
variations and robustness to noise. An advantage of the UFIR
approach is that it suggests optimal lag for each smoother
degree [43] that was not provided by Savitsky and Golay.

B. TESTING THE ITERATIVE UFIR ALGORITHM
The three-state polynomial model was shown in [50] to be
near optimal for ECG signals. Referring to [50], we represent
the system and measurement matrices as, respectively,

F =

1 τ
τ 2

2
0 1 τ

0 0 1

 , H = [ 1 0 0 ] , (23)

where a discrete time-step τ = 1/f is due to the sam-
pling frequency of f = 360Hz used in DataBase MIT-BIH
Arrhythmia. For (23), the augmented measurement matrix
becomes

Wm,n =

HF−2

HF−1

H

 . (24)

FIGURE 4. Denoising of a test sinusoid signal (solid) corrupted by zero
mean AWGN using the UFIR smoother (dotted with asterisk) with lag q1
(21) and (dash-dotted and marked square) with lag q2 (22). The
Daubechies wavelet-based smoothers are: db6 (dashed with marked
circle), db14 (dash with dot marked), sym4 (solid with marked cross),
bior2.2 (dashed with marked plus sing), coif2 (solid with marked
diamond). The standard filters are: band pass filter (bandpass, dashed
with marked pentagon), low pass filter low-pass (solid with marked
hexagon), median (medfilt, dotted with marked point), and notch
(notchfil, dashed with marked point).

FIGURE 5. RMSEs corresponding to Fig. 4 and computed over
1000 iterations for the UFIR smoother, wavelet-based, and standard
filters such as the low-pass, band-pass, median, and notch.

At these stage, we compare performances of the UFIR
smoother relying on qopt (21) and (21) and several other
available filters. To test estimators, we generate a signal
s(n) = sin(n) corrupted by an additive zero mean white
Gaussian noise (WGN) having the variance σ 2

= 0.0625 and
sketch the results in Fig. 4.

As can be seen, the UFIR smoother with qopt (22) is most
successful in accuracy, since its estimate ranges most close to
the generated signal.

The root mean square errors (RMSEs) corresponding to
Fig. 4 and computed over 1000 iterations and are shown
in Fig. 5.

One observes that all wavelet-based and standard fil-
ters produce much larger errors than the UFIR smoothers
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FIGURE 6. RMSEs of the UFIR smoother compared to the wavelets-based
and standard filters.

irrespective of the wavelet chosen. Among the two UFIR
smoothers used, the second one performs better due to the
optimal lag (22). This simulation confirms the fact that the
lag must be chosen optimally for all even-order smoothers,
unlike for the Savitsky-Golay filter.

We next provide an analysis of the signal-to-noise
ratios (SNRs) at the filter outputs in terms of the percent-
age root mean square (PRD). In doing so, a synthetic ECG
signal is considered with known ECG signal and noise. The
pass-band filter is set aside due to the instability (Fig 5). As
can be seen in Fig. 6, both UFIR smoothers (q-lag1 and q-
lg2) are most successful in accuracy for small and large SNR
values. The notch filter produce considerable errors when
the SNR drops below 10 dB. The wavelet-based smoothers
perform well when the SNR exceed 20 dB and the low-pass
filter performs similarly. It is also seen that the median filter
is less accurate among other solutions when the SNR exceeds
20 dB.

Another experiment has been conducted to analyse the
error variability with respect to the signal energy. The results
are sketched in Fig. 7 in terms of the PRD. Again we notice
that both UFIR smoothers produce smallest errors among
other solutions.

VI. APPLICATIONS
In this section, we make efforts to extract features of ECG
signals with a highest available accuracy provided by the
adaptive UFIR smoothing algorithm designed based on the
MIT-BIH Arrhythmia benchmark [51], which contains sev-
eral records taken from different databases such as the
MIT-BIH Arrhythmia (MITDB). The wavelet-based filters
with several Daubechies mother wavelets will be used as
benchmarks.

A. FILTERING AND ARTIFACT REMOVAL
What we expect from the estimates of the first state is that the
outputs of the UFIR smoother with lags (21) and (22) and the

FIGURE 7. Smoothing errors in terms of PRD produced by diverse filters.

