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ABSTRACT Feature selection is the first and essential step for dimension reduction in many application
areas, such as data mining and machine learning, due to its computational efficiency and interpretability of
the results. This paper focuses on feature selection methods based on information theory. By studying and
analyzing the ideas and drawbacks of existing feature selection methods, it finds that in the process of feature
selection separately focuses on a candidate feature its individual relationship with the predicted class vector
may lead to some problems. And we believe that when the candidate feature is combined with the selected
features, its comprehensive discriminative ability should be taken as the evaluation index of the candidate
feature. Therefore, we propose a novel feature selection method in this paper. In the proposed method,
we introduced the equivalent partition concept and adopted the mutual information gain maximize (MIGM)
criterion to evaluate the candidate feature. In order to estimate the performance of MIGM, we conducted
experiments on ten benchmark datasets and two different classifiers, k-Nearest Neighbor (KNN) and Naïve-
Bayes (NB). Extensive experimental results demonstrate that our method can identify an effective feature
subset that leads to better classification results than other methods.

INDEX TERMS Feature selection, mutual Information, equivalent partition.

I. INTRODUCTION
With the development of computer and network technology,
especially the development of data sensors, data acquisition
becomes more and more convenient. As a result, the size
of the dataset has been increasing rapidly both in terms of
the number of features and the number of observations. The
growing size of data results in many research challenges to
data analysis, for example, biomedical data analysis [1], pat-
tern recognition, machine learning, etc. Actually, in practical
applications, not all features of the data contribute equally
to final results, for irrelevant and redundant features may be
included on some occasions. And those unrelated features
may affect many aspects of data mining, such as the accuracy
of the classifiers and over-consumption on computational
resources [2]. For machine learning systems or the expert
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systems, it is reasonable to identify the main contributing
features and use them instead of the whole feature set [3]. For
this reason, many techniques have been proposed to reduce
the dimension of datasets [4]–[6]. The dimension reduction
usually aims at two aspects: enhancing data representation
and improving classification performance. The purpose of
enhancing data representation is to preserve the topological
structure of the data as much as possible while reducing
the data dimension. And for the classification application
is to find the feature subset that has more discriminative
power. Besides, the underlying process of generating data can
be better understood by dimension reduction [7]. Therefore,
in the process of modern data analysis, the first and essential
step is to reduce the dimension of data.

There are two types of strategies for dimension reduction:
feature extraction and feature selection [8]. Feature extraction
is a general term for methods of constructing a combina-
tion of original features to address the problems while still
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describing the data with sufficient accuracy. So the feature
extraction builds informative and non-redundant low dimen-
sional representation by transforming the original features.
There aremany feature reductionmethods belong to this type,
such as the principal component analysis (PCA), Laplacian
eigenmaps (LE) [9], local linear embedding (LLE) [10], and
ISOMAP [11]. However, these techniques often involve the
time-consuming calculation of eigenvalues and eigenvectors
of the covariance matrix. Compared with the feature selection
method, feature extraction is more time-consuming, and the
result is inexplicable. And the feature selection strategy is to
find the feature subset S from the original feature set F, where
S ⊆ F. The subset S should preserve the characteristics of
original features, and it can produce equal or better classi-
fication accuracy compared with feature set F. In this study,
we concern feature selection rather than feature extraction.

There are two general approaches for feature selection:
wrapper and filter [12]. The wrapper approach searches the
feature space and tests all possible feature combination sub-
sets by using the prediction accuracy of a specific classifier
as the measurement of the quality of the selected feature
subset [13]. Because the wrapper method chooses features
related to a specific classifier, so it has high classification
accuracy, but its generalization ability is low. Another prob-
lem with wrapper is that it is computation-intensive and time-
consuming. In wrapper, each feature is indicated by one bit,
1 for the feature presence, and 0 for the feature absence.
For the data with n features, there are n bits in each state,
so the size of the search space is O(2n). It is impossible to
search the whole feature space unless n is small. However,
the filter method is different from the wrapper method that
it is not associated with a specific classifier, and it evaluates
the predictive ability of features according to some criteria,
such as probability distance, Fisher score, and Pearson corre-
lation. It is worth noting that many feature selection methods
based on information theory were proposed in the past two
decades [14], [15], such as the mutual information based
method. And the mutual information based feature selection
method belongs to the filter approach, and it is independent
of the specific classifier. Mutual information [16], [17] theory
is widely employed in feature selection methods, one of the
important reasons is that mutual information and conditional
mutual information can be used to measure the linear and
non-linear correlations [18].

Using mutual information as the measure of feature
selection mainly involves three concepts: feature relevance,
redundancy, and interaction. The concepts of relevance and
redundancy have been applied in extensive literature. One
of the oldest feature selection methods based on information
theory is the Mutual Information Maximization (MIM) [19],
which adopts mutual information to measure the relevancy
between each feature and the output class vector, while do
not consider the relationship between features. As a result,
the selected feature subset may contain many redundant
features. Mutual Information Feature Selection (MIFS) [17]
improves the performance of MIM by taking the relationship

between features into consideration, and it reduces the redun-
dancy of the selected feature subset. And many variants of
MIFS have been developed, such as MIFS-U [20], MIFS-
ND [21], and Minimum Redundancy Maximum Relevance
(MRMR) [22]. Moreover, besides the relevance and redun-
dancy of an individual feature, several methods also focus on
the joint effects of multiple features. For instance, the Joint
Mutual Information (JMI) [23] method employs the mutual
information between the joint features and class vector as
the measure criterion. The Joint Mutual Information Max-
imization (JMIM) and Normalized Joint Mutual Informa-
tion Maximization (NJMIM) [13] also test the joint effect
of features, and they utilize the ‘‘maximize the minimum’’
principle in the feature selection process. Many other mutual
information based methods are also stated in the literature,
such as the Conditional Mutual Information Maximization
criterion (CMIM) [24] and Double Input Symmetrical Rel-
evance (DISR) [25].

