
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received October 1, 2019, accepted October 7, 2019, date of publication October 17, 2019, date of current version October 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948021

Themis: An AST-Based Lock-Free Routes
Synchronizing and Sharing System for
Self-Driving in Edge Computing Environments
TE JIANG , TUN LU, AND NING GU
1School of Computer Science, Fudan University, Shanghai 201203, China
2Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 201203, China
3Shanghai Institute of Intelligent Electronics & Systems, Shanghai 200433, China

Corresponding author: Tun Lu (lutun@fudan.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61932007 and Grant U1630115.

ABSTRACT The rapid development of self-driving technology has made self-driving cars come into reality,
and some people have already adopted different levels of self-driving technology in real driving practices.
With the help of self-driving technology, nowadays people can share and schedule their routes together while
driving. However, currently, there are poor supports for such activities, as it demands highly responsiveness,
strong consistency guarantees, and low transmission costs. As to support the novel scenario, we developed an
edge computing oriented and highly efficient AST-Based lock-free synchronizing and sharing system called
Themis on a fundamental itinerary planning model. We optimized the system by adopting partial replication,
snapshots of history operations, and compression on consecutive operations strategies, which leave certain
calculations at the cloud side, and reduce the amount and size of transmission data in the network. Besides,
we have analyzed and proved the correctness of our scheme in detail; examining the significant improvements
in performances through experiments.

INDEX TERMS Edge computing, collaborative tools, collaborative software, distributed computing.

I. INTRODUCTION
Nowadays, self-driving technology has been successfully
applied to daily uses. More and more traditional car manu-
facturers and IT companies have joined the team to develop
self-driving cars [16], many of which have already been
put into use. In Schoettle et. al’s earlier study [1] in 2014,
though people still held serious concerns on safety issues
in self-driving technology, they still had high expectations
on it. While nowadays, such worries have been apparently
alleviated with the growth of people’s perception of self-
driving, and some people have already accepted and adopted
different levels of self-driving technologies in real daily driv-
ing practices [15], [17], [18].

It’s common that in self-driving tours, people wanted to
share their driving routes with their friends or families, for
better scheduling and sharing of real-time locations and
information, adjusting their routes for better travel expe-
rience or less time cost. And such needs would become
especially urgent when driving in unfamiliar places with

The associate editor coordinating the review of this manuscript and

approving it for publication was Honghao Gao .

complicated road conditions or in disaster-stricken areas.
However, real-time scheduling is not likely to be supported
before, as the drivers cannot distract too much attention
on scheduling. But now, with the development of self-
driving, speech recognition and other technologies, people
could gradually free their hands from holding the steer-
ing wheel and transform from hands input to other input
methods; scheduling while driving now seems to be possi-
ble for drivers. Besides, nowadays many people voluntarily
share real-time locations for predicting and reducing traffic
jams. And we could also expect that, with sound safety and
privacy-protect mechanisms, people are pleased to share their
real-time driving routes for more accurate traffic jam predic-
tion and better self-driving experiences in the near future.

However, the positions of the vehicles change quickly on
maps as the cars move at high speeds, and the multi-user col-
laborating scheduling behavior would bring in-consistency
problems. To share the real-time locations of all vehi-
cles, the synchronizations under the fast-changing scenario
would pose great pressure to the current network, and a
strong consistency scheme is required to support multi-user
scheduling behavior.

151692 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-9561-6630
https://orcid.org/0000-0001-6861-9684


T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

FIGURE 1. Data synchronization under partial replication architecture in
self-driving scenario.

Adding locks is a straightforward method to guarantee
consistency, and such strategy has been widely used in
database systems [33], [35], and distributed applications [34].
However, in real-time interaction systems, like video game
sharing [36], and collaborative editing [20], [21] scenarios,
the responsiveness of the application is highly required; a
delay time of more than 150ms could already affect user
experience [37]. In the lock-based methods, operations on the
same object could only be executed when it is unlocked or
wait until the lock is released. Besides, the lock might always
be held due to the loss of release signals in terrible network
conditions, which is apparently not acceptable for real-time
interaction systems.

Optimistic collaborative editing technique is rather a good
choice to address the problem, as it provides real-time respon-
siveness and hides network delays, achieving final consis-
tency. The collaborative editing techniques have been studied
since the 1980s, firstly applied to the collaborative editing
on documents [20]. And with the maturity of the basic algo-
rithms, researchers extended to make optimization of the
algorithms [31], [32] and tried to apply collaborative editing
techniques to more editing scenarios [2], [24], [25].

Operation transformation [20], [23] and address space
transformation [21] are the most representative optimistic
collaborative editing algorithms, which could support
real-time local responsiveness, and provide consistency
maintenance, which well match the needs of our scenario.
Besides, researchers also tried to apply a partial replica-
tion on the mobile commenting scenario by adopting AST
algorithms [27], which inspired us to apply a partial replica-
tion strategy to our scenario to reduce transmission costs and
improve responsiveness.

In this paper, we proposed and implemented an AST-based
(Address Space Transformation [21]) lock-free and edge
computing oriented highly efficient routes sharing and syn-
chronizing technical system Themis on the basis of a fun-
damental real-time routes planning model [2], by applying
the partial replication scheme and other optimizing strate-
gies; making significant technical improvements on perfor-
mances. The technical partial replicated architecture is shown
in Figure 1.

The rest of the paper is organized as follows. Section 2
discusses the related work in achieving our efficient lock-free
routes sharing and synchronizing model. The clear definition
of the scenario, technical challenges, and basic model defini-
tions are given in Section 3. And we presented our detailed
technical scheme in Section 4, and analyzed and proved its
correctness in Section 5. The experiments and performances
are presented in Section 6. Section 7 concludes the paper
by summarizing our contributions, limitations, and future
research directions.

II. RELATED WORK
As our work is dedicated to supporting real-time itinerary
planning and synchronizing under the self-driving scenario.
In this section, we would discuss the traditional itinerary
planning pattern and methods, and its possible shortages;
the self-driving technology and its development; and work
about lock-free real-time collaboration and consistencymain-
tenance.

A. ITINERARY PLANNING PROBLEM
Itinerary planning was a classical research question,
researchers have been studying the problem for decades.
In the early days, itinerary planning problem was typically
modeled as an orienteering problem(OP) or traveling sales-
man problem(TSP) [28]; researchers built their models by
constructing basic elements and abstracting selected real
conditions, like POI(Place of Interest), routes, and transports;
meanwhile adding constraints, like time, budget, andweights.
On the basis of the constrained model, researchers applied
various methods to calculate the optimal or preferred values.