FIGURE 8. ECG signal denoising: (a) heartbeat estimation with the UFIR
smother, wavelet-based filters, and standard filters; (b) segmental
visualization of ten estimates.

outputs of the wavelet-based filters will not get away signif-
icantly from one another. Herewith, we suppose that errors
in the estimates of the second and third states provided by
the Savitsky-Golay smoother and wavelet-based filters will
range higher than in the UFIR smoother, because the former
estimates the high-order states via the derivatives, while the
later makes it in state space concurrently. Our expectations
are confirmed in Fig. 8, where we also highlight a part with
clearly seen bias errors when an ECG signal changes rapidly
within the QRS-complex.
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FIGURE 9. Measurement residuals produced by the UFIR smoother
(q-lag1 and q-lag2), wavelet-based filters (db6, db14, sym4, bior2.2, and
coif2), low-pass filter, median filter, and notch filter: (a) actual residuals
and (b) error boxplot of heartbeat.

FIGURE 10. Estimates of the second state (first time-derivative) provided
by the Savitsky-Golay smoother with lag q1 (21), UFIR smoother with
lag q2, wavelet-based filters (db6, db14, sym4, bior2.2, and coif2),
low-pass filter, median filter, and notch filter.

To sketch a more clear error picture, in Fig. 9 we give
the measurement residuals produced by different estimators.
What follows from this figure is that the UFIR smoother out-
performs the wavelet-based and standard filters over all data,
especially within the QRS complex. In Fig. 10, we give esti-
mates of the second state provided by the estimators within

FIGURE 11. Baseline removal using UFIR smoothing with N = 1001 and
q-lag2.

and beyond the QRS-complex. This figure also confirms that
the UFIR smoother is most accurate among other solutions.

An important specific is that the UFIR smoother is able to
remove efficiently artifacts as shown in Fig. 11. This property
is useful to detrend the process, such as that shown in Fig. 2.

B. COMPUTATIONAL COMPLEXITY
Although the computation time is not strictly limited in ECG
signals processing, an issue may arise when the consumed
time is unacceptably large for medical needs. To find out
how fast each algorithm operates under the same conditions,
we next process an ECG record of 30 seconds with 1000 iter-
ations. We base the computation time measurement on the
MATLAB R2019 operating on a computer with intel core
i7-4510U CPU (2.60) GHz and 16.0 GB RAM. The con-
sumed times are listed in Table 1 and it is seen that an
increase in the accuracy in the UFIR smoother is achieved
at expense of the computation time, which is largest among
other solutions, because the UFIR algorithm III-C has the
O(N ) complexity [48]. Even so, the time consumed by the
UFIR smoother can be acceptable for medical needs, pro-
vided that the result demonstrates the highest accuracy. Note
that the UFIR algorithm still was not optimized in terms of
fast operation and the computation time can be significantly
reduced in special implementations.

C. FEATURES EXTRACTION AND ERRORS COMPARISON
Provided estimates of the ECG signal states, we next con-
duct accurate features extraction following the above dis-
cusses scheme, in which relations (19) and (20) are used to
extract features of the P-wave, (21) and (22) to compute the
QRS-complex duration and amplitude, and (23) and (24) to
extract features of the T-wave.

An extraction of the P-wave duration using the UFIR
smoother is illustrated in Fig.12, where we also sketch esti-
mates provided by some wavelet-based filters. The estimates
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TABLE 1. Computation time required by diverse algorithms.

FIGURE 12. Extracted features of the P-wave duration Durp. Expert
annotations (gold standard) [52] are represented with the upper and
lower boundaries (solid lines) along with an expected average.

are given along with the expert annotations (gold standard)
taken from [52], [57], [64] and shown as the upper and lower
boundaries corresponding to the confidence interval of the
probability of 95%.

Several features extracted using the UFIR smoother and
other algorithms are generalized in Fig. 13. Again we see
that theUFIR smoother provides estimates consistent with the
gold standard, while the wavelet-based and standard filters
are not always successful and their estimates undergo hight
variabilities leading to inconsistent outputs. A more deep
investigation respect to the P-wave will be provided next for
normal and abnormal ECG signals.

D. APPLICATIONS TO NORMAL AND ABNORMAL ECGs
As an example of applications, we now extract features of the
P-wave related to records with normal rhythm and atrial fib-
rillation and illustrate the results obtained using the wavelet
filter with Db6 (Fig. 14) and UFIR smoother (Fig. 15).
The following observations follow from an analysis of

these figures:
• The UFIR smoother puts the extracted features within
the confidence interval that allows getting a strong dis-
crimination between the normal and abnormal records
as will be shown latter.