In this paper, we present a novel feature selection method
based on mutual information. Our contributions are summa-
rized as follows:

1) We introduced the feature equivalent partition concept
for the feature subset.

2) A feature selection method based on mutual information
gain maximization is proposed.

3) Experiments on ten benchmark data sets are carried out
to verify the effectiveness of our method.

The rest of this paper is organized as follows: In section 2,
the basic concepts of information theory are introduced.
Related feature selection techniques based on mutual infor-
mation are reviewed in section 3. In section 4, the drawbacks
of existing methods are discussed, and a novel feature selec-
tion based on information theory is presented. The experi-
mental results and comparisons with other approaches are
given in section 5. Finally, the paper is concluded in section 6.

II. CONCEPTS OF INFORMATION THEORY
This section mainly introduces some basic concepts of infor-
mation theory, including entropy, condition entropy, joint
entropy, mutual information, conditional mutual information,
joint mutual information, etc. [5], [18], [20]. In 1948, Shan-
non published his famous paper ‘‘ A mathematical theory of
communication’’, which proposed the concept of informa-
tion entropy to quantify information [16]. The entropy of a
random variable is a measurement of its uncertainty, as well
as the average amount of information needed to describe the
random variable. For a random discrete variable X has N
different number of values, X = {x1, x2, . . . , xN}, Y has M
different number of values, Y = {y1, y2, . . . , yM }, and the
entropy of X is denoted as H (X ):

H (X) = −
∑N

i=1
p (xi) log(p (xi)) (1)

where

p (xi) =
number of instants with value xi
total number of instants of X

(2)
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For a continuous random variable, the definition of entropy
is defined as follows:

H (X) = −
∫
p (x) logp (x) dx (3)

The conditional entropy of variable Y is the amount of uncer-
tainty left in variable Y after the variable X is introduced.
It can be defined as follows:

H (Y |X) = −
∑

xi∈X

∑
yj∈Y

p(yj, x i)log(p(yj|xi)) (4)

The joint entropy of X and Y is the uncertainty that occur
simultaneously with two variables, and it denotes as H(Y,X):

H (Y ,X) = −
∑

xi∈X

∑
yj∈Y

p(yj, x i)log(p(yj, xi)) (5)

where p(yj, x i) is the joint probability of yj and xi.
The relationships among entropy, conditional entropy, and

joint entropy are as follows [18]:

H (Y ,X) = H (X ,Y ) =

{
H (X)+ H (Y |X )
H (Y )+ H (X |Y )

(6)

Mutual information (MI) is another import concept of
information theory. It is the amount of information provided
by the newly introduced variable, and it also can be regarded
as the information shared by two variables. MI is used
to quantify the mutual dependence between two variables.
When the two variables are independent of each other, the MI
is zero, and it increases with the increases of one variable’s
dependence on another. The mutual information between
variable Y and variable X is denoted as I (Y ;X ), and it can
be formulized as follows:

I (Y ;X ) =


H (Y )− H (Y |X )
H (X )− H (X |Y )
H (Y )+ H (X )− H (Y ,X )

(7)

I (Y ;X ) =
∑

x∈X

∑
y∈Y

p (y, x) log
p(y, x)
p (y) p(x)

(8)

For continuous random variables, the mutual information is
defined as follows:

I (X;Y ) =
∫
p (x, y) log

p(x, y)
p (x) p(y)

dx dy (9)

However, it’s difficult to find the probability density functions
(p(x), p(y), p(x, y)) exactly. Therefore, the continuous vari-
ables are usually discretized first, and then the entropy and
mutual information are computed with discrete definitions.

Conditional mutual information I (Y ;Xi|Xj) quantifies the
new discriminative information provided by Xi when Xj is
selected, which is defined as follows:

I
(
Y ;Xi |Xj

)
=


H
(
Y |Xj

)
− H (Y |Xi,Xj)

H
(
Xi |Xj

)
− H (Xi|Y ,Xj)

I (Xi;Y |Xj)

(10)

Joint mutual information (JMI) quantifies the information
shared by Y and the joint variables (Xi, . . . ,Xk ), which is
defined as follows:

I (Y ;Xi, . . . ,X k ) = H (Y )−−H (Y |X i, . . . ,X k ) (11)

Many literature define the amount of information shared
among three variables as interaction information [26], [27],
which is defined as follows:

I (Y ;Xi;Xj) = I (Y ;X i)+ I (Y ;X j)− I (Y ;X i,X j) (12)

The value of I (Y ;Xi;Xj) can be positive, negative, or zero,
and it also can be regarded as the shared discriminative infor-
mation of the two features. If I (Y ;Xi;Xj) is positive, it means
Xi,Xj have redundancy. If I (Y ;Xi;Xj) is negative, it meansXi,
Xj is complementary. And when I (Y ;Xi;Xj) is zero, it means
thatXi andXj are independent of each other [28].When one of
the features is selected, interaction information provided by
another feature can be viewed as redundant for classification.
So the conditional mutual information I (Y ;Xi|Xj) can be
rewritten as I (Y ;Xi|Xj) = I(Y;Xi) − I(Y;Xi;Xj). It means that
more new information a candidate feature provides, the less
redundant information it corresponds.