Search and greedy algorithms were the most common
solutions [3], [4]; and also some heuristic methods [5], [7],
[9], [30]. Besides, some researchers enriched the planning
models by adding more elements and constraints, like time
dependency [6], team planning needs [8]. By adopting these
methods, possible routes could be automatically constructed
in a really short time. However, such theoretical-optimal
routes might not be able to cover all the essential variants and
constraints, that the constructed scheme might not really fit
users’ interests. Besides, nowadays people pay less attention
to time or budgets, that they prefer more personalized routes
that perfectly match their own interests, which is hard to be
achieved by adopting a model for general uses.

With the development of the mobile Internet industry,
a large amount of traveler generated information is accumu-
lated, like GPS tracks, pictures, user comments, and some
other information on personal preferences. Some researchers
tried to explore the value of these data and other rich
travel-related information to make routes recommendations.
They adopted collaborative filtering, spatial clustering,and
other mature recommendation algorithms [10], [11] to make
better personalized routes recommendations.

However, both the results of model-based and recommend-
ation-based methods are rather fixed, users cannot flexi-
bly adjust their routes in real-time. Meanwhile, the methods

VOLUME 7, 2019 151693



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

provide poor supports for the collaboration and consulta-
tion scheduling process in groups, while a collaborative
scheduling method provide users more intuitive and real-time
scheduling supports. Therefore, a hybrid method is recom-
mended; users could schedule their routes together on the
basis of auto-generated or recommended routes for more
practical uses.

B. SELF-DRIVING WITH EDGE COMPUTING
The design of a driverless car could be really complicated;
it consists of various modules; like computer vision iden-
tification, sensor detection, obstacle avoidance, navigation,
and vehicle control modules [12], [19]. All the self-driving
related technologies have been studied and developed in their
own field for many years, and they have been more and
more mature and applicable in real uses, which provides the
valuable chance for the rapid development of self-driving
technology. And different levels of self-driving technology
have already been in use in nowadays driving practices [18].

A self-driving car could probably generate one-gigabyte
data every second, and these data should be processed in
real time to provide correct commands for the vehicle to
drive safely [13]. However, if all these data are uploaded
to the cloud and finish their computations at the cloud side,
it would bring tremendous pressure to the network bandwidth
and reliability, meanwhile results in long latency, which vio-
lates the requirements of real-time responses in self-driving
scenarios [14], [29].

Therefore, edge computing paradigm is widely adopted
in the self-driving scenario [29]. Real-time and urgent ser-
vices, like navigation and obstacle avoidance services, are
processed and provided in real time at the edge side, and
these services need to be optimized considering the limited
processing and storage capability at the edge side. Taking
navigation services as an example, as the car drives in a
limited area within a certain period, that only a few map
blocks would be stored at the edge side to cut down storage
size and processing costs, and such strategy is also adopted
in our partial replication scheme.

C. REAL-TIME COLLABORATION AND CONSISTENCY
MAINTENANCE
As our work is to implement the real-time routes sharing
and scheduling activities under the self-driving scenario,
the strong real-time consistency and immediate response time
are highly required; we would discuss classical consistency
maintenance algorithms and partial replication scheme in this
part.

Collaborative editing technique was firstly raised by
Ellis and Gibbs [20] in the 1980s, and it’s applied to the
real-time collaborative editing on documents. Later, a group
of researchers devoted to this field, studying about different
algorithms [21]–[23]; they adopted different ideas tomaintain
the consistency; like making transformations on the oper-
ations accordingly [20], [23]; recording and retracing the
document to its generated state for direct operation executions

in the AST scheme [21]; and finding the right execution
position by recording its logical previous and next node [22].

Later, researchers started to make optimization of the algo-
rithms on various aspects. The widely adopted vector logical
clock has the disadvantage of growing size with the entry of
new sites, which could be inefficient in large collaborating
environments. Ning et al. tried to reduce its size by using the
transitivity of causal relation [31], and achieved significant
improvements; while in Shao et al.’s work, they focused on
cutting down the complexity of transformation of a sequence
of accumulated operations [32]. Similarly, in our work,
we also tried to make optimization on the accumulated oper-
ations’ centralized timestamp to reduce transmission costs.

With the maturity of the collaborative editing algorithms,
researchers started to extend collaborative editing techniques
to more data models, like tables [24], 3D models [25], routes
planning model [2], and also some promotions under special
scenarios like supports on string wise operations [26], partial
replicated tree structures for mobile comments scenario [27].

As our work is to support real-time routes sharing and
synchronizing activity. Traditional lock-basedmethods might
greatly influence the response time and affect user experi-
ence. The design of address space transformation [21] algo-
rithm provides a lock free collaborative editing pattern, that
users could make operations on their local sites without locks,
and it supports making synchronizations with other collabo-
rating sites correctly regardless of the receive order of remote
operations, which helps to hide the network delay. Besides,
they continued to optimize their algorithm by partial repli-
cation [27] and reducing the size of timestamps [31], which
perfectly resolves the challenges under our highly dynamic
scenario, that all vehicles might generate a large number of
operations in the real time, causing a high response time and
large data transmission. Therefore, we developed our model
on the basis of an AST-based collaborative itinerary planning
model [2]. We profited from the partial replication idea in
mobile commenting [27] and limited local map blocks in edge
computing [14], that the car just needs to synchronize with
other routes that are currently within the same area, which
could greatly reduce the unnecessary synchronizing data.
Besides, we proposed a snapshot scheme and compression
on consecutive operations to further cut down the processing
and transmission costs.

III. PROBLEM AND MODEL DEFINITION
A. ITINERARY PLANNING UNDER SELF-DRIVING
SCENARIO
Real-time itinerary sharing and scheduling in self-driving
is a relatively new demand, and we would make detailed
illustrations and clear definitions of it in this section.

Self-driving tours are becoming increasingly popular these
years; a group of people rent or drive their own cars to travel to
remote areas for tours. And in such remote areas, routes plan-
ning and real time information sharing seems to be extremely
important, as the navigation system might not cover all the

151694 VOLUME 7, 2019



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

unknown spots and paths in the remote areas. Meanwhile,
there could be unexpected traffic accidents or terrible road
conditions; assisted scheduling from other experienced or
leading drivers could be really helpful. Benefiting from the
rapid development of self-driving technology, scheduling
while driving would become technically practicable in the
near future. Besides, anonymous routes sharing with sound
safety and privacy-protect mechanisms could provide the
cloud side more information to make better traffic controls,
which is also worth expecting for future traffic conditions.

We summarized and extracted the required features of a
technical scheme that could possibly fit in the needs of the all
above scenarios.

1. Intuitive; the routes should be presented on a map,
that users could make operations on the routes and notice
the changes directly; meanwhile, all the changes could be
updated and synchronized in real time for better collaboration
experience.

2. Highly responsive; as the vehicles are driving at a
high speed, that the current position changes frequently on
the map, which generates a large number of operations in
a short time. Similarly, the other vehicles also generate a
huge number of operations; all these operations should be
synchronized and processed at the edge side in an efficient
way.

