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ABSTRACT The main problem for the state estimation with Gaussian mixture model is the exponentially
growing number of Gaussian components. To solve this problem, an efficient Gaussian sum filter (GSF)
based on the prune-cluster-merge (PCM) scheme-based Gaussian mixture reduction method is proposed.
First, an adaptive weight-censored pruning strategy named as the j-th order statistical technique is presented
to delete components with little contributes to the posterior distribution. Then, the Gauss clustering method
is proposed to partition the remainder components into clusters based on the newly defined distribution sim-
ilarity criterion. Integrating the acquired clusters with the covariance intersection algorithm, the components
in the same cluster are merged into a standard Gaussian component by keeping the shape of the original
distribution. Meanwhile, an extended integral square error cost function is constructed to optimize the
performance of the cluster-merge operation. Finally, an efficient Gaussian sum filter is derived by combining
the PCM scheme with extended Kalman filters. Numerical results show that the proposed filter can not only
keep a better approximation to the original distribution with fewer Gaussian components comparing with
the number-limited GSF and Runnalls’s GSF, but achieve a higher cost-effectiveness than the particle filter.

INDEX TERMS Gaussian sum filter, Gaussian mixture, distribution similarity criteria, covariance
intersection.

NOMENCLATURE
k time instant
σ standard deviation of the component
σ ∗ confidence range
α regularization constant
ρ censoring threshold
�N̄ parameter set of N̄ components containing

weights, means and covariances
N component number after pruning operations
Nu bound of the system on component numbers
N′ cluster number after clustering operations
N ∗i total component number of the i∗-th cluster
i∗j the j-th component in the i∗-th cluster
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uik+1 first moment of the i-th component
ūi
∗

k+1 first moment of the merged component for the
i∗-th cluster

uk+1ij Euclidean distance between the centers of the
i∗-th and j-th component

ω̄i
∗

k+1 weight of the merged component for the i∗-th
clust

ω
i∗m
k+1 weight of them-th component in the i∗-th cluster

d
σ ∗i
k+1 the σ ∗ confidence range of the i-th component
d i
∗m
k+1 Euclidean distance between them-th component

and i∗-th cluster
cpk+1 the p-th component
C i
k+1 the i-th cluster

C i∗
k+1 the i-th cluster without overlapped components

P̄i
∗

k+1 second moment of the merged component for
the i∗- th cluster
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f (ck+1|C i∗
k+1)σ

∗ original distribution of the i∗-th cluster
partitioned by σ ∗ confidence range

q(ck+1|C i∗
k+1)σ

∗ estimated distribution of the i∗-th clus-
ter partitioned by σ ∗ confidence range

I. INTRODUCTION
A Gaussian mixture (GM) approximation for the nonlinear
non-Gaussian (NN) state probability density function (PDF)
has received a great amount of attention in the context of
Bayesian estimation [1]–[3]. For a nonlinear dynamic system
with additive Gaussian noise, the first two moments of the
Gaussian components are propagated through a linearized
model, and the weight of the new component is set accord-
ing to the prior weight and innovation. In the case where
measurements are available on the first two moments, and
weights are accordingly updated by Bayes rules to obtain an
approximation of the posterior PDF, forming the so-called
Gaussian Sum Filter (GSF) [4]. The GSF approximates the
PDF using a weighted sum of Gaussian densities, which can
effectively approximate any PDF as closely as desired.

The literature on nonlinear filtering using Gaussian mix-
ture approximation approach is rich in theoretical work on
the GSF [5], the mixture of Kalman filters [6] and particle
GSF [7], [8], etc. In many applications such as target detec-
tion and tracking [9], speech enhancement [10] and image
processing [11], the Gaussian mixture serves as an important
probabilistic representation of the system. However, a serious
restraint is the exponential growth of component numbers
over time. To evolve an efficient Gaussian mixture reduc-
tion (GMR) approach, a pioneering work was done [4] and
most practical implementations used the simplified proba-
bility densities to approximate the original PDF. The main
focus was to select available Gaussian components based on
their weights [12], and a pruning technique was proposed
by setting thresholds [4], [9], which can retain any num-
ber of Gaussian components. Meanwhile, the joining and
clustering algorithms [13] employed the ad hoc distance to
measure the distance between two mixture components for
the limit of components. Furthermore, Crouse presented a
survey of GMR algorithms [14], in which enhanced West
algorithm [15], constraint optimized weight adaptation [16],
Runnall’s algorithm [17] and GMR via clustering [18] were
introduced and compared.

More recent studies by Akbar and Konstantinos [19] and
Ganjac et al. [20] pointed that some applications, such as
model validation [21], image retrieval [22], were much sensi-
tive to the geometric shape of the GM. Accordingly, Arjovsky
proposed a Wasserstein-distance-based GMR method with
consideration of the unique properties of Wasserstein dis-
tance [23]. While, many applications such as [24] and target
tracking [25], are more concerned with minimal change in
the distribution shape of the GM. Most of the researchers
engaged to improve the filter algorithm for better approaching
the posterior PDF of the state, such as Fritsch investigated
a smoothing method using GMM for multi-target track-
ing problem [26], and Cheol introduced a hybrid Bayesian

network with Kullback-Leibler (KL) divergence to optimize
the tracking accuracy with a bound on computation time [27].
However, there is little discussion about the GMR method in
the view of keeping the original distribution shape. Inspired
by this point, the objective of this paper is therefore to design
a GMR algorithm for reducing the change in the distribution
shape of the original GMs. To fulfill this task, a suboptimal
GMR approach is proposed by integrating pruning, clustering
and merging operations with nonlinear optimizations. The
main contributions of this paper are summarized as follows:

(1) To remove the components with little contributions to
the distribution of original GMs, a weight-censored prun-
ing method termed as the j-th order statistical technique is
applied according to a censoring threshold. By taking 3σ
rule into account, the significant components can be remained
efficiently.