Here we use a Venn diagram to demonstrate the relation-
ships of the information concepts mentioned above.

III. RELATED WORK
In order to get an effective feature subset, many feature evalu-
ation criteria were proposed. Such as the Fisher discriminant
criterion, which uses the ratio of inter-class variance to intra-
class variance of the feature as the feature score, then the
features are ranked in descending order according to their
scores, and the top k features will be selected. Although
the feature ranking method is not optimal, it is widely used
as a feature selection method in some cases because of its
computational and statistical properties. Given the dataset
D(Xi,j, Y), where i = 1. . .N, j = 1. . .M, we can calculate
the Correlation Coefficient R(j) between jth feature and Y as
follows:

R(j) =

∑N
i=1 (xi,j − x̄j)(yi − ȳ)√∑N

i=1 (xi,j − x̄j)2
∑N

i=1 (yi − ȳ)2
(13)

In fact, it is not necessary always to select the features with
strong individual discriminative ability to form the feature
subset. Because in real applications, the features of data are
more or less correlated with each other, and the joint effects
of them sometimes can lead to better classification accu-
racy [22]. Assuming there is a dataset D(C, F), where C is
the predicted class, F = {f1, f2, . . . , fn} is the original feature
set of data. The purpose of feature selection is to choose a
feature subset S ⊂ F from the original feature set, which
can preserve the information of original features as much as
possible. So the method based on mutual information is to
maximize the joint mutual information between the selected
feature subset S and predicted class vector C . Hence, it can
be formulated as follows:

Max I (C; S) (14)

where S = {f
′

1, . . . , f
′

k }, and k << n.
Themutual information (MI) basedmethod is an important

type of filteringmethod and Lewis etc. [19] first applied infor-
mation theoretic metric to measure the correlation between
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features and predicted class. These relationships are depen-
dence, relevance, and redundancy. In addition, the interaction
relationship is also defined in some literature [5], [25], [29].
The objective of feature selection methods based on mutual
information is to identify the feature subset S, in which for
any pair of features (fi, fj) ∈ S, the feature-feature mutual
information is minimum and the feature-class mutual infor-
mation is maximum.

In order to get the feature subset S, there are three strategies
that can be considered. Firstly, all possible feature subsets
are generated and then test the performance of each subset.
In this way, the best subset can be found in theory, but it is
impractical in applications. Because the number of combina-
tions increases rapidly with the increases of feature number
and it requires a lot of calculation. And choosing k features
from n features has Ck

n combinations. Secondly, using an
elimination strategy to eliminate the worst features from the
full feature set F one-by-one until only k features remain.
The third strategy is to start with an empty subset S, then
select the best feature from F and add to the subset S one
by one until the size of the subset S reaches k [20].
TheMutual InformationMaximization (MIM), also known

as Information Gain [19], is a feature ranking algorithm based
on the feature-Class correlation and it ignores the feature-
feature correlation. MIM has been widely used due to its
simplicity and computational efficiency. This algorithm first
computes the mutual information between each feature and
the output class, I (C; fi), i = 1,. . . , n. Then the features
are ranked in descending order according to the value of
JMIM(·), and the top k features are selected. A larger value of
I (C; fi) means greater relevance between fi andC . The feature
evaluation criterion of MIM is defined as follows:

JMIM (fi) = I (C; fi) (15)

MIM is based on the assumption that each feature of the data
is independent, that is, I (fi; fj)= 0, ∀fi, fj ∈ F . But in practical
application, it is not always the case. It may encounter the
well-known trap that ‘‘the m best features are not the best
m features’’ [30], [31]. Therefore, when features are inter-
dependent, this approach will lead to sub-optimal results and
may suffer from the limitation of feature redundancy. For this
problem, the relationship between candidate features and the
already selected features was also studied in MIFS [17]. It is
defined as follows:

JMIFS (fi) = I(C; fi)− β
∑

fj∈S
I (fi; fj) (16)

where fi ∈ F − S. In MIFS, the feature-feature and feature-
class mutual information both are taken into consideration
when evaluate the candidate feature to be selected. The
parameter β in (16) is the redundancy coefficient. And dif-
ferent β values may have a great influence on the pro-
cess of feature selection. When the value of β is low, the
feature-class relation plays a major role, as β grows, the influ-
ence of feature-feature relation grows. When the value of β
is extremely large, the feature-feature relation may be over-
estimated, and the feature-class relation would be ignored.

Some really important features may not be selected, which
results in low performance of MIFS. Therefore, we should
be caution in choosing the value of β. MIFS-U [20] is
designed to overcome the limitations of MIFS. It can better
balance the correlation and redundancy of a feature. MIFS-U
is defined as:

JMIFS_U (fi) = I (C; fi)− β
∑

fj∈S

I
(
C; fj

)
H
(
fj
) I (fi; fj) (17)

The minimizing redundancy and maximizing relevance cri-
terion is used frequently in the process of feature selection.
Base on such an idea, Peng et al. proposed a new feature
selection approach called mRMR [22], which can be com-
bined with other feature selectors such as wrappers to find a
very compact subset effectively. MIFS and MIFS-U have the
common defect that with the number of select features grows,
the redundancy term grows faster than the relevancy term. As
a result, some irrelevant features may be selected. The opti-
mal solution depends on the value assigned to β, while opti-
mal β ′s being considered subject to the data structure. There
are no specific guidelines on how to determine parameter β.
In order to improve this situation, mRMR defines the value
of β as the inverse of the number of selected features. And
the feature evaluation criterion of mRMR can be defined as:

JmRMR(fi) = I (C; fi)−
1
|S|

∑
fj∈S

I (fi; fj) (18)

where |S| is the number of the already selected features.
mRMR can prevent the cumulative sum of the redundancy
has an excessive value at any size of feature subsets. In fact,
mRMR is a specific form of MIFS when the value of β is
chosen as 1/|S|.