3. Low transmission cost; as the vehicles generate a large
amount of synchronization information, which could bring
huge transmission costs, and the costs might challenge the
current mobile network. An optimized scheme should be
designed to cut down the transmission costs.

B. TECHNICAL CHALLENGES AND SOLUTIONS
To build a system that could fit in the above-mentioned
features, we have to address the following challenges:

1) how to support collaborative editing behaviors
under partial replication architecture. The consistency of
real-time itinerary planning has already been guaranteed in
Yang’s work [2], but how to guarantee the consistency under
the partial replication scheme? Is it simply a replicated ver-
sion that differs nothing from Yang’s model? It’s obviously
not. As, the scheme has to maintain the causality of all oper-
ations from different active areas, dealing with the specialty
of cross-block edge operations, and so on.

2) how to deal with the peak transmission caused by the
change of active areas? The partial replication could reduce
the real-time transmission cost, but it also accumulates all
the history operations. Once moving into a new area, all the
history operations still have to be synchronized, which could
cause a peak transmission in the network, and possible higher
data loss. This is the key problem that we have to address by
adopting partial replication.

3) how to incrementally make synchronization of the
data?When the users are scheduling on the map, they might
slide on the maps to see surrounding conditions, and during
the process, the interface might enter the same area for multi-
ple times, if we synchronize all the data, it would cause huge

transmission costs to the network and produce unnecessary
transmission. Therefore, it’s important to design an incremen-
tal synchronization method to save bandwidth.

4) how to design a stable system that the vehicles could
still function normally when there are sudden network
disruptions? Though the network infrastructure has been
built quite well in recent years, there are still terrible network
conditions in remote areas, and possible network disruptions
would happen occasionally. It is of vital importance to guar-
antee, that the vehicles could always function well regardless
of any network conditions.

In the Themis system, we have designed a sound technical
scheme to copy with the above challenges. We developed our
scheme on a basic AST implemented system [2] to support
collaborative scheduling activities, and further improved it
with partial replication design. The correctness of the partial
replication scheme has been proved and analyzed in section 6.
Besides, we cut down the peak transmission by further adopt-
ing snapshot strategy to history operations. And the incre-
mental synchronizations could be implemented by storing
all the data at the cloud side, while making synchroniza-
tions when needed. In facing network disruptions, our system
could still function well, that users could operate on their
local sites in real-time, while remote operations could always
be synchronized correctly regardless of their arrival time.
Meanwhile, as the vehicles are controlled by real-time routes
scheduling and local obstacle avoidance modules, which
don’t depend on network connections; the vehicles could run
normally regardless of network conditions. However, there
would also be some small inconveniences, as the long-time
disconnection might introduce conflicts on the same routes,
which currently could only be resolved by human operations,
and we would develop corresponding strategies in the future
work.

C. BASIC AST MODEL
AST algorithm [21] is originally proposed to support the col-
laborative editing behaviors on a same document. It organizes
the documents in the form of character nodes. Each first add
operation would create a node, and each node has a visible
flag to identify the character’s visible state. Operations on the
same character would be added to the node’s operation list.

In the AST model, each operation is assigned a timestamp,
and the comparing rule of causality relations is designed
according to its structure. With adopting the same rule,
the causality relation of operations and order among concur-
rent operations could be kept the same on all sites. With the
timestamp, the AST algorithm can retrace the document’s
state to the remote operation’s execution time, and find the
right and consistent execution position in the node list on all
sites by comparing the value of timestamps. Then, the opera-
tion could be executed directly on the position. And by mod-
ifying the value of timestamp, it could retrace the document
to its newest state.

The advantage of AST algorithm is that it is a lock-free
consistency maintenance algorithm; the local operations

VOLUME 7, 2019 151695



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

could be executed directly, and remote operations could be
executed correctly when it is received. Users would not sense
any pose when making synchronizations. Besides, the cor-
rectness of the algorithm has been strictly proved in mathe-
matical methods. The later proposed unique identifier design
further improved the algorithm by leaving out the retracing
process. The features of lock-free, highly responsive, and
senseless on remote synchronization process perfectly match
the features of our scenarios. Thus, we chose the AST algo-
rithm as the basis of our model to achieve real-time local
responsiveness and correct remote consistency maintenance
and made further improvements on it.

D. MODEL DEFINITION AND NOTATIONS
1) BASIC UNITS AND PRIMITIVE OPERATIONS
As in Yang et al.’s scheme [2], they have already built a basic
model for itinerary planning on the AST algorithm, so we
further developed our scheme on its basis. Points and edges
are the basic operating units; the routes could be represented
by points and edges. Every point keeps its operation list and
its locations, while every edge keeps its operation list and the
locations of its two side points. The routes could consist of
lots of small edges and points.

As for the operation, we provide three types of basic
operations; all the actions like real-time scheduling, location
sharing, and area movements could all be made up of the
following operations.

1. Add / Delete point; add or delete a point with its
location; e.g, add_node(12.32,91.33); (12.32,91.33) is the
location information of a point.

2. Add / Delete edge; add or delete an edge with its two
side points; e.g, delete_edge((12.32,91.33),(11.98,90.15));
(12.32,91.33) and (11.98,90.15) are the locations of the two
side points of the edge.

3. Activate / Dis-activate block; activate or dis-activate a
map block with its location to start or end the synchroniza-
tion; e.g, activate_block(12.32,90.15); (12.32,90.15) is the
center location information of a map block.

The scheduling and car movement actions could be
achieved by adding and deleting points and edges, while the
movement from one map to another, could be realized by
activating and dis-activating certain blocks to turn on/off the
synchronization within a certain block.

2) BASIC DATA STRUCTURE
All the actions are decomposed into operations, and our
synchronization and consistency maintenance are based on
operations.

In the basic itinerary planning model [2], at the user side,
it keeps an LHB(local history buffer) to temporarily store
the local generated operations, and an RHB(remote history
buffer) to temporarily store remote operations, and execute
the remote operations when it’s causally ready. While at the
server side, it keeps a VHB(virtual history buffer) to store
all the received operations, and send them to different sites

for consistency maintenance. Besides, the server side also
maintains an SRN (Server Receive Number) value to identify
the operation received order.

As for the operation processing, they create a list and
visible flag for each point and edge node, adding operations
to the corresponding node’s list, and adjusting the flag status
according to the operation effects, as shown in Figure 2.

FIGURE 2. Storage form of nodes.