(2) Different from most existing clustering methods,
a Gauss clustering approach is proposed based on a newly
defined distribution similarity criterion. To derive an opti-
mal approximation performance, an extended integral square
error (EISE) cost function is constructed for optimizing the
confidence range, which is the key influencing factor to the
clustering results.

(3) By applying the covariance intersection (CI) algorithm
to the approximation problem, the components in the same
cluster are merged into a standard Gaussian component for
keeping it tractable for further processing steps.

The rest sections of this paper are organized as follows.
In section II the conventional GSF is introduced. Section III
derives a GMR approach based on the PCM scheme.
In section IV, the confidence range is analysed, and sim-
ulations are conducted to validate the effectiveness of our
proposed PCM scheme. Section V gives the conclusions and
provides an outlook for the future work.

II. CONVENTIONAL GAUSSIAN SUM FILTER
In this section, theGaussianmixturemodel is first introduced,
which is the basis of the Gaussian sum filters; the conven-
tional Gaussian sum filter integrated a bunch of extended
Kalman filters is derived after, followed by the main issue
for the GSFs.

A. GAUSSIAN MIXTURE MODEL
It is well known that the Gaussian mixture model (GMM)
can effectively capture any PDF as closely as desired, and
a Gaussian mixture PDF is a weighted sum of Gaussian
components as follows.

f (x|�N̄ ) ≈
N̄∑
i=1

^wiN (x|x(i),P(i)) (1)

where �N̄ =

{
^wi,N (x|x(i),P(i))

}N̄
i=1

is the full mixture of

components with the constraints
N̄∑
i=1

^wi = 1, ∀^wi ≥ 0.
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Each Gaussian component satisfies the following density

N (x|�N̄ ) =
exp(− 1

2 (x − x
(i))

T
(P(i))

−1
(x − x(i)))

(2π )n/2|P(i)|1/2
(2)

where nmeans the dimension of x, and here we first assume x
is a scalar.

Clearly, the reduced PDF is decided by the parameters of
component number N̄ , the weight ^wi, the mean x(i), and the
covariance P(i).

B. GAUSSIAN SUM FILTER
For the dynamic state space model, assume the prior prob-
ability densities of p(xk ), p(wk ) and p(vk ) are expressed as
follows, respectively.

p(xk ) =
Ik∑
i=1

α
(i)
k N (xk |x

(i)
k ,P

(i)
k )

p(wk ) =
Lk∑
l=1

γ
(l)
k N (wk |w

(l)
k ,Q

(l)
k )

p(vk ) =
Jk∑
j=1

β
(j)
k N (vk |v

(j)
k ,R

(j)
k )

s.t.



Ik∑
i=1

α
(i)
k =α

(i)
k ≥ 0

Lk∑
l=1

γ
(l)
k = γ

(l)
k ≥ 0

Jk∑
j=1

β
(j)
k = β

(j)
k ≥ 0

(3)

where the subscript k represents the time instant, and Ik ,
Lk and Jk are the component number for the state, state noise
and observation noise, respectively.

As all components satisfy Gaussian distributions, only
the first two moments are demanded, and the extended
Kalman filter (EKF) is employed as the basic nonlinear filter.
In this manner, the estimation procedures can be described as
follows.

(1) Time update process

x(i
′)

k+1|k = f (x(i)k )+ w(l)
k (4)

P(i
′)
k+1|k = Q(l)

k + F
(i)
k+1P

(i)
k (F (i)

k+1)
T (5)

F (i)k+1 =
∂f
∂x

∣∣∣∣
x=x(i)k

(6)

φ
(i′)
k = α

(i)
k γ

(l)
k , i

′

= 1, 2, ..., ξk (7)

ξk = IkLk (8)

where ξk is the component number after time update process.
(2) Measurement update process

x(i
′′)

k+1 = x(i
′)

k+1|k + K
(i′′)
k+1(zk+1 − h(x

(i′)
k+1|k )− v

(j)
k+1) (9)

P(i
′′)
k+1 = P(i

′)
k+1|k − K

(i′′)
k+1H

(i′)
k+1P

(i′)
k+1|k (10)

H (i′)
k+1 =

∂h
∂x

∣∣∣∣
x=x(i

′)
k+1|k

(11)

K (i′′)
k+1 = P(i

′)
k+1|k (H

(i′)
k+1(x

(i′)
k+1|k ))

T

· (R(j)k+1 + H
(i′)
k+1P

(i′)
k+1|k (H

(i′)
k+1)

T )−1 (12)

q(z(i
′′)
k+1) = N (zk+1; h(x

(i′)
k+1|k )+ v

(j)
k+1,R

(j)
k+1

+H (i′)
k+1P

(i′)
k+1|k (H

(i′)
k+1)

T ) (13)

w(i′′)
k+1 = ψ

(i′′)
k q(z(i

′′)
k+1)

/ Ik+1∑
i′′=1

ψ
(i′′)
k q(z(i

′′)
k+1) (14)

ψ
(i′′)
k+1 = φ

(i′)
k β

(j)
k , i′′ = 1, 2, ..., Ik+1 (15)

Ik+1 = ξkJk (16)

where Ik+1 is the component number after measurement
update process.

A point estimate for state is taken to obtain the posterior
mean and covariance, which are computed as

x̂k+1 =
Ik+1∑
i′′=1

w(i′′)
k+1x

(i′′)
k+1 (17)

P̂k+1 =
Ik+1∑
i′′=1

α
(i′′)
k+1[P

(i′′)
k+1 + Qk+1(Qk+1)

T ] (18)

where Qk+1 = x̂k+1 − x
(i′′)
k+1.

The GSF approximation for the conditional state PDF
approaches the true conditional PDF under the assumption
that there is a sufficient number of Gaussian components, and
the covariances of all Gaussian components are small enough
so that the linearization around the means are representative
for the dynamic in the vicinity of the respective means [29].
However, the assumption that the state noise and/or measure-
ment noise are expressed by the GMM makes the number
of components constantly increase during propagation. Thus,
an efficient GMR strategy is imperative.