Estévez et al. studied the feature selection theory based
on mutual information and proposed NMIFS [32] algorithm.
It uses the average normalized mutual information as a mea-
sure of redundancy among features, and it is an enhancement
of MIFS, MIFS-U, and mRMR. It is defined as follows:

JNMIFS (fi) = I(C; fi)−
1
|S|

∑
fj∈S

NI (fi; fj) (19)

where

NI
(
fi; fj

)
=

I (fi; fj)
min{H (fi),H (fj)}

(20)

MIFS-ND [21] method combines the feature-feature
mutual information and the feature-class mutual informa-
tion to find the optimal feature subset. Unlike MIFS and
MIFS-U, the MIFS-ND method does not use feature-class
mutual information and feature-feature mutual information
directly. Instead, in order to select a strongly relevant but
non-redundant feature, it calculates the domination count
and dominated count. The first step of MIFS-ND is to sort
the features according the feature-class mutual information
and feature-feature mutual information, respectively. And
naming the feature-class order domination count (Cd) and
the feature-feature order dominated count (Fd). And then it
selects the feature that has the largest value of (Cd - Fd).
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If more than two features have the same (Cd - Fd) value,
the algorithm selects the one that has the highest feature-class
mutual information.

The joint mutual information (JMI) [23] method is another
feature selection method based on mutual information, and it
adopts a new criterion to evaluate the candidate features. JMI
chooses the feature that has the maximum cumulative sum-
mation of joint mutual information with the selected features
in each step and adds it to the subset S until the number of
selected features reaches k. JMI is defined as follows:

JJMI (fi) =
∑

fj∈S
I (C; fi, fj) (21)

Conditional mutual information maximization (CMIM)
[24] employs the criterion that ‘maximizes of the mini-
mum.’ By selecting the features that theminimum conditional
mutual information is maximum, CMIM ensures the selected
features are both individually informative and weakly depen-
dent on each other. CMIM is defined as follows:

JCMIM (fi) = argmax fi∈F−S (minfj∈S (I (C; fi|fj))) (22)

Brown et al. [33] seriously analyzed and studied the mutual
information based feature selection approaches and proposed
a unified feature selection framework. We can see that most
of the existing methods based on information theory can be
derived from this framework. Actually, this framework is a
linear combination of mutual information. It is defined as
follows:

J (fi) = I (C; fi)− β
∑

fj∈S
I
(
fi; fj

)
+ γ

∑
fj∈S

I (fi; fj|C)

(23)

In this formula, it involves three kinds of information: rel-
evance, redundancy, and complementarity. Different values
of β and γ could lead to different feature selection methods.
For example, γ = 0 leads to MIFS, β = γ = 1

|S| leads
to JMI [33], β = 1

|S| , and γ = 0 leads to mRMR, while
β = γ = 0 leads to MIM. Relevance and redundancy are
two contradictory aspects. High relevance usuallymeans high
redundancy, and how to balance these two aspects is still an
open problem for feature selection methods [27].

Similar to CMIM, Joint Mutual Information Maximiza-
tion (JMIM) and Normalized Joint Mutual Information Max-
imization (NJMIM) [13] also use mutual information and the
‘maximizes of theminimum’ criteria to choose features. They
introduce a new objective function to overcome the limita-
tions of some methods, such as overestimation of the feature
significance. These two methods are defined as follows:

JJMIM (fi) = argmax fi∈F−S (minfj∈S (I (C; fi, fj))) (24)

JNJMIM (fi) = argmax fi∈F−S (minfj∈S (
I (C; fi, fj)
H (C, fi, fj)

)) (25)

In fact, mutual information between (fi, fj) and C can be
written as follows:

I (C; fi, f j) = I (C; f j)+ I (C; f i|f j) (26)

where, fj ∈ S, fi ∈ F − S. When selecting a new feature, for
all candidate features, I (C; fj) is the same. Thus, the CMIM
algorithm is actually a variant of algorithm JMIM.

Generally speaking, methods that based on information
theory can be divided into two categories according to the cri-
teria of feature evaluation: one is minimizing feature redun-
dancy, and the other is maximizing feature new classification
ability. These two categories select the features just from
different points of view. The minimizing feature redundancy
methods mainly focus on minimizing feature redundancy and
do not consider new classification information and vice versa.
Thus, it will result in selecting features with high or low
both classification information and redundancy. To solve this
problem, Gao et al. [34] proposed a hybrid feature selection
method that integrates the two types of feature selection
methods.

IV. THE PROPOSED METHOD FOR FEATURE SELECTION
The difference between feature extraction and feature filter
methods is that the feature filter methods do not generate new
features but get an optimal feature subset from the original
features according to certain criteria. By doing so, it can not
only speed up the data processing but also improve the clas-
sification accuracy and reduce the complexity of the learn-
ing model. Many existing feature selection methods based
on mutual information assume that each feature of the data
influences the target variable independently. But in practice,
this is not always the case. And in this section, we present
a new input feature selection algorithm based on feature set
equivalence and mutual information gain maximization.

A. DEFINITIONS OF SOME RELATED CONCEPTS
1) RELEVANCE
Feature fi is more relevant to the output class C than feature
fj if

I (C; fi) > I (C; f j) (27)

Kohavi and John formalized relevance in terms of an optimal
Bayes classifier and categorize relevance into two types:
strong relevance and weak relevance [12].