• All other algorithms produce unstable estimates
(Fig. 13), which range out of the gold standard bound-
aries. Thus, making a good determination between the

FIGURE 13. Features extracted using the UFIR smoother with q-lag1 (filter
1) and q-lag2 (filter 2) and other algorithms depicted as db6 (filter 3),
db14 (filter 4), sym4 (filter 5), bior2.2 (filter 6), coif2 (filter 7), low-pass
(filter 8), median (filter 9), and notch (filter 10): (a) duration DurP of
P-wave, (b), duration DurQRS of QRS-complex, (c), duration DurT of
T-wave, (d), amplitude AmpP of P-wave, (e) amplitude AmpQRS of
QRS-complex, and (f) amplitude AmpT of T-wave. Features are extracted
from record 100 lead II of arrhythmia MIT-BIH database.

FIGURE 14. Features of the P-wave duration extracted using the
wavelet-based filter with db6 from the AF and Normal ECG of MIT-BIH
Arrhythmia Database: (a) Durp, (b) Durp normalized histogram, (c) Ampp,
and (d) Ampp normalized histogram.

normal and abnormal records is more problematic by
these filters.

E. CLASSIFICATION
We now evaluate features provided by (15), (16), (17),
(18), (19) and (20) using nine classifiers. Considering
29266 heartbeats including healthy and abnormal heartbeats,
we first train the classifiers by the cross-validation process 10

152174 VOLUME 7, 2019



C. Lastre-Domínguez et al.: Denoising and Features Extraction of ECG Signals in State Space

FIGURE 15. Features of the P-wave duration extracted using the UFIR
smoother from the AF and Normal ECG of MIT-BIH Arrhythmia Database:
(a) Durp, (b) Durp normalized histogram, (c) Ampp, and (d) Ampp
normalized histogram.

considering records 100, 103, 105, 201, 203, 210 from
arrhythmia MITDB. Next, the classifiers are tested by new
data 106, 112,113, 219, 221 taken from arrhythmia MITDB.
All data are divided into several balanced sets to avoid biases
produced by imbalanced data (a specific class set is larger
than other). The metrics used for performance assessment are
accuracy (Acc.), specificity (Spec.), and sensitivity (Sens.),

Acc =
TP+ TN

TP+ TN+ FP+ FN
, (25)

Spec =
TN

TP+ FN
, (26)

Sens =
TP

TN+ FP
, (27)

where, TP (true positives) means that healthy heartbeats are
correctly classified, TN (true negatives) means that abnormal
heartbeats are correctly classified, FN (false negatives) means
that healthy heartbeats are classified as abnormal heartbeats,
and FP (false positives) means that abnormal heartbeats are
classified as healthy heartbeats.

By these metrics, the performance of each classifier turns
out to be averaged that is seen in Table 2 representing the
general classifier performance provided by the tree model
(complex tree, medium tree, and simple tree), logistic regres-
sion, ensemble model (bagged tree, support vector machine
(SVM) (linear, quadratic, and cubic), and subspace k-nearest
neighbour (KNN). Note that the best classifiers were selected
during the initial training. A similar process was organized
by applying the principal component analysis (PCA) (See
Table 3) and comparing the effects. It follows from both
cases that the UFIR smoothing approach provides a consider-
ably better performances that follows from Table 4, where a

TABLE 2. Performance of the AF for normal ECG heartbeats based on
different classifiers.

TABLE 3. Performance of the AF and normal ECG signals applying PCA
and based on different classifiers: FG SVM is the fine gaussian SVM,
CG SVM is the coarse gaussian SVM.

TABLE 4. Comparative study of AF detection using different approaches
and the UFIR smoother (UFIRS).

comparison is provided using the empirical mode decompo-
sition (EMD), autoregressive model (AR), Hadamard trans-
form (HT), wavelet transform (WT), and convolutional neural
networks (CNN).