III. PCM SCHEME-BASED GMR
In this section, an efficient GMR scheme is explored, which is
divided into three operations: pruning, clustering and merg-
ing. Pruning strategy is introduced first, which is relatively
independent of the other operations, but it affects the approx-
imate performance. Then a novel criterion for clustering is
proposed, followed by the CI merging algorithm. While,
the criterion for clustering will be fine-tuned depending on
the merging performance.

A. ADAPTIVE WEIGHT-CENSORED PRUNING
Clearly, the component number will increase exponentially
when Lk > 1 or Jk > 1. While, the results indicate that
most of the weights of components are too small to have sig-
nificant impacts on the approximation results, which agrees
with the conclusions drawn from [30]. Accordingly, a novel
pruning approach called the j-th order statistical technique is
proposed. Different from the existing weight-based pruning
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approaches [4], [13], [31], this method removes the compo-
nents in a reverse view, which is more propitious to retain the
original distribution shape [32].

First, sort the weights of components in an ascending order

w(1)
k+1 ≤ · · ·w

(j)
k+1 · · · ≤ w

(Ik+1)
k+1 (19)

where w(j)k+1 denotes the j-th smallest weight (the so-called
j-th order statistic).

Then, define γn as

γn =

Ik+1∑
l=n

w(l)k+1

/Ik+1∑
l=1

w(l)k+1 (20)

Set nmax the maximum value of n satisfying the inequality

nmax = max(arg
n
(γn ≥ ρ)) (21)

where ρ denotes a censoring threshold.
Maintain the largest Ik − nmax + 1 components, and then

compare with the upper boundary of the number Nu. Hence
the remainder component number N can be computed as

N=min (Ik+1 − nmax + 1,Nu) (22)

Notice that the number N is associated with ρ, which is
determined according to accuracy requirements and com-
putation capabilities. Unreasonable selections may cause a
degeneration of Gaussian components, such as, if ρ = 0, only
the component with the maximum weight will be remained.
While, a larger ρ makes the reduction operation be out of
effect. Hence, after a thorough investigation according to the
prior information, the 3σ rule is introduced to assist with
determination of ρ. For a Gaussian distribution, the values
within two standard deviations explicate about 95.4%; and
within three standard deviations account for about 99.7%.
Taking the computation efficiency into account, the 2σ region
is used, therefore, we take ρ = 0.9544.

B. GAUSS CLUSTERING
In general, the remainder component number N is large if
ρ approaches 1. To further reduce the component number,
a Gauss clustering method is defined to identify and cluster
the components, which are similar in distribution properties.

To measure the distance between the components, a center
distance matrix is first defined as

5k+1 =


u11k+1 u12k+1 · · · u1Nk+1
u21k+1 u22k+1 · · · u2Nk+1
...

...
. . .

...

uN1
k+1 uN2

k+1 · · · uNNk+1

 (23)

where uijk+1 represents the Euclidean distance between
the center of the i-th and j-th component, and uijk+1 =
|uik+1 − u

j
k+1|, i, j = 1, 2 . . .N ; uik+1 represents the center of

the i-th component. Since the component satisfies Gaussian
distribution, the center can be treated as the first moment.

To identify the similar components with the center distance
matrix, we motivated by [33] put forward a principal defini-
tion of the distribution similarity criterion as follows.
Definition 1: If the centers of two components are within

each other’s confidence range, we call these two components
similarity in the distribution sense.

For easier interpretation, two examples are given in Fig.1.

FIGURE 1. A schematic depiction of the distribution similarity criterion.

In Fig.1, the black start denotes the first moment, and the
red line is the confidence scope. Parameter σ ∗ represents the
confidence range. From the graph above we can see Com 2
and Com 3 play different roles to Com 1 with the change
of σ ∗. If σ ∗ = σ1, we have u12, u13 > σ ∗; while, if σ ∗ = σ2,
then u12 < σ ∗, u13 > σ ∗; if σ ∗ = σ3, we get u12, u13 <
σ ∗. Observe that as σ ∗ increases, the similar component
with Com 1 expand, and this conclusion also holds for the
two-dimensional case.

In order to quickly identify the similar components, a judg-
ment matrix is then defined as

ϒk+1 =


r11k+1 r12k+1 · · · r1Nk+1
r21k+1 r22k+1 · · · r2Nk+1
...

...
. . .

...

rN1
k+1 · · · · · · rNNk+1

 (24)

where r ijk+1 = sign(min{d
σ ∗i
k+1 − |u

ij
k+1|, d

σ ∗j
k+1 − |u

ij
k+1|}) and

d
σ ∗i
k+1 is the scope of the i-th component’s σ ∗ confidence
range.

Note that ϒk+1 has the following properties:
(1) ϒk+1 is a symmetric matrix, namely r ijk+1 = r jik+1;

(2) The diagonal element of ϒk+1 is 1, namely r iik+1 = 1;
(3) The matrix ϒk+1 is a -1−1 matrix, namely r ijk+1 ∈
{−1, 1}. If r ijk+1 = 1, then it means the i-th component
intersects with the j-th component. Otherwise, it means one
component deviates from the other’s confidence range at
least.

Based on these properties, looping through ϒk+1 by rows,
then the similar components can be identified by

C i
k+1 =

{
cik+1, c

j
k+1

∣∣∣r ijk+1 = 1, j = 1, ...,N
}

(25)

where C i
k+1 is the i-th cluster, which is a set of similar

components, and cik+1 is the i-th component.
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At this time, the preliminary cluster number is identical to
the component number for the existence of the overlapped
components, which is assigned to more than one clusters
simultaneously. To avoid the reutilization problem caused by
the overlapped components and renew the clusters, a restric-
tion that any component can only pertain to one cluster is put
forward, and the fine-tuning method for the clusters is given
as follows.

Step 1: Combine the same cluster into one among N
clusters.

Step 2: Classify the remaining clusters into following
situations.

C i
k+1 ∩ C

j
k+1 =


∅ Situation 1{
cmk+1...