2) REDUNDANCY
The feature fi is redundant if

I (C; fi,FS ) = I (C;FS ) (28)

since

I (C; fi,FS ) = I (C;FS )+ I (C; f i|FS ) (29)

From (28) and (29) we can get

I (C; fi|FS ) = 0 (30)

This means that adding fi to the feature subset FS will not
bring further discriminative information for output class C ,
therefore, fi is redundant.
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3) COMPLEMENTARY
Feature fi and fj are complementary for the output class C if

I (C; fi, f j) > I (C; f i)+ I (C; f j) (31)

The well-known example to illustrate this phenomenon
is the XOR problem. This example is also stated
in [5], [14], [25].

TABLE 1. Formula area.

TABLE 2. XOR example data.

In Table 2, f1, f2, f3, f4 are binary random values, f4 = f1,
and C is the XOR value of f2 and f3, the mutual information
between each individual feature (f2 or f3) and C is 0,that
is I (C; f2) = 0, I (C; f3) = 0. However, when f2 and f3 are
combined together, the mutual information between (f2, f3)
and C is 1, which is I (C; f2, f3) = 1. We can see that the
individual mutual information of f1 and f4 with C are the top
two, that is I (C; f1) = I(C; f4) = 0.1887, but when selected
either of them, then the other one is redundant, that is I (C; f1,
f4) = 0.1887. This example illustrates that, due to the com-
plementarity property between features, when considering a
feature alone, it is irrelevant to the target class, but when
combined with other features, it may be highly relevant to
the target class.

B. DRAWBACKS OF THE EXISTING METHODS
The idea of mutual information based feature selection
method is to find the feature subset that has maximummutual
information between it and the output class, and it can be
denoted as (14). However, when the size of the data feature is
large, exhaustive search the feature space becomes imprac-
tical due to the computation complexity. In order to solve

this problem, there are two strategies: one is ranking feature
strategy, and the other is heuristic search feature strategy.

The ranking feature strategy is to sort the candidate fea-
tures in descending order according to a certain criterion and
selects the top k features. MIM [19] is a typical representative
of such type. It ranks candidate features merely according to
the mutual information between candidate features and the
output class without considering the relationships between
features, which would lead to redundancy in many cases. For
instance, in Fig. 2, it’s obvious that I (C; f1)> I(C; f2)> I(C;
f3). Assuming f1 has been selected, we can see that according
to MIM rule the next feature to be selected is f2. It definitely
works well in the scenario I of Fig. 2, because f1, f2, f3 are
independent of each other. But for scenario II of Fig. 2, it
is more appropriate to select f3. Because, in addition to the
relevant relationship between feature and output class, there
is also a relationship between features. And we can see that
f2 is quite redundant when f1 has been selected.

FIGURE 1. Variables relationship Venn diagram.

FIGURE 2. Feature redundancy.

The heuristic search strategy adopts the sequential forward
selectionmethod to select the candidate features. In each step,
it selects the feature that can maximize the feature evaluation
criterion. And most of the existing feature selection methods
based on mutual information belong to this kind [35], such as
JMIM, mRMR, and other methods mentioned in section III.
Themethods such asMIFS, JMI, mRMR, etc. take the mutual
information between the candidate feature and features that
have already been selected as the redundancy term of the
candidate feature. In most cases, these methods are more
effective than the feature ranking methods, but sometimes
this will lead to the problem of overestimating candidate
features [35], [36]. For instance, when the candidate feature
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FIGURE 3. Feature overestimation.

is completely correlated to only one or a few selected features
but almost independent of other selected features, the redun-
dancy degree will be low by dividing the number of selected
features. And it is obviously not in line with the actual situa-
tion that the redundancy of this feature is very high. A specific
example is shown in Fig. 3. Assuming that f1, f2, f3, and f4
have been selected, and the importance of candidate feature
f5 will be overestimated. Because f5 is only correlated with f1
and f2, and it is completely independent of f3 and f4. It can
be seen in Fig. 3 that the mutual information between f5
and f1, that is I (f5; f1), is the area {1,2,4,5}. And the mutual
information between f5 and f2, that is, I (f5; f2), is the area
{1,3,4,6}. and I (f5; f3) = 0, I(f5; f4) = 0. So, if average the
mutual information between f5 and {f1, f2, f3, f4} by dividing
4 will obtain a low result.

In addition to the average redundancy strategy, another
category of heuristic feature selection approaches adopt the
‘‘maximizes of the minimum’’ extreme criterion to select
features, such as CMIM [24], JMIM, NJMIM [13], and
OLB_CMI [37]. CMIM selects the features that the mini-
mum condition mutual information with the selected feature
is max, and JMIM selects the feature that the minimum
joint mutual information with the selected feature is max.
Both CMIM and JMIM can be derived from JMI and can
be viewed as two extreme forms of JMI [38]. Extreme cri-
terion methods produce less redundancy than the methods
using average principle and can obtain better results in some
special cases. Besides, it’s more certain and concrete than
the methods based on average principle [36]. However, both
average criterion and extreme criterion methods have the
same drawback that they can only discover the low order cor-
relations of feature-feature and features-class. Because they
just calculate the mutual information between two features
and the output class at most. And few studies have been
conducted on features with higher-order correlation. In the
case such as I (C; f1, f2)= 0, I (C; f1, f3)= 0, I (C; f2, f3)= 0,
and I (C; f1, f2, f3) = 1, when any two of the three features
have been selected, to the best of our knowledge, none of
the existing methods would assess the third feature as the
best one.
In general, the existing methods may easily lead to three

problems: 1) feature redundancy; 2) overestimation of fea-
tures; 3) Inability to deal with the high-order relationship
between features very well.