3) TIMESTAMP AND CAUSALITY
Timestamp is the most classical element used to determine
the causal relation among operations, and to further guarantee
the final consistency. We define an operation A is casually
before B, when at the generation of operation B, operation
A has already been executed at the B’ site, and A’s execution
effects have already been shown at B’s generation time. In this
paper, we adopted an optimized centralized timestamp to save
transmission costs, and it is defined as;

< siteId, opcnt, lastUpdateSRN, SRN>

siteId is assigned by the center server at the beginning, and
it could uniquely identify a site; while opcnt represents the
current local site generated operation number. SRN (Server
Receive Number) is a unique number assigned by the server
to identify the operation’s received order at the cloud side,
and the SRN value of an operation is kept empty until it is
assigned a value from the cloud side. And lastly, the lastUp-
dateSRN value records the last updated SRN value at the
current site when the operation was generated, and it is the
key value to determine the causality relation among remote
operations, which we would introduce later in section 5.

With the defined timestamp, we could define the causally
before relation→ as follows;
TSA→ TSB,
if 1) TSA.siteId = TSB.siteId , and TSA.opcnt < TSB.opcnt ;
or 2) TSA.siteId ! = TSB.siteId , and TSA.SRN ! = NULL, and

TSA.SRN < TSB.lastUpdateSRN
And if there’s no such relation that TSA→ TSB, nor relation

that TSB → TSA, we define TSA as concurrent with TSB,
denoted as TSA ‖ TSB.

4) T-ORDER FOR CONCURRENT OPERATIONS
As the operations are finally added to the queues of point
and edge node, the actual operation effect is determined
by the order of the operations, thus keeping the same
order of operations among all sites is really important for
achieving consistency. With timestamp, the order among
non-concurrent operations could be arranged, but it’s still

151696 VOLUME 7, 2019



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

unable to determine the order among concurrent operations;
thus we introduced other rules to further determine the oper-
ation effects of concurrent operations.

T-Order is a rule [21] that could distinguish the order
among different concurrent operations, and keeps the order
the same at all sites; thus we chose the global unique SRN
value as the T-Order comparing value; since SRN is unique
within the whole cooperating network, and it is able to keep
the same order on different sites.

IV. TECHNICAL SCHEME
As we have analyzed in section 3.A, the designed schema
should be intuitive, highly responsive and supporting low
transmission costs. Therefore, we adopted typical edge com-
puting architecture shown in Figure 1; storing the current
block data at the edge side to guarantee real-time responsive-
ness, meanwhile storing the whole data at the cloud side to do
some calculations to cut down the necessary synchronization
data. Under the edge computing architecture, we proposed
the partial replication, snapshot, and compression strategies
to build a highly efficient model.

A. PARTIAL REPLICATION
Weused the same idea in self-driving navigation services [14]
and mobile commenting scenario [27], that we only store
currently visible map blocks at the edge side, and synchro-
nize and maintain the consistency of current visible blocks
to reduce transmission costs and calculating pressure at the
edge side, while storing the whole data at the cloud side for
possible synchronizations and calculations.

1) EXTENDED STRUCTURES AND NOTATIONS
To implement the partial replication scheme, we would have
to add some new data structures and notations both at the edge
and the cloud side. And we have listed them below;
Edge Side
1)BlockId; as we are dividing the map into small blocks,

we need to assign each block a unique id that could identify
the real same area in all sites, and the id is related to the
locations of the current area.

2)BlockLastUpdateSRN; the last Updated SRN value of
operations within a certain block; as every site keeps synchro-
nizing with the cloud side about only certain current visible
blocks, if keeping a single lastUpdateSRN value for each site,
it would be impossible to identify the unsynchronized opera-
tions for every single block; so every block has to maintain a
BlockLastUpdateSRN value separately.
Cloud Side
1)SiteBlockLastUpdateSRN; the lastUpdateSRN value

for each block of every site; this value could help distinguish
synchronized and unsynchronized operations of each block
of different sites when there are synchronization requests.

2)SiteActiveBlock; the data structure helps to record the
current active blocks of each site, and it could help to find
out the sites that have collaborating relations by checking its
value at the cloud side.

3)BlockLastReceiveSRN; the last added SRN value of the
operation in this block at the cloud side, which could be used
to firstly check if there’s the need to search the VHB for
unsynchronized operations.

4)BlockOperationList; this data structure stores the oper-
ations from different blocks for faster operation search, which
is not compulsory, but it can help greatly to reduce the search
cost, as operations are synchronized separately in each block.

2) DATA SYNCHRONIZATION UNDER PARTIAL REPLICATED
ARCHITECTURE
In the partially replicated architecture, the cloud side listens to
all channels from the edge side. Once it receives an operation
or an operation list from a site, it would store the operations
in its BlockOperationList and send back the assigned SRN
values, presented as in Algorithm 1.

Algorithm 1 Process Operation Data Package
Operation List:OP Server Receive Number:SRN
BlockLastReceiveSRN:BLRS BlockOperationList:BOL
set BlockID = OP[0].blockID
set index = 0
repeat
set op = OP[index]
Send back SRN value with op.opcnt
set op.SRN = SRN
SRN ++
BOL[BlockID].push(op)
index ++

until index equals to OP.length
set BLRS[BlockID] = SRN − 1

As for the operation synchronizations, both client-pull and
server-push methods are compatible with our partial repli-
cation scheme. In the server-push pattern, once the server
receives operations from the clients, it would check out the
collaborating sites with the sending site, and after assigning
the SRN values and storing the operations as in Algorithm 1,
it would send the operations to collaborating sites. And when
the server receives activate and dis-activate operations of
blocks, it would firstly modify the value of SiteActiveBlock,
send the accumulated operations to the newly joined blocks
if there are accumulated unsynchronized operations.

While under the client-pull pattern, the server side would
not transfer operations to collaborating sites in real-time,
it would store the operations in corresponding block operation
list shown in Algorithm 1, andmake synchronizations when it
receives synchronization requests from clients. It would find
out the unsynchronized operations from other sites and send
back the unsynchronized operations to the requesting site,
shown in Algorithm 2.

As for the edge side, it only needs to execute local oper-
ations and pack them up; sending them to the cloud side at
certain synchronizing frequency, meanwhile synchronizing
and executing the limited operations that have already been

VOLUME 7, 2019 151697



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

Algorithm 2 Process Synchronization Request
BlockID:blockID SiteBlockLastUpdateSRN:lastSRN
BlockLastReceiveSRN:BLRS BlockOperationList:BOL
if lastSRN [blockID] < BLRS[block] then
set index = BOL.size− 1
repeat
if BOL[blockID][index].timestamp.SRN >

lastSRN [blockID] and
BOL[blockID][index].timestamp.siteID! = blockID
then
ResDataList.push(BOL[index])
index −−

end if
until index equals to −1 or
BOL[blockID][index].timestamp.SRN <=

lastSRN [blockID]
Send back ResDataList
set lastSRN [blockID] = BLRS[blockID]

else
NOOP

end if

filtered at the cloud side, which could greatly reduce the
transmission cost and responsive time.