}
Situation 2

C j
k+1 Situation 3

(26)

For different situations, the corresponding solution is
presented as follows.
Situation 1: Keep two clusters invariant.
Situation 2: Proceed with the procedures as follows.

Step 2.1: Eliminate the overlapped component cmk+1
from the clusters.{

C i∗
k+1 = {c

p
k+1|c

p
k+1 ∈ C

i
k+1, c

p
k+1 /∈ {c

m
k+1}}

C j∗

k+1 = {c
q
k+1|c

q
k+1 ∈ C

j
k+1, c

q
k+1 /∈ {c

m
k+1}}

(27)

Step 2.2: Measure the distance between cmk and the
above renew clusters based on the nearest neighbor logic.

The distance between a component and a cluster is defined
as

d i
∗m
k+1 = min[|u

i∗1
k+1 − u

m
k+1|, . . . , |u

i∗
n∗i
k+1 − u

m
k+1|] (28)

where u
i∗t
k+1, t = 1, . . . , n∗i is the center of the t-th component

in the i∗-th cluster; n∗i is the number of components in the
i∗-th cluster.

Step 2.3: Reassign the overlapped component and
update the clusters.

If d i
∗m
k+1 ≤ d j

∗m
k+1, then c

m
k+1 will be reassigned to C i∗

k+1.

Otherwise, it will be clustered to C j∗

k+1.
Step 2.4: Repeat Step 2.1-Step 2.3 until no over-

lapped components exist.
Situation 3: Preserve C j

k+1 and its complement as indepen-
dent clusters.

Step 3: Repeat the above procedures for all clusters in
pairs.

At this moment, the number of clusters are assumed to
change from N to N ′. In order to achieve a desirable approx-
imation performance, the number of clusters still needs con-
trol. Meanwhile, as σ ∗ plays an essential role on clustering
results, and therefore, we put forward the following EISE cost
function to derive the optimal σ ∗.

min JS
σ ∗
=

1
2

N ′∑
i=1

∫
[f (ck+1|C i∗

k+1)σ ∗

− q(ck+1|C i∗
k+1)σ ∗ ]

2dck+1 + αeN
′/N (29)

where f (ck+1|C i∗
k+1)σ∗ represents the original PDF of the

i∗-th cluster with

f (ck+1|C i∗
k+1)σ ∗ =

n∗i∑
j=1

w
i∗j
k+1N (xk+1|u

i∗j
k+1,P

i∗j
k+1) (30)

q(ck+1|C i∗
k+1)σ∗ represents the approximate PDF of the i∗-th

cluster, which is obtained according to themerging algorithm.
α is the regularization constant, and N ′ represents the cluster
number.

As seen from Eq.(29), it is suggested that the more clusters
we form, the better the approximation accuracy achieves, but
the larger regularization term is, so the regularization term
can trade accuracy of the approximation for the number of
clusters classified effectively. For ease of comprehension,
the process for determining the number of clusters is typified
in the following flowchart.

In Fig.2, the termination condition means the change of
the adjacent EISE is less than a small value. Theoretically,
the number of the clusters cannot be definitely confirmed
before implementing the PCM operation, which is only deter-
mined by the distribution property of each Gaussian com-
ponent. The number of clusters is invariant in different time
instants or scenarios. For convenience, we assume the cluster
number after PCM operations is N ′ in this paper.

FIGURE 2. The flow chart of determining the number of clusters.

To minimize the EISE cost function, we first simplify the
integral term as∫

(f (ck+1|C i∗
k+1)σ∗ − q(ck+1|C

i∗
k+1)σ∗)

2
dck+1

= Jhh − 2Jhr + Jrr (31)

where
Jhh =

∫
(f (ck+1|C i∗

k+1)σ ∗ )
2
dck+1

Jhr =
∫
(f (ck+1|C i∗

k+1)σ ∗ ) · q(ck+1|C
i∗
k+1)σ∗dck+1

Jrr =
∫
q(ck+1|C i∗

k+1)
2
σ ∗dck+1
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As the merged component satisfies Gaussian distribution,
it can be described by

q(ck+1|C i∗
k+1)σ ∗ = ω̄

i∗
k+1 · N (xk+1|ūi

∗

k+1, P̄
i∗
k+1) (32)

where
{
ω̄i
∗

k+1, ū
i∗
k+1, P̄

i∗
k+1

}
represent the weight, mean and

variance of the merged component for the i∗-th cluster,
respectively.

Substituting Eq.(32) into Eq.(31) yields

Jhh =
n∗i∑
m=1

n∗i∑
n=1

ω
i∗m
k+1ω

i∗n
k+1

∫
N (xk+1|u

i∗m
k+1,P

i∗m
k+1)·

N (xk+1|u
i∗n
k+1,P

i∗n
k+1)dxk+1

Jhr =
n∗i∑
m=1

ω
i∗m
k+1ω̄

i∗
k+1

∫
N (xk+1|u

i∗m
k+1,P

i∗m
k+1)·

N (xk+1|ūi
∗

k+1, P̄
i∗
k+1)dxk+1

Jrr = (ω̄i
∗

k+1)
2
∫
N (xk+1|ūi

∗

k+1, P̄
i
k+1)·

N (xk+1|ūi
∗

k+1, P̄
i∗
k+1)dxk+1

(33)

Remark 1: To derive the indispensable equations in this
paper, one Gaussian identity that is the product of two Gaus-
sian PDFs can be simplified as

N (x|µ1,P1) · N (x|µ2,P2) = βN (x|µ3,P3) (34)

where 
β = N (µ1|µ2,P1 + P2)
P3 = (P−11 + P

−1
2 )−1

µ3 = P3
(
P−11 µ1 + P

−1
2 µ2

)
and β is the scaling factor.
From the above equationwe realize if the integral operation

is over the entire space of a Gaussian distribution, then only
the scaling factors will leave. For this point, Eq.(33) can be
simplified as