VII. DISCUSSION
The purpose of this investigation was to remove the measure-
ment noise and extract concurrently features of ECG signals
in state space using the q-lag UFIR smoother. This smoother
does not require the noise statistics and initial values and
is thus more suitable for ECG signals, whose noise is still
not well understood. We were focused on the morphological
features of individual ECG signals with normal rhythm and
atrial fibrillation. To reach the highest accuracy allowed by
the UFIR smoothing approach, we have developed an effi-
cient algorithm and tested it by diverse ECG data in a compar-
ison with other available techniques. The test has confirmed
our expectations. Namely, the UFIR smoother considerably
outperformed several standard algorithms in noise reduction
and accuracy. That has become possible by setting optimal
lags and adaptive horizons to the UFIR smoothing algorithm.
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As benchmarks, we employed several wavelet-based fil-
ters and standard filters such as the low-pass, pass-band,
median, and notch. A comparative analysis has shown that
the UFIR smoother extracts the ECG signal specific fea-
tures with higher accuracy than other solutions. That was
also expected, since the wavelet-based algorithms do not
allow for time-varying dynamic optimization similar to the
adaptive UFIR structures, at least we did not find relevant
solutions suggested for ECG signals in the wavelet area.
A critical advantage of the state-space UFIR approach is that,
unlike in the Savitsky-Golay and wavelet-based filters, noise
reduction and state estimation are provided simultaneously.
This presumes higher efficiency in noise reduction and better
accuracy in features extraction. Note that the Savitsky-Golay
and wavelet-based filters are not state-space estimators. Esti-
mation of higher-order states can be provided using these
filters a posteriori via the time-derivatives applied to the first
state estimate that is typically accompanied with larger noise.
As a result, even for the second state, the UFIR smoother
produced much more accuracy in the estimation of extreme
points of MIT-BIH arrhythmia database.

It worth noticing again that the Savitsky-Golay and
wavelet-based filters were already recognized as standard
approaches for ECG signals [7], [20]–[29]. In this regard, bet-
ter performance of the UFIR smoothing algorithm developed
in this paper opens new horizons in accurate and precise fea-
tures extraction from measurements of ECG signals having
normal and abnormal heartbeat characteristics.

The UFIR smoother optimized for ECG signals by set-
ting optimal lags and adaptive horizons for each indi-
vidual degree-polynomial has essentially outperformed the
Savitsky-Golay filter, which does not suggest such an opti-
mization [40]–[42]. Accordingly, the following main results
were achieved:

1) Optimal denoising and artifacts removal with qopt-lag
assigned for each optimal horizon Nopt.

2) High accuracy in ECG signal denoising achieved using
an adaptive optimal horizon Napt.

3) High accuracy in features extraction achieved taking
advantages of the state-space approach.

What left behind is to notice some particular differences
between the UFIR and wavelet-based approaches. It has been
revealed that errors produced by the wavelet-based filters
have a higher dispersion in the extracted features. We explain
it by the fact that the available wavelet shapes are not optimal
for ECG signals. Furthermore, the wavelet-based filters are
not state-space estimators. Therefore, even confusion results
can be expected from wavelets. Another specific is that fea-
tures extracted using the UFIR approach have appeared to be
more stable than by the machine learning techniques. That
has been demonstrated in a comparison with the EMD, PCA,
HT, RR-interval analysis, WT + CNN, and notch filter.

Summarising, we state that the proposed UFIR smooth-
ing approach is more suitable for ECG signals then other
techniques and methods considered in this paper. A flaw is

the computational time, which is larger than that required by
other approaches. Thus, it is still challenging to design fast
UFIR smoother-based algorithms, although the computation
time of several seconds is not an issue for medical needs.

VIII. CONCLUSION
The state-space UFIR smoothing approach developed in
this paper for ECG signal denoising and features extrac-
tion has demonstrated better results than methods employ-
ing the Savitsky-Golay filter, wavelet-based filtering, and
standard filters such as the low-pass, high-pass, notch, and
median. That has become possible by designing an adaptive
UFIR smoothing algorithm operating with optimal lags on
optimal averaging horizons and approximating ECG signals
with optimal degree-polynomials. Based upon this algorithm,
the extracted features were evaluated by different classifiers
and compared to performances provided by other methods.
An example of applications given for the P-wave features
extraction based on the detected fiducial points, has also
shown a potential of the approach in a comparison with the
Savitsky-Golay, wavelet-based, and standard filters.

Overall, the adaptive optimized UFIR smoother developed
in this paper may open new horizons in efficient denoising
and accurate features extraction of ECG signal. Therefore,
as future work, we consider further improvement of the
algorithm to reduce the computation time and increase the
robustness.
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