B. APPLYING SNAPSHOT TO HISTORY OPERATIONS
Though the replicated architecture could greatly reduce the
real-time data transmission cost, and improve response time,
when the operating area moves into a new block, it still have
to synchronize all the operations within that block, which
might result in high latency and peak transmission within a
short period. Sending the accumulated data in batches might
alleviate the peak transmission, but the total transmission size
won’t change and the it might need quite a while to process
the accumulated data to synchronize the user interface to the
newest state.

However, as shown in Figure 2. The node state is only
determined by the execution effects of the last operation,
as the execution effects of previous operations are covered
by the execution effects of the operation ranking last in the
operation list. (e.g, as for the node(11.98,90.15) in Figure 2,
the node’s visible state is changed from ‘‘True’’, to ‘‘False’’,
and to ‘‘True’’ state again, with the addition of add, delete,
and add operations). Thus, we could make improvements on
this property.

1) SNAPSHOT DESIGN
As we have analyzed that, the final state of a point or edge
node is determined by the operation that currently ranged
last in the node’s list. But simply taking the last operation
to replace all the history operations could probably cause
problems. As shown in Figure 3, if we simply take the
last unsynchronized Operation of Node(‘‘12.32,90.28’’) to
replace all the previous operations, the last delete operation

FIGURE 3. A sample of the application of snapshot strategy.

would try to delete a non-existing node; while for the
Node(‘‘12.21,91.33’’), the last delete operation would try
to delete an invisible node, and for the Node(11.98,90.15),
the last add operation would try to add an already existing
node.

However, these possible exceptions won’t change the oper-
ation’s last effective property; the problem could be well
addressed by introducing a complete error-torrent mechanism
at the edge side. We have listed all the possible conditions
with the operation type and node’s state in Table 1. As for the
abnormal conditions (also shown in Figure 3) that could cause
errors, we have designed error handling-solutions shown
in Table 2.

TABLE 1. All the possible conditions by adopting snapshot strategy.

TABLE 2. Error conditions and coping strategies.

As for the first condition of deleting a non-existing node,
firstly we have to guarantee that the node exists, and the
node’s state is currently invisible, and more importantly,
the invisible state of the node is determined by the current
delete operation, that all the effects of the causal before and
concurrent operations with smaller T-Order are ineffective.

151698 VOLUME 7, 2019



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

Therefore, the strategy is to create a node, add the delete oper-
ation with its timestamp to the operation list, and set the node
to the invisible state. As for the second condition, the creation
of nodes could be omitted, while adding the operation with
its timestamp to the operation list to maintain the causal and
T-Order among operations on all sites, and the same strategy
could also be applied to the third condition. More detailed
analysis and proof could be found in section 5.B.

With the proposed error coping strategies, the three types
of error shown in Figure 3 could be well resolved. The
deletion of node (12.32,90.23) would no longer try to delete
a non-existing node, but try to add a node and set the
node’s state to invisible instead, and the deletion of node
(12.21,91.33) would not delete an invisible state, but simply
adding the delete operation to its operation list, and the addi-
tion of node (11.98,90.15) would also avoid to add an already
existed node, but simply put the add operation to the list.

C. OPTIMIZATION ON CONSECUTIVE OPERATIONS
Furthermore, when there’s only a single active site (user)
within its current zone, the site doesn’t have to synchronize
with the cloud side so frequently (the map could be divided
into small blocks), as there are no other sites could affect
its current routes, and its routes won’t affect other active
sites in other blocks either. Besides, as human beings could
only sense limited changes within a certain period of time,
raising the synchronizing frequency to a certain level won’t
make obvious differences to a single user’s perception. Thus,
we could make optimization on these accumulated operations
to reduce transmission costs.

1) COMPRESSION OF CONSECUTIVE OPERATION
As we have analyzed that, a site doesn’t have to synchronize
with the cloud in real-time; the operations could be accu-
mulated and share a consecutive timestamp to reduce the
transmission cost. As the opcnt value increases continuously
for consecutive operations, and lastUpdateSRN value keeps
the same if there are no synchronization actions within the
time of the operation sequence. Therefore, as for a consecu-
tive and non-synchronization interrupted operation sequence,
they could share a timestamp together. And later, at the
cloud side, the timestamp could be parsed and reassigned to
each operation. So, the edge side could keep synchronizing
with the cloud side at a certain frequency, and within the
period, the uninterrupted consecutive operations could share
the timestamp to make data compression.

2) SIMPLIFICATION OF CAR MOVEMENTS
Besides, as for the operations produced by car movements,
they could be stored in a temporary queue, when there’s
the need for synchronization, simply taking the first and the
last operation in both point and edge queue could represent
the movement track of the car within the time. However,
such optimization might cause information loss, as the slight
changes in directions might be lost. Therefore, the number of
operations to be simplified each time should be controlled at a

certain range, that the simplified route doesn’t vary too much
from the previous one, and it won’t violate real physical road
conditions.

V. ANALYSIS OF CORRECTNESS
A. CAUSALITY MAINTENANCE UNDER PARTIAL
REPLICATION
Timestamp is used to identify the causal relation among
operations. As for the centralized timestamp < siteId, opcnt,
lastUpdateSRN, SRN > design, the casual relations among
operations from the same site could be easily identified by
the opcnt value, as the opcnt value increases with the genera-
tion of operations; thus, later generated operations are bound
to have larger opcnt values than their previous operations.
As for operations from different sites, if OPA.lastUpdateSRN >

OPB.SRN , which means at the generation of operation A at its
local site, operation B’s effect has already been shown on A’
site, so we can identify that operation B is causally before
operation A; as for operations having no casually before
relation, we define these operations as concurrent operations.

In the partial replication scheme, if we still keep a single
lastUpdateSRN value for the whole site, when the active
blocks change, we would be unable to locate unsynchronized
operations for the new block as the lastUpdateSRN value
might have skipped many operations, which could cause the
loss of the synchronization of many operations. Considering
that each block actually only synchronizes with the opera-
tions generated at those blocks with same locations of other
sites; blocks with different locations are actually keeping
isolated with each other on the causal relations of opera-
tions. Therefore, we just need to maintain the causal relations
within the blocks sharing the same blockID. Extending the
lastUpdateSRN value to each map block, and maintaining
the lastUpdateSRN value for each block could address the
problem. We could regard each block as an independent site,
and the site with same blockIDs would make synchroniza-
tions within a group. Though all the blocks share the same
SRN value, the SRN value might be nonconsecutive within a
block’s operation, but it can still represent the receiver order
of the operations, and the causal relations could be correctly
maintained within each block.