Jhh =
n∗i∑
m=1

n∗i∑
n=1

w
i∗m
k+1w

i∗n
k+1·

N (u
i∗m
k+1|u

i∗n
k+1,P

i∗m
k+1 + P

i∗n
k+1)

Jhr =
n∗i∑
m=1

w
i∗m
k+1w̄

i∗
k+1·

N (u
i∗m
k+1|ū

i∗
k+1,P

i∗m
k+1 + P̄

i∗
k+1)

Jrr = (w̄i
∗

k+1)
2N (ūi

∗

k+1|ū
i∗
k+1, 2P̄

i∗
k+1)

(35)

To this end, Eq.(31) consists of the sum of similarity mea-
sures of all pairs of two components from the same cluster,
and similarity measures of all pairs of two components from
the merged component, and the sum of similarity measures
of all pairs of one component from the cluster and one com-
ponent from the merged component. Implement this result
to all clusters, and add a regularization term, then the value
of EISE will be obtained. In order to optimize the above
clustering operation, we then give a principal assumption on
the selection of σ ∗.

Assumption 1: Parameter σ ∗ is assumed to be associated
with the second moment of the component, namely σ ∗ = λσ .

According to the above assumption, σ ∗ can be screened
out with respect to the inherent distribution feature of com-
ponents. In the end, we adopt the classic Newton-Raphson
method to derive the optimal λ, and the details about this
iteration process can be found in [34].

C. COVARIANCE INTERSECTION MERGING
According to the above clustering method, the remainder
components are assumed to be partitioned into N ′ clus-
ters. As suggested in [35], it is possible to combine many
components into a single one without seriously affecting
the approximation accuracy. Pursuing this idea, we intend
to merge components belonging to the same cluster into
one component by keeping the distribution shape of
original GMs.

First of all, the merging question is equivalent to the fol-
lowing, that is, there are two pieces of information, labelled
A and B, to be merged together to yield an output C, which is
a general type of data fusion problem.Meanwhile, the estima-
tors obtained in the GMM satisfy the consistency and unbi-
asedness [36], and in this manner, CI algorithm is adopted
to get a consistent estimate of two or more estimates in the
same cluster. In general, CI algorithm takes a convex combi-
nation ofmean and covariance estimates.When the local error
variance P(i) is exactly known, but the cross-covariance P(ij)

(i 6= j) is unknown, using the CI merging algorithm, which is
formulated as

P(i,j) = w(P(i))−1 + (1− w)(P(j))−1 (36)

(P(i,j))−1x(i,j) = w(P(i))−1x(i) + (1− w)(P(j))−1x(j) (37)

where x(i,j) and P(i,j) represent the first and second moments
of the merged component, respectively.

The update equation is consistent for different selections
ofw proved in [37], and differentw results in different covari-
ance ellipses of the merging component, which is shown
in Fig.3.

FIGURE 3. Covariance ellipse with different w .
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As illustrated in Fig.3, the parameter w affects the weights
assigned to x(i) and x(j). Different w can be used to opti-
mize the update equation for different performance criteria,
for instance, minimizing the trace of P(i,j). A convex cost
function with respect to w has only one distinct optimum in
the range 0 ≤ w ≤ 1. Virtually any optimization strategy
can be used, ranging from Newton-Raphson to sophisticated
semi-definite and convex programming techniques, which
can minimize almost any norm.

Likewise, the conclusions above can be extended to the
i∗-th cluster [36] as follows.

(
P̄i
∗

k+1

)−1
=

n∗i∑
j=1

w
i∗j
k+1(P

i∗j
k+1)

−1
(38)

ūi
∗

k+1 = P̄i
∗

k+1(
n∗i∑
j=1

w
i∗j
k+1(P

i∗j
k+1)

−1
u
i∗j
k+1) (39)

where the optimal weighted coefficientsw
i∗j
k+1 (j = 1, . . . , n∗i )

can be determined byminimizing the performance index with

the constraints
n∗i∑
j=1

w
i∗j
k+1 = 1,w

i∗j
k+1 ∈ [0, 1].

min
w
tr(P̄i∗k+1) = min tr{[

n∗i∑
j=1

w
i∗j
k+1P

i∗j
k+1]

−1
} (40)

This is a nonlinear optimization problem with constraints
in Euclidean space, which can be solved by ‘‘fmincon’’
function in MATLAB toolbox. Here we utilize the normal-
ized weights instead of searching for the optimal weighted
coefficients.

w̄
i∗j
k+1 = w

i∗j
k+1

/
(1−

Ik+1−N+1∑
m=1

w(m)k+1) (41)

The merging procedure holds for all the clusters, and in
the end, N ′ merged components are propagated as the initial
inputs, �N ′ = {w̄i

∗

k+1,N (xk+1|ūi
∗

k+1, P̄
i∗
k+1)}

N ′
i∗=1, where w̄

i∗
k+1

is the sum of component weights in the i∗-th cluster.
To this end, combining the PCM scheme with EKFs,

an efficient GMR-GSF is constructed, and the procedures are
illustrated in Tab.1.

IV. NUMERICAL EXAMPLE AND SIMULATION
To begin with we will provide the underlying purposes for the
following experiments. In this section, we divide the exper-
iments into four parts. Firstly, the proper searching scope of
σ ∗ is investigated with three typical situations. Then, in order
to verify the approximation performance of PCM scheme-
based GMR algorithm (PCM-GMR) and better visualize the
performance with Runnalls’s GMR algorithm (R-GMR) [17],
which measures the similarity based on the KL divergence,
and number-limited GMR algorithm (NL-GMR) [12], two
static scalar cases are considered. Following this, a state
estimation problem in one dimension and a range-bearing

TABLE 1. Procedures of PCM-GSF.

tracking problem in four dimensions are presented to fur-
ther test the effectiveness and efficiency of our proposed
algorithm.

Besides, the complexities of the algorithms are compared
by using the relative computation time of our MATLAB
implementation central processing unite time (CPU-time)
on Intel Core I5-4590 3.3GHz processor and 8GB RAM.
Meanwhile, the regularization constant α is set to be 0.001,
and ρ is 0.9544 for the PCM operations.