C. THE PROPOSED METHOD
In order to obtain the optimal feature subset Soptimal = Max
I(C;S), where C is the output class. In view of the prob-
lems arising from the previous methods, we propose a new
method of feature selection based on mutual information,
which adopts equivalent partition instead of feature subset
and use the mutual information gain maximization (MIGM)
criteria to evaluate the candidate feature.
According to (7), we know that I(C;S) = H(C) – H(C|S),

where H (C) and H(C|S) are entropy and conditional entropy
of C , respectively. H (C) denotes the uncertainty of vari-
able C , and H(C|S) denotes the remaining uncertainty after
introducing S. Since H (C) can be regarded as a constant for
a specific problem, so in order to get maximum I(C;S), it just
needs to select the feature subset S that can makes H(C|S)
minimum.
Assuming F is the full feature subset of the data, and each

feature fi ∈ F can be viewed as a partition ofC , which divides
C into several parts, and H (C|fi) is the average uncertainty
of each part. If two features fi and fj are introduced, it can
divide C into equal or more parts than any single feature.
So {fi, fj} can be viewed as a new partition of C , and C
can be divided into many parts by the combinations of fi
and fj, and H(C|fi, fj) is the average uncertainty of each part.
Obviously, the value of H(C|{f1, f2, . . . }), where f1, f2, . . .∈
S, decreases monotonously with the increase of the select
number in S. In other words, by introducing more features
and using the combination of them to divide C can make the
average purity of each part improved. MIGM is a heuristic
sequential forward feature selection method, and if more than
one feature to be selected, it selects those features that can
form the partition to make C more purity, that is, H(C|{fi,
fj, . . . }) is minimum. It can be inferred from (7) that the
minimum of H(C|{fi, fj, . . . }) is equivalent to the maximum
of I(C;{fi, fj, . . . }). For the convenience of calculation, we use
the latter form in the following discussion.

Assuming S = {f1, f2, . . . , fk−1} is selected, and ŝ = S ∪ fi,
where fi is a candidate feature to be evaluated next. Instead
of calculating mutual information between candidate feature
fi and each feature in the selected feature set S to obtain
redundant information, we view S as a new partition SN and
directly calculate the jointmutual information of {SN, fi}with
output class C , and it is defined as follows:

JMIGM (fi) = argMax I (C; SN , fi) (32)

where fi ∈ F − S. The problems of feature redundancy and
complementarity encountered in the previous methods can be
resolved very well by replacing the selected feature set with
equivalent partition. For instance, assuming f1 and f2 have
been selected, as shown in Fig. 4-I, then we try to determine
whether f3 or f4 will be selected next. As shown in Fig. 4-
II. We take {f1, f2} as a whole and call it equivalent parti-
tion, which is denoted as SN. Then calculate I(C;SN,f3) and
I(C;SN,f4) and choose the one that has bigger value. As can
be seen from Fig. 4-II, f3 will be chosen. Subsequently, using
{SN,f3} to form new equivalent partition for the next iteration.
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FIGURE 4. Equivalent partition.

In order to get the equivalent partition SN, we just need
to give a unique label for each combination. For example,
when features f1 and f2 in table 2 have been selected, in order
to evaluate feature f3 and f4 we have to form the equivalent
partition for {f1, f2}. Due to the combinations of f1 and f2
are {(0,0),(1,0),(1,1),(0,1)}, and we can give a unique label
for each combination, such as 1 for (0,0), 2 for (1,0), 3 for
(1,1) and 4 for (0,1), then we can get SN = [1,2,3,3,2,1,4,4]’.
It is easy to verify that equation I(C;SN) = I(C;f1, f2) holds.
Here we call SN the equivalent partition of feature set {f1, f2}.
Because I(C;SN,f3) > I(C;SN,f4), so f3 will be selected sub-
sequently. Though I (C; f3) = 0 and I(C;f4) = 0.1887, which
mean f4 is more relevant to C than f3, but f4 is redundant for
{f1, f2}, while f3 and {f1, f2} are complement to each other.
When f3 was selected, then using the combination of {SN,f3}
to update SN for the next iteration, and so on.
The details of MIGM are presented in Algorithm 1.
The pseudo code presented above is used to describe the

feature selection process of our proposed method. It consists
of three key stages. The first stage is to initialize the param-
eters and calculate the mutual information between each fea-
ture and output class (line 1-8). The second stage is to select
the first feature, which has the maximum mutual information
with the output class C (line 9-13). The third stage is to select
the features that have maximum joint mutual information
with output class C after combining with equivalent partition
and then forming the new equivalent partition. It repeats the
third stage until the number of selected features reaches K .