B. ACHIEVING SAME EFFECTS BY ADOPTING
SNAPSHOT STRATEGY
The correctness of applying the snapshot technique to the
history operations could be easily proved. To prove the cor-
rectness of taking the last operation as an alternative of all the
history operations, we just need to ensure the correctness of
the four following issues;

1. Is the effect of last operation same with all the effects
of history operations? As our operations are added to each
node, and each node’s visible state is determined by the visi-
ble flag, which could only be changed by add and delete oper-
ations. Meanwhile, both the add and delete operation change
the visible flag in the form of coverage, which guarantees that

VOLUME 7, 2019 151699



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

the node’s visible state is only determined by the operation
that ranks last in order.

2. How does the current scheme guarantee selecting
the same operation as the last one on all sites? As we
have defined the order of the non-concurrent operations by
comparing timestamps and concurrent operations by T-Order,
all operations in all sites would observe the same order,
so our scheme could guarantee to select the same ranked last
operation on all sites.

3. What if operations that rank before the last opera-
tion, are synchronized after the current last operation?As
for the operations within a synchronization period, we only
send the last operation in the unsynchronized list, so there
would be no previous operations reach behind the current last
operation in the current unsynchronized operation list. But
there could be possible synchronizing operations blocked in
the previous synchronization period, and for such operations,
we could compare its order with the latest operation, and if its
order is before the current latest operation, it could be added
to the node’s list without doing any actions.

4. What if the operation list is synchronized in several
times, and the effect of the current last operation contra-
dicted the previous unsynchronized node state? We have
listed all the possible contradicting conditions in Table 2,
and designed corresponding error tolerance strategies. As for
deleting a non-existed node, which our scheme choose to
create a node with the timestamp of the delete operation, and
set the node visible state to false. In this way, it reaches the
same execution effects of adding and deleting operation pairs.
Any previous operations are no longer effective, which we
have proved in issue 3. And for adding an already existing
node, adding the operation to node’s list could update the
node’s newest timestamp, and achieve the same effects, and
similar strategies for deleting an already deleted node.

C. CORRECTNESS OF CONSECUTIVE OPERATION
COMPRESSION
As for the accumulated operations within a certain period,
these operations share the same lastUpdateSRN value and
consecutive opcnt value, and their timestamp could be com-
pressed into one, reducing the transmission costs.

The key point in accumulating operations is that different
sites don’t have to synchronize with each other in real time,
that they could tolerate a certain synchronization ratio, like
100ms every time. As long as we keep the synchronization
period at a certain level that, the delay of synchronizations
are hard to be sensed by human beings, the accumulations of
operations won’t affect user experience.

And the only thing we have to prove is that the accu-
mulation of operations doesn’t affect the final consistency
on different sites. The proof process is quite similar to the
snapshot part, as the final state is determined by the last oper-
ation in the list which we have already analyzed. The strategy
of accumulating operations might turn casual-before relation
into concurrent relation among different sites, as the synchro-
nization has been actually delayed, operations that might be

causal before relation, now could be concurrent by adopting
consecutive compression strategy. However, the order among
operations could still be kept the same at all sites by adopting
the timestamp and T-order design, that the final consistency
could still be reached.

As the changes from causal relation to concurrent relation
doesn’t really matter. The possible consequences of delay
might cause deleting the same point or edge, deleting an
already not existed node, and adding the same point or edge,
which actually could also happen in real-time synchroniza-
tions. As for the above conditions, we could adopt the coping
strategies in Table 2 and guarantee consistency.

As the simplification of taking the first and the last oper-
ation in both point and edge list to represent the movement
of the vehicle within the time, which is easy to understand.
As the two operations achieve the same effect as a sequence
of operations, and all these operations are within an unsyn-
chronized period, simplifying the sequence of operations into
two operations won’t affect final consistency.

D. DEALING WITH CROSS-BLOCK EDGE OPERATION
In fact, in the proof of the adjusted timestamp, we made the
hypothesis that all the points and edges are within each block,
that the operations from different sites are totally isolated.
However, there would certainly be cross-block edges when
the routes cut cross blocks. If we still adopt the current
scheme, active users on different blocks might operate on the
same edge, which might break the isolated causality of the
blocks, and bring possible errors.

As for the condition, we could assign a new virtual block
for every two adjacent blocks, assigning these edges to the
virtual blocks, and adopting the same rules for these blocks;
treating them the same as other blocks; and keeping them syn-
chronized independently within each block, and the causality
of these cross-block edge operations could be correctly main-
tained within these virtual blocks.

VI. EXPERIMENTS AND PERFORMANCE
To evaluate our scheme, we implemented a system called
Themis and the baseline system CLIP in Yang’s study [2].
The two systems shared most of the codes, while we differed
them by setting flags for different optimization strategies.
With setting the partial flag, we could turn on/off the partial
replication strategy and compare the performances, and the
same for other optimizing strategies. The web communica-
tion is achieved by web socket approach, and we adopted the
client-pull pattern, that the edge side fetches synchronization
data packages from the cloud side at a certain frequency;
sending operation data packages in real-time or accumu-
lating the operations when testing the optimization of con-
secutive operations. We implemented the routes scheduling
function by adopting Baidu Map APIs; as shown in Figure 4,
users could operate on the routes and maps directly with
adding, deleting and sliding operations. The experiment was
conducted on a CPU i7-7700 3.5GHz, main memory 16G,
windows 10 system machine.

151700 VOLUME 7, 2019



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

FIGURE 4. User interactive interface.

We compared the real-time data transmission and respon-
sive time of remote operations under partial replicated and
non-partial replicated conditions, the execution time of every
1000 remote operations with and without snapshot strategy,
and the compression ratio of consecutive timestamps.

A. PARTIAL AND NON-PARTIAL REPLICATION SCHEME
We profited the partial replication strategy mainly from the
partial mobile commenting scenario, that a site only needs to
synchronize with the server side about its current operating
areas, and synchronize with other areas if the operating area
changes.

To conduct the experiments, we firstly define the partial
replication ratio as,

n∑
i=1

Ncs i

N total ∗n

The NCSi means that the number of sites that is currently
located within the same area with ith site, andNtotal represents
the total sites number that the ith site has to synchronize with
if not adopting the partial replicate strategy, and n represents
the number of sites that has collaborating sites within its area.

Taking partial replicate ratio of 70% as an example, we set
the number of total sites to 11, and we hypothesized that the
operating area of each site is limited within one block, and the
locations of its operating areas are shown in Figure 5. Among
the 11 sites, there are 8 sites that have collaborating sites,
so the value of n is 8. As for the sites 1 to 8, they all have
7 collaborating sites, so the value of the partial replication
ratio is 70%.

To compare the effects of the partial replication strategy,
we locate the sites in the same areas when testing the par-
tial replicated and non-partial replicated scheme; setting an

FIGURE 5. Locating positions of simulating a 70% partial replication ratio.

synchronizing period at 50 milliseconds. And we evaluated
the optimization effects by only comparing the real-time
transmission data size and the average execution time of
remote operations of sites that have collaborating sites within
its current block; as for the sites in Figure 5, the evaluated
sites are numbered from 1 to 8.