A. SEARCHING SCOPE ANALYSIS
1) UNIMODAL PDF CASE
First we give four components with following parameters.

c1 = {0.3,N (x|1, 12)}, c2 = {0.1,N (x|1.5, 1.22)}

c3 = {0.4,N (x|2, 0.52)}, c4 = {0.2,N (x|3, 0.82)}

The approximation results are shown in Fig.4.
In Fig.4, Component 1 and 2 are considered similar and

merged when σ ∗ > 2σ , and Component 3 is clustered
into them when σ ∗ = 4σ . We note that the approximation
accuracy is positive when σ ∗ < 3σ . While, as σ ∗ gets larger,
more components are identified as similar ones, which makes
the degeneration of the distribution diversity and leads to
a negative result. The corresponding results are displayed
in Tab.2.

TABLE 2. Results for approximating unimodal PDF.
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FIGURE 4. Approximated unimodal PDF by four Gaussian components.

Tab.2 shows that the cluster number decreases with
σ ∗ increasing. While, the less the number of clusters is,
the longer execution time it takes for more components need
to be merged in the cluster. However, in comparison with the
time spent for propagation, it is worthwhile to cost a little
time for GMR operations. Besides, it should be noted that the
EISE rises first and then falls. Considering the monotonicity
of the EISE cost function, the optimal confidence range may
locate within [1-3]σ region.

2) BIMODAL PDF CASE
The parameters of four components are given as follows, and
the approximate curves are displayed in Fig.5.

c1 = {0.3,N (x|0.5, 12)}, c2 = {0.1,N (x|2, 1.22)}

c3 = {0.4,N (x|3.5, 0.52)}, c4 = {0.2,N (x|4, 0.82)}

FIGURE 5. Approximated bimodal PDF by four Gaussian components.

In Fig.5(a), no pair of components are similar enough to
be clustered. When σ ∗ = 2σ , Component 3 and 4 are treated
as similar in the distribution sense and then merged into a
Gaussian component. Once the confidence range exceeds 3σ ,
Component 1 and 2 are classified into another cluster, which
makes the approximation accuracy get worse, especially at
the peak points. Tab.3 provides the approximation results.

It can be seen from the data in Tab.3 that the EISE starts
to increase when σ ∗ exceeds 2σ , which illustrates that the
optimal σ ∗ may be within [1-3]σ region.

TABLE 3. Results for approximating bimodal PDF.

3) MULTI-MODAL PDF CASE
The parameters of eight components are presented as follows.

c1 = {0.1,N (x|0.5, 1)}, c2 = {0.05,N (x|2, 1.22)}

c3 = {0.35,N (x|3.5, 0.52)} c4 = {0.1,N (x|4, 0.82)}

c5 = {0.1,N (x|5, 0.22)}, c6 = {0.2,N (x| − 1, 0.32)}

c7 = {0.04,N (x|0, 42)}, c8 = {0.06,N (x|1, 32)}

Fig.6 displays the approximate curves with different σ ∗.

FIGURE 6. Approximated multi-modal PDF by eight Gaussian mixtures.

In Fig.6, Component 1 and 8 are identified as similar
components and merged into a standard Gaussian component
when σ ∗ = 2σ , and Component 3 and 4 are then clustered
into another cluster and merged into a component when
σ ∗ = 3σ . For this multi-modal case, the approximation
accuracy to the peak gets worse with σ ∗ increasing. The
approximation results are displayed in Tab.4.

As shown in Tab.4, the CPU-Time changes little in com-
parison with the other two cases, which indicates that the
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TABLE 4. Results for approximating multi-modal PDF.

PCM-GMR algorithm holds for complex situations for the
high computation efficiency. Besides, from the EISE shown
in Tab.4 we can see that the optimal confidence range may
locate within [1,3]σ region.
As discussed above, the searching scope is determined

from 1σ to 3σ . Through simulation analysis, the efficiency
is improved by 2.4 times through setting the search scope in
advance. For that reason, we initialize σ ∗ with 1.5σ in the
subsequent parts.

B. STATIC SCENARIO ANALYSIS
In this part, we compare the performance of PCM-GMRwith
NL-GMR and R-GMR in two static scalar cases. The initial
numbers of components are set to be 30 and 100, respectively.
Meanwhile, the approximation performances are evaluated
based on ISE, normalized ISE (NISE), EISE and CPU-time,
and the first two indexes are described as follows.
(1) Integral Squared Error

The ISE is the most used index for GMR, which is
described by

JISE (�N ′ ) =
∫
x
(f (x|�I )− f (x|�N ′ ))

2dx (42)

where I means the original number of components.
(2) Normalized Integral Squared Error

The NISE for GMR has been extensively researched by
Petrucci [38], which can only change between zero and one,

JNISE (�N ′ ) =

∫
x (f (x|�I )− f (x|�N ′ ))2dx∫

x f (x|�I )2dx +
∫
x f (x|�N ′ )2dx

(43)

1) BIMODAL SCENARIO BY 30 COMPONENTS
To better visualize the performance of GMR algorithms,
the parameters are generated randomly with

30∑
i=1

wi = 1, wi ∈ [10−2, 0.2], xi ∈ [−2, 4], σi ∈ [0.4, 1]

and the upper boundary of component numbers for
NL-GMR is set to be 20, and the goal of R-GWR is to utilize
20 components to approximate original distribution. Then the
approximation results are displayed in Fig.7.

As shown in Fig.7, the pruningmethod, NL-GMR, discard-
ing components only according to the weight is inferior to
the other sophisticated GMR methods, especially at the peak
position. At the same time, we note that PCM-GMR almost
has the similar performance with R-GMR, but the former
performs a little than the latter at the peak points.

FIGURE 7. Approximation comparison when I = 30.

TABLE 5. Performance comparison when I = 30.