D. COMPLEXITY ANALYSIS
In this section, we analyze the time complexity and space
complexity of the proposed algorithm. Given an input dataset
D that has M instances and N features, and the number
of features to be selected is k . Among the feature selec-
tion methods mentioned in section III, MIM only needs to
calculate the mutual information between output class and
each feature and then sorts them in descending order. So the
time complexity of MIM is relatively small, that is O(MN).
The time complexity of MIFS_U, mRMR, JMIM, and other
similar methods areO(kMN). The process of feature selection
inMIGM is similar to JMIM, for each candidate feature it has
to calculate the mutual information between C and {SN,fi},
where fi ∈ F and themax number ofF isN , the calculate time

Algorithm 1 MIGM
Input:
A dataset D with a full feature set F = {f1, f2, . . . , fN }

and the output class label C and the user-specified feature
number threshold K ;
Output:
The selected feature subset S

1: S ← ∅;
2: k ← 0;
3: defines SN to store the equivalent partition of

the selected features;
4: define MI_F2C_array[] to store mutual information

between features and class;
5: for i = 1 to N do
6: calculate the mutual information I (C; fi)
7: Store I (C; fi) in MI_F2C_array[]
8: end for
9: select the feature fi with max value in MI_F2C_array[]
10: S = S ∪ fi;
11: F = F − fi;
12: k = k + 1;
13: SN = fi;
14: while k < K
15 set CombMI_array[ ] to store joint mutual

information
16: for each candidate feature fi ∈ F do
17: calculate joint mutual information I(C;SN,fi)
18: store I(C;SN,f i) in CombMI_array[ ]
19: end for
20: select the feature fi with max value in

CombMI_array[ ];
21: S = S ∪ fi;
22: F = F−fi;
23: k = k + 1;
24 update SN according to previous SN and fi
25: end while
26: Output S

complexity of selecting one candidate feature is O(MN), and
there are k features to be selected, so the total time complexity
of MIGM is O(kMN). In order to speed up the computation,
MIGM uses an array to store the mutual information between
features and class, which is the main space consumption of
the algorithm, so its space complexity is O(N ).

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, a series of experiments were conducted to test
and analyze the performance of the proposed method.

A. EXPERIMENT SETUP
In order to illustrate the performance of the proposed method,
we compare it with six baseline methods mRMR, MIFS_U,
NMIFS, JMIM, NJMIM, and MIM on ten benchmark data
sets. These data sets were picked from different application
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domains, and the size of instances varies from 178 to 20000,
and the number of features varies from 13 to 857, and the
number of classes varies from 2 to 26. The characteristics of
these data sets are depicted in Table 3.

TABLE 3. Experimental data sets description.

1) Wine database: It consists of the results of a chemical
analysis of wines grown in the same region in Italy but derived
from three different cultivars. The wines are divided into
three types, and this data set records the quantities of 13 con-
stituents found in each of them.

2) wdbc dataset: it consists of 569 cases of cell biopsies,
and each ofwhich has 30 feature values and a class label of the
diagnosis result that use character M represents malignant,
and character B represents benign. The values of 30 features
are computed from a digitized image of a fine needle aspi-
rate (FNA) of a breast mass, and they describe characteristics
of the cell nuclei present in the image.

3) CTGs dataset: it consists of 2126 fetal cardiotocograms
(CTGs), which were automatically processed and the respec-
tive 21 diagnostic features measured. The CTGs were classi-
fied into three types by the expert obstetricians, and one of
the classification labels was assigned to each of them.

4) Parkinsons dataset: It is consists of 195 voice records
from 31 people include 23 with Parkinson’s disease (PD), and
each record was described by 22 variables. The main aim of
this data set is to discriminate healthy people from those with
PD, according to the ‘‘status’’ column, which is set to 0 for
healthy and 1 for PD.

5) biodeg dataset: it consists of 1055 chemicals, each was
described by 41 molecular descriptors, and these chemicals
were classified into 2 classes, ready biodegradable (RB) and
not ready biodegradable (NRB).

6) letterrecognition dataset: it consists of 20,000 black-
and-white rectangular pixel character images, and each image
is one of the 26 capital letters in the English alphabet and was
converted into 16 primitive numerical attributes.

7) CNAE9 dataset: it consists of 1080 documents of free
text business descriptions of Brazilian companies categorized
into a subset of 9 categories.

8) Spam dataset: it consists of 4061 e-mails classified into
two categories: Spam or Non-Spam. The attributes of the
dataset indicate whether a particular word or character was
frequently occurring in the e-mail.

9) Semeion dataset: it consists of 1593 handwritten digits
from around 80 persons, each digit was stretched in a rectan-
gular box 16x16 in a gray scale of 256 values. Then each pixel
of each image was scaled into a Boolean (1/0) value using a
fixed threshold.

10) Vehicle dataset: it consists of 846 instances, and each
instance is the silhouettes of the vehicle 3D objects within 2D
images, and the number of features is 18. Its purpose is to
classify a given silhouette as one of four types of vehicles.

All of the above ten data sets are available from the UCI
Machine Learning Repository, and they are also used in other
literature [32], [36], [39]. Because the mutual information
based feature selection methods need to estimate the prob-
ability distribution for calculating the entropy and the joint
entropy of variables, therefore, we discretize continuous fea-
tures into ten bins using equal-width discretization, and then
use the discretized data in feature selection process, and such
method also was used in other literature [25], [38]. Since the
proposed method is a filter method and its efficiency might
differ from one classifier to another. In order to reduce the
bias of a specific classifier and test the robustness of the
proposed method, we adopt the average classification accu-
racy of two different and common used classifiers, k-Nearest
Neighbor (KNN) and Naïve-Bayes (NB), as the measure-
ment. Furthermore, for the purpose of better evaluate the
performance of the proposed method, we perform KNN on
the original data and performNB on the discretized data. Both
these two classifiers are provided by MATLAB R2016a, and
the k value of KNN is set to 3 [39].

Experiments were carried out on a desktop PC with 4 GB
main memory, 2.4GHz Intel(R) Core(TM) i5-6200U proces-
sor and 64-bit Windows 7 operating system. All algorithms in
our experiments are implemented in MATLAB R2016a. The
Five-fold cross-validation is employed in our experiments,
and each data set was divided into five parts randomly, and
run five times on the data. In each run, one part (20%) is used
for the test, and the other four parts (80%) are used as training
data. And the average classification accuracy of five runs is
used as the accuracy of the correspondent method.