We kept the total site number at 11 for similar testing
pressure of all conditions, and set the partial replication ratio
from 10% to 100%. And we simulated human operations by
generating one node or edge operations every second on each
site, and the node and edge operations each take up 50%(as
the routes are usually presented in a single path, and the
number of nodes is roughly the same as the number of edges
in a route).

We ran each test 5 times to avoid possible errors, and
got the real-time data transmission size and the average
remote operation execution time of partial replicated and
non-partial replicated scheme with different partial repli-
cation ratio shown in Figures 6 and 7. As we could see,
that the real-time data transmission size and the execution

FIGURE 6. Size of transmission data with and without partial replication.

FIGURE 7. Average responsive time of remote operations with and
without partial replication.

VOLUME 7, 2019 151701



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

time of remote operation of non-partial replicated scheme
are rather stable, as each site actually keeps synchronization
with another 10 sites in all test conditions. The real-time
data transmission size of partially replicated scheme could be
significantly reduced with the decrease of partial replication
ratio, and the data sizes are always less than or equal to
the non-partial replicated ones. And the execution time of
remote operations in the partially replicated scheme is less
than the time of non-partial replicated scheme in most condi-
tions, and a little bit higher when the partial replication ratio
reaches 90%. Theoretically speaking, the expected average
execution time of partial replication scheme is supposed to be
always less than or equal to the non-partial replicated scheme,
as there are no too many differences at the execution logic on
the edge side. The higher performances at 90% and 100%
could be possibly explained by the extra calculating and
processing costs at the server side, as we ran the experiments
on a single machine.

However, it’s clearly shown in Figures 6 and 7 that, with
the decrease of the partial replicate ratio, our scheme could
significantly reduce the real-time data transmission size and
the responsive time of remote operations comparing with the
non-partially replicated scheme. And in real conditions, all
the cars are actually located very sparsely on maps, and each
car just need to keep synchronizing with very limited cars,
keeping the partial replication ratio at a really low level, and
apparently under such conditions our scheme could greatly
reduce both the transmission and processing costs, reduc-
ing network congestion, improving the responsive speed of
remote operations, and our scheme perfectly matches the
idea of reducing the unnecessary calculations and transmis-
sion at the edge side, while leaving more complicated and
non-highly responsive required calculations at the cloud side.

B. SNAPSHOTTED AND NON-SNAPSHOTTED
COMPARISON
As we have proved in section 5.B, taking the last operation
on the same node is able to represent all the execution effects
of all its previous operations. As for testing the optimization
effects of the snapshot strategy, we define the Repeated Ratio
as,

N added

N total

Nadded represents the operations that are added up to
already existed edge or point node, while Ntotal represents the
total number of operations.

As for the experiment, we set two sites located at different
blocks, one of them generated 1000 operations with increas-
ing repeated ratio, and we recorded the execution time of all
these 1000 remote operations when the other site moved into
the same area.

As shown in Figure 8, with the growth of the repeated ratio,
both the snapshotted and non-snapshotted scheme has cut
down its execution time, which is because, with the growth
of operations, there would be more operations executed on

FIGURE 8. Execution time of 1000 operations.

already existed nodes; there would be less creation of point
and edge nodes and other related data structures, and these
operations could be executed directly by changing the visi-
bility and adding the operations to the operation list, which
certainly cuts down the cost even without adopting the snap-
shot strategy.

However, we could see that the snapshotted scheme costs
less than the non-snapshotted scheme in all conditions. And
to further indicate the compression ratio changes of the
snapshotted scheme of the non-snapshotted one, we pre-
sented the proportion of the snapshotted one occupying of the
non-snapshotted one in Figure 9. We could see that though
both the snapshotted scheme and non-snapshotted scheme
are cutting down its execution time with the increment of
repeated ratio, the snapshotted scheme could continuously
achieve a higher compression ratio on the non-snapshotted
scheme with the repeated ratio goes up.

FIGURE 9. Compression ratio of the time cost.

As for the application of the snapshot strategy, we could
notice in Figure 8 that, the snapshotted scheme performs
all the better or equal to the non-snapshotted one regardless
of the repeated ratio. Meanwhile, the filtering of the last
effective operation in a list might take some costs, but the
process is done at the cloud side, adding no extra costs to
the edge side. Besides, the snapshotted scheme could appar-
ently cut down the transmission costs, as the transmission
data becomes smaller, which we would make no more extra
experiments to prove in this part.

C. IMPROVEMENT ON CONSECUTIVE OPERATIONS
The experiment of compression on consecutive operations is
rather simple. We sent different number of operations using

151702 VOLUME 7, 2019



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

unique timestamp and shared timestamp, and we captured the
data package to analyze its size.

As shown in Figure 10, the shared timestamp scheme could
always achieve a compression ratio of more than 22.5%when
there are more than 10 accumulated operations, and the com-
pression ratio reaches its upper limit of about 25.0% when
there are more than 100 operations. The compression upper
limit is actually determined by the proportion of the size of a
timestamp taking up within in a complete operation, and the
compression ratio would reach a limit with the compressed
operation number goes on. So, to make a trade-off of trans-
mission cost between synchronization frequency, we could
probably choose to make a synchronization when there are
100 operations or when it reaches the synchronization period.

FIGURE 10. Compression ratio of consecutive operations.

As for the strategy of taking the first and last operation
to represent the movement of a vehicle is rather simple and
straight, and its optimization on transmission cost could be
easily modeled as 2/n of its original size(n represents the
total operation number within the period), we would make
no further experimental proof here.

VII. CONCLUSION
In this paper, we introduced and illustrated several new routes
sharing and synchronizing needs under the self-driving sce-
nario. We proposed and implemented the Themis system to
support the needs, making optimization by adopting partial
replication, snapshot, and consecutive compression strate-
gies; and the correctness of all these strategies have been
analyzed and proved in our paper; the Themis system has
achieved significant improvements of performances on all
various aspects compared with Yang’s basic scheme [2].

Besides, our scheme made further optimization on
the partial replication approach by taking snapshot on
covering-effect editing objects. The partial replication design
and consecutive compression strategy could be easily gener-
alized and applied to other large scale collaborative editing
scenarios, and the last-effective snapshot and error-tolerant
design could also be used on other forms of collaborative
object editing with covering effects.

Our technical scheme could well support scheduling while
driving practices, providing better driving and traveling
experiences. Besides, the scheme could also be generalized
to more scenarios like routes scheduling and sharing of
search and rescue robots; the control of AGV(Auto Guidance
Vehicle).