The corresponding results are provided in Tab.5, and from
it we note that PCM-GMR performs the best for ISE, NISE
and EISE indexes, followed by R-GMR, then NL-GMR.
Moreover, PCM-GMR utilizes the least number of compo-
nents when σ ∗ = 1.15σ . Although NL-GMR costs the mini-
mum CPU-time, but it ignores to keep the distribution shape,
which leads to a negative approximation accuracy in the end.
While, R-GMR, which merges similar components in pairs
according to the KL divergence, is more computationally
demanding than the other competitive algorithms.

2) MULTI-MODAL SCENARIO BY 100 COMPONENTS
In this part, we consider a multi-modal scenario by using
100 components, and their parameters are limited by

100∑
i=1

wi = 1, wi ∈ [10−3, 0.1], xi ∈ [−7, 6], σi ∈ [0.3, 2]

and the number boundary for NL-GMR is 60, and the
desirable component number for R-GMR is 60. With the
above parameters, Fig.8 shows the performance of different
algorithms.

It can be clearly seen from Fig.8 that the approximation
accuracy of NL-GMR is the worst among the competitive
algorithms, and PCM-GMR approaches to the original distri-
bution with the best accuracy, especially at the peak positions.
While, a slight decrease appears at the peak positions for
R-GMR.

Tab.6 summarizes the performance indexes for compari-
son. From Tab.6 it is observed that PCM-GMR is superior
to the competitive algorithms for the smaller ISE, NISE and
EISE by using fewer components, which illustrates the high
efficiency of the PCM scheme. Although PCM-GMR and
R-GMR cost longer execution time than NL-GMR, the time-
less for them is still in acceptable ranges.
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FIGURE 8. Approximation comparison when I = 100.

TABLE 6. Performance comparison when I = 100.

C. STATE ESTIMATION FOR A SCALAR SYSTEM
To test the nonlinearity effects on the performance of PCM-
GSF with the competitive algorithms, in the following,
we present a scalar measurement jump dynamic system
where the measurement equation jumps to a linear equation
within a special time interval. In addition, a more challenging
competitive algorithm, particle filter (PF), is introduced with
300 particles, and R-GMR and NL-GMR apply EKFs as the
basic nonlinear filters, and then we call them R-GSF and
NL-GSF for short, respectively. All the performances are
evaluated over 15 monte carlo (MC) runs, and the root mean
square error (RMSE) is selected as the estimation accuracy
index, which is described by [39], [40]

RMSE =

√√√√√ 1
Mc

Mc∑
j=1

(x jk+1 − x̂
(j)
k+1)

2
(44)

where x jk+1 and x̂
(j)
k+1 represent the true and estimated values

in the j-th MC running, respectively. Mc is the total number
of MC running.

1) SIMULATION SCENARIO AND FILTER INITIALIZATION
Consider the measurement jump system with one-
dimensional state is

xk+1 =
xk
2
+

25xk
1+ x2k

+ 8 cos (1.2k)+ wk (45)

where the process noise wk is described as Glint noise [41]
and its PDF is constructed by Gaussian PDF and Laplace
PDF, i.e.

ft (x) = (1− ε) fg (x)+ εfl (x) (46)

where ft (·), fg (·) and fl (·) represents Glint noise, Gaussian
noise and Laplace noise, respectively. ε means the glint fre-
quency of the state. fl (·) is formulated as

fl (x) =
1
η
exp

(
− |x|
η

)
(47)

where η is the covariance of fl (x) and bigger than the
covariance of fg (·).

The measurement equation is given as follows

zk+1 =


x2k+1
20
+ vk+1 0 ≤ k < 80

3xk+1 − 4+ vk+1 80 ≤ k < 120
(48)

where the measurement noise vk+1 is described by Gaussian
PDF with µ = 2, σ = 3. The initial state p(x0) is given by a
sum of five Gaussian PDFs

p(x0) = 0.2N (x0| − 2, 10)+ 0.2N (x0| − 1, 10)

+ . . .+ 0.2N (x0|0, 10)+ 0.2N (x0|1, 10)

+ 0.2N (x0|2, 10) (49)

Besides, a three-component Gaussian sum approximation
of the Glint distribution by the spilt-merge incremental learn-
ing (SMILE) model [42] is denoted as

p (w0) = 0.29N (w0|2.14, 0.72)+. . .+0.18N (w0|7.45, 0.72)

+ 0.53N (w0|4.31, 2.29) (50)

2) PERFORMANCE ANALYSIS
The RMSE curves for this jump system are plotted in Fig.9.

FIGURE 9. Comparison of RMSE in the measurement jump system.

As shown in Fig.9, as the limitation of EKFs, the RMSE
of GSFs has weaker convergence results than PF before time
instant 80. While, it is still promising to adopt more advanced
nonlinear filters with GMMs. Seen from the variation ampli-
tude of the RMSE curves for GSFs, it suggests that estimation
accuracy for PCM-GSF is much better than NL-GSF, and is
smoother than R-GSF in this dynamic NN system. In addi-
tion, all curves converge uniformly to a small value after time
instant 80, which illustrates that the nonlinearity of the system
has significant influences on the estimation performance.
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The variations of the component numbers for the GSFs are
compared in Fig.10, and for ease of visualization, we sample
the data every five time instants.

FIGURE 10. Comparison of number in the measurement jump system.

From Fig.10 we can see that when the nonlinearity of
the system gets weak, the component numbers of PCM-GSF
and R-GSF change over time, while NL-GSF still keeps it
constant once reaching the upper boundary. Actually, more
components are similar in the weak NN system, which makes
the similarity-based GMR algorithm merge more compo-
nents. We note that the component number of R-GSF is larger
than that of PCM-GSF in the process, which illustrates that
our proposed PCM-GMR algorithm is more efficient than KL
divergence-based GMR algorithm.

Tab.7 shows the performance comparison in average
RMSE (ARMSE), average EISE (AEISE) and CUP-time.

TABLE 7. Performances for the measurement jump system.