B. RESULTS AND ANALYSIS
The average classification accuracy of KNN and NB across
the comparing feature subsets are recorded in Table 4.
Besides, a paired two-tailed t-test is conducted between
MIGM and other methods. The notations ‘‘+’’ / ‘‘−‘‘ / ‘‘= ‘‘
indicate the statistically significant (at 5%) that our method’s
wins/losses/equals over other methods. The last row (W/T/L)
indicates that the number of the data sets our method has
higher (or equal, lower) accuracy than comparison methods.
The bold font indicates the maximal value of the row.

Table 4 shows that the proposed method MIGM achieves
the highest average accuracy on two different classifiers.
It can be observed from Table 4 that the overall average
accuracy ofMIGMover the ten datasets is 75.37%, and it out-
performs the other six feature selection methods obviously.
Meanwhile, MIGM obtains the highest average accuracy on
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FIGURE 5. Average classification accuracy of KNN classifier and NB classifier on ten data sets.
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TABLE 4. Average classification accuracy (mean ± std.) of two classifiers (KNN and NB) on ten data sets.

FIGURE 6. Average classification accuracy of KNN classifier on
parkinsons and CTGs data sets.

seven out of ten data sets. And the detailed results are shown
in Fig. 5(a)-(j). Here, the X-axis represents the number of
selected features, i.e., k , which increases from 1 to 30 at
intervals of 1, and the Y-axis represents the average accuracy
of the two classifiers in the corresponding k selected features.
Note that, if the number of original features of the data set
is less than 30, then k reaches up to the number of original
features.

As can be seen from Fig. 5, classification accuracy exhibits
different variations across different datasets. On some data
sets, such as Parkinsons and CTGs, the classifiers achieve
their best performance only with a few features, and it will
not be improved by monotonously expanding the number
of features, and sometimes it may be weakened, such as in
the case of Parkinsons in Fig. 7(a). For this kind of data

FIGURE 7. Average classification accuracy of NB classifier on parkinsons
and semeion.

set, the convergence state can be satisfied within a small
range of features and adopts the wrapper model to select
features is also a good choice. On the contrary, in other data
sets, such as CNAE9 and Spam in Fig. 5, with the increase
of the selected features, the classification accuracy shows
an obvious upward trend. Therefore, how to determine the
optimal size of the feature subset is still an open problem
for the filter selection method, which adopts the individual
feature evaluation strategy.

In general, the proposed method MIGM outperforms or
comparable to other mutual information based feature selec-
tion methods in its ability to select discriminative features in
most data sets, as illustrated in Fig. 5. Among them, MIGM
achieves the best average classification accuracy on data sets
wdbc, biodeg, CNAE9, and Semeion, and secondly on data
sets wine, Parkinsons, and Vehicle. On data set letterrecogni-
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TABLE 5. Average classification accuracy (mean ± std.) of KNN on ten data sets.

TABLE 6. Average classification accuracy (mean ± std.) of NB on ten data sets.

tion, the performance of MIGM is very close to other meth-
ods, and only a little worse than the best method JMIM. It is
worth noting that although the average classification effect
of MIGM is not as good as that of other feature selection
on data set CTGs, as shown in Figure 5(c), it achieves very
good results in KNN classifier, as shown in Fig. 6(b). And it
selects the most informative feature subset very soon, which
is similar to dataset Parkinsons, as shown in Fig. 6(a) and
Fig. 7(a).

Since the relationship between features is complicated,
so it is impossible to design a general feature evaluation
criterion that could find out the best k features in every
step on all datasets. The feature that is selected according
to a certain criterion may irrelevant and even redundant for
the classifier at one moment, but when some other fea-
tures are added later, they could become very informative.
That is the reason why the accuracy curves do not increase
or decrease steadily on some datasets, such as shown in
fig 5(b) and fig 5(c).

VI. CONCLUSION
This paper presents a new feature selection method based
on information theory named mutual information gain max-
imization, which adopts equivalent partition of the feature
subset strategy to simplify and enhance the feature selection
process. It views each feature of the data set as a discrimina-
tive partition for the classification task and uses a heuristic
sequential forward search strategy to select the informative
features. The main difference between the proposed method

and existing ones is that excepts for the first selected feature,
MIGMno longer considers the individual discriminative abil-
ity of a candidate feature but takes the joint discriminative
ability of the candidate feature and the equivalent partition
as the index. So it is not necessary to determine parameters
to make the trade-off between feature relevance and fea-
ture redundancy when evaluating the candidate feature. And
that is because the feature redundancy, relevance, as well as
complementarity problem can be well resolved by forming
the equivalent partition. It was compared with six classical
mutual information based feature selection methods on ten
well-known benchmark data sets from different application
areas. The results demonstrate that our method could identify
an effective feature subset that could lead to better classifica-
tion results than other methods. And the experimental results
also show that our method performs better in KNN classifiers
than NB, especially in discrete and sparse data sets, such as
CNAE9 and Semeion.

It also can be seen from the results that the characteristics
of data sets have many impacts on the effectiveness of fea-
ture selection methods, so it is difficult to design a general
method that can achieve better results than other methods on
various data sets. For example, as shown in Fig. 5 (f) and
Fig. 5 (g), even the simple feature ranking method MIM has
better results than MIFS_U and NMIFS on dataset Letter-
recognition and CNAE9, respectively. In future work, we will
mainly focus on how to quickly detect the characteristics
of the datasets so as to select the most suitable method for
application.
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