In the future, we would continue to optimize our system
by developing coping strategies to resolve conflicts intro-
duced by long-time disconnection, taking snapshots of local
operations to reduce local data storage, and making more
compression of operations at the cloud side to further reduce
the transmission cost. Meanwhile, we would evaluate our
system with more comprehensive experiments on various
performances, and try to integrate our technical scheme into
self-driving technologies.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their
insightful, and detailed feedback, which improves the presen-
tation and understanding of this work.

REFERENCES
[1] B. Schoettle and M. Sivak, ‘‘A survey of public opinion about autonomous

and self-driving vehicles in the U.S., the U.K., and Australia,’’ Transp. Res.
Inst., Univ. Michigan, Ann Arbor, MI, USA, Tech. Rep., Jul. 2014.

[2] D. Yang, T. Lu, H. Xia, B. Shao, and G. Ning, ‘‘Making itinerary planning
collaborative: An AST-based approach,’’ in Proc. CSCWD, NanChang,
China, May 2016, pp. 257–262.

[3] A. Gunawan, H. C. Lau, P. Vansteenwegen, and K. Lu, ‘‘Well-tuned
algorithms for the team orienteering problemwith time windows,’’ J. Oper.
Res. Soc., vol. 68, no. 1, pp. 861–876, Dec. 2017.

[4] H. Hashimoto, M. Yagiura, and T. Ibaraki, ‘‘An iterated local search algo-
rithm for the time-dependent vehicle routing problemwith time windows,’’
Discrete Optim., vol. 5, no. 2, pp. 434–456, May 2008.

[5] L. Ke, C. Archetti, and Z. Feng, ‘‘Ants can solve the team orien-
teering problem,’’ Comput. Ind. Eng., vol. 54, no. 3, pp. 648–665,
Apr. 2008.

[6] C. Verbeeck, K. Sörensen, E. H. Aghezzaf, and P. Vansteenwegen,
‘‘A fast solution method for the time-dependent orienteering problem,’’
Eur. J. Oper. Res., vol. 236, no. 2, pp. 419–432, Jul. 2014.

[7] Z. Luo, B. Cheang, A. Lim, and W. Zhu, ‘‘An adaptive ejection pool with
toggle-rule diversification approach for the capacitated team orienteering
problem,’’ Eur. J. Oper. Res., vol. 229, no. 3, pp. 673–682, Sep. 2013.

[8] S. Boussier, D. Feillet, and M. Gendreau, ‘‘An exact algorithm for
team orienteering problems,’’ Quart. J. Oper. Res., vol. 5, no. 3,
pp. 211–230, Sep. 2007.

[9] I.-M. Chao, B. L. Golden, and E. A. Wasil, ‘‘A fast and effective heuris-
tic for the orienteering problem,’’ Eur. J. Oper. Res., vol. 88, no. 3,
pp. 475–489, Feb. 1996.

[10] C. Ge, J. Luo, and W. Xin, ‘‘Personalized travel route recommendation
using collaborative filtering based onGPS trajectories,’’ Int. J. Digit. Earth,
vol. 11, no. 12, pp. 1–24, 2018.

[11] Y. Sun, H. Fan, M. Bakillah, and A. Zipf, ‘‘Road-based travel recommen-
dation using geo-tagged images,’’ Comput. Environ. Urban Syst., vol. 53,
pp. 110–122, Sep. 2015.

[12] T. Banerjee, S. Bose, A. Chakraborty, T. Samadder, B. Kumar, and T. Rana,
‘‘Self driving cars: A peep into the future,’’ in Proc. 8th Annu. IEMECON,
Bangkok, Thailand, Aug. 2017, pp. 33–38.

[13] (Jul. 19, 2019). Self-Driving Cars will Create 2 Petabytes of Data, What
are the Big Data Opportunities for the Car Industry, Accessed: Oct. 2019.
[Online]. Available: https://datafloq.com/read/self-driving-cars-create-2-
petabytes-data-annually/172

[14] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[15] P. Bansal and K. M. Kockelman, ‘‘Are we ready to embrace connected and
self-driving vehicles? A case study of Texans,’’ Transportation, vol. 45,
no. 2, pp. 641–675, Mar. 2018.

[16] Google has Developed a Self-Driving Car, Accessed: Oct. 2019. [Online].
Available: https://www.iflscience.com/technology/google-has-developed-
self-driving-car/

[17] (May 18, 2019). How Google’s Self-Driving Car Will Change Everything,
Accessed: Oct. 2019. [Online]. Available: https://www.investopedia.
com/articles/investing/052014/how-googles-selfdriving-car-will-change-
everything.asp

VOLUME 7, 2019 151703



T. Jiang et al.: Themis: AST-Based Lock-Free Routes Synchronizing and Sharing System

[18] A. Meyrav. (Jun. 19, 2019). Self-Driving Cars: The Biggest Development
in Transportation Since the Automobile, Accessed: Oct. 2019. [Online].
Available: https://www.etoro.com/blog/market-insights/self-driving-cars-
the-biggest-development-in-transportation-since-the-automobile/

[19] S. Behere and M. Torngren, ‘‘A functional architecture for autonomous
driving,’’ in Proc. 1st Int. Workshop Automot. Softw. Archit. (WASA),
Montreal, QC, Canada, May 2015, pp. 3–10.

[20] C. A. Ellis and S. J. Gibbs, ‘‘Concurrency control in groupware systems,’’
ACM SIGMOD Rec., vol. 18, no. 2, pp. 399–407, Jun. 1989.

[21] N. Gu, J. Yang, and Q. Zhang, ‘‘Consistency maintenance based on the
mark & retrace technique in groupware systems,’’ in Proc. Int. ACM
SIGGROUP Conf. Supporting Group Work, Sanibel Island, FL, USA,
Nov. 2005, pp. 264–273.

[22] G. Oster, P. Urso, P. Molli, and A. Imine, ‘‘Data consistency for P2P
collaborative editing,’’ inProc. 20th Anniversary Conf. Comput. Supported
Cooperat. Work (CSCW), Banff, AB, Canada, Nov. 2006, pp. 259–268.

[23] C. A. Ellis and C. Sun, ‘‘Operational transformation in real-time group
editors: Issues, algorithms, and achievements,’’ in Proc. CSCW, Seattle,
WA, USA, Nov. 1998, pp. 59–68.

[24] C. Sun, H. Wen, and H. Fan, ‘‘Operational transformation for orthogonal
conflict resolution in real-time collaborative 2D editing systems,’’ in Proc.
CSCW, Seattle, WA, USA, Feb. 2012, pp. 1391–1400.

[25] Agustina and C. Sun, ‘‘Dependency-conflict detection in real-time col-
laborative 3D design systems,’’ in Proc. CSCW, San Antonio, TX, USA,
Feb. 2013, pp. 715–728.

[26] J. Zhang