Analyzing the data in Tab.7, we note that PCM-GSF out-
performs NL-GSF and R-GSF in all performance indexes.
Undeniably, PF achieves the best accuracy, but it takes much
more time than others. While, PCM-GSF nearly fulfills the
same task by using a quarter of execution time than PF at the
cost of 1.2 ARMSE, and R-GSF is even more cost-effective
than PF. Taking the efficiency into account, PF can only be
applied in off-line systems, but PCM-GSF and R-GSF are
more suitable for real-time systems.

The variation of the optimal confidence range over 15 MC
runs is shown in Fig.11. From it we can see that themagnitude
of the change of σ ∗ gets smaller when the nonlinearity turns
weak, which illustrates that the nonlinearity of the system has
significant impacts on σ ∗ .

D. RANGE-BEARING SCENARIO ANALYSIS
In order to test the effectiveness of PCM-GSF in a
high dimensional system, a range-bearing scenario in the

FIGURE 11. Variation of σ∗ in the measurement jump system.

2-D plane [43] is presented. The target follows a constant
velocity (CV) model, and the state vector contains the posi-
tion and velocity in both X and Y directions, respectively.
It is worth noting that our proposed PCM-GSF only considers
the position information of the target, so the clustering and
merging operations actually only deal with two-dimensional
information here.

The nonlinear state space model is presented as

Xk+1 = F · Xk + G ·Wk (51)

with

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , G =


T 2

2
0

T 0

0
T 2

2
0 T


Zk = h(Xk )+ Vk (52)

where

h(Xk ) =

[√
(X1

k )
2
+ (X3

k )
2

tan−1(X3
k /X

1
k )

]
and the state vector Xk in a Cartesian space is described by

Xk =


X1
k
X2
k
X3
k
X4
k

 =

xk
ẋk
yk
ẏk

 (53)

Zk corresponds to the set of noisy observations (range
and bearing), and wk is the state noise assumed to be
Gaussian noise, zero-mean with variance-covariance matrix
Q = 0.175 · diag([1, 1]). Vk is the glint noise, and the
glint frequency ε = 0.02. dt = 0.01 denotes the sampling
period, and T = 10 denotes the simulation time. F and h
are referred to the state transition matrix and observation
transition matrix, respectively.

Besides, we consider the target only takes a 70 m/s2

acceleration in Y direction. The initial state X0 = (1000 m,
240 m/s, 4000 m, 0 m/s)T , and the initial covariance

151002 VOLUME 7, 2019



Y. Xu et al.: Efficient GSF Based on PCM Scheme

P0=diag([1202 m2, 152 (m/s)2, 100 m2, 202 (m/s)2]).
X0 and Vk are assumed to be represented by two and four
Gaussian components, respectively, and their parameters are
given by

c1 = {0.4,N (X |X1,P1)}, c2 = {0.6,N (X |X2,P2)}

c3 = {0.3,N (V |V1,R1)}, c4 = {0.2,N (V |V2,R2)}

c5 = {0.25,N (V |V3,R3)}, c6 = {0.25,N (V |V4,R4)}

where

V1 = (150 m, 0.005 rad)T , V2 = (180 m, 0.01 rad)T

V3 = (85 m, 0.009 rad)T , V4 = (100 m, 0.015 rad)T

R1 = diag([1002 m2, 0.022 rad2])

R2 = diag([802 m2, 0.022 rad2])

R3 = diag([1202 m2, 0.0152 rad2])

R4 = diag([1102 m2, 0.012 rad2])

X1 = (1000 m, 220 m/s, 4000 m, 10 m/s)T

X2 = (1000 m, 190 m/s, 4000 m, 0)T

P1 = diag([1502 m2, 102(m/s)2, 100 m2, 30(m/s)2])

P2 = diag([1202 m2, 82(m/s)2, 90 m2, 10(m/s)2])

The estimated posterior PDF of the target position in
X direction from time instant 50 to 55 are shown in Fig.12.

FIGURE 12. The estimated posterior PDF of the state.

Fig.12 shows that the positions estimated by PF approach
to the true estimates much closer than other algorithms,
and the posterior PDFs of the positions estimated by
PCM-GSF are more and more coincident with these of PF,
which illustrates that PCM-GSF has a strong self-regulation
ability for approximating the true distribution.While, the pos-
terior PDFs of R-GSF and NL-GSF change little over time,
especially NL-GSF.

The estimation performances are displayed in Tab.8.
Comparing the results obtained from the estimation process,
the advantages of PF in estimation accuracy is obvious for the
large amounts of particles. While, PCM-GSF also performs
a positive result with a high efficiency. Meanwhile, we note
that PF runs almost six times longer than PCM-GSF and four

TABLE 8. Performances for the measurement jump system.

times longer than R-GSF. From the analysis above, it suggests
that our proposed PCM scheme can efficiently approximate
the posterior distribution in this dynamic four-dimensional
case.

V. CONCLUSION
In this paper we propose a PCM-GSF to approximate the orig-
inal posterior distributionwith reduced components in theNN
systems. For the scalar case, the PCM-GSF can achieve a bet-
ter approximation accuracy of the PDF than NL-GSF and R-
GSF, especially at the peak points. Moreover, the distribution
similarity-based GMR can perform more efficiently than KL
divergence-based GMR in reducing components. Comparing
with PF, PCM-GSF can utilize almost a quarter of CPU-
time by only sacrificing 1.2 ARMSE. When the nonlinearity
changes weak, the performance of the GSFs can be signif-
icantly improved. For the dynamic high-dimensional case,
PCM-GSF can approximate the true posterior distribution
with a strong self-regulation ability, better than NL-GSF and
R-GSF. Although the estimation accuracy need improve for
the high-dimensional state, our proposed PCM-GSF is still
more promising and suitable for applications with high real-
time requirements comparing with NL-GSF, R-GSF and PF.

Future work includes extending the PCM scheme to a
higher-dimensional system for a realistic implementation,
and another effort will be spent on faster identifying similar
components based on the distribution similarity criterion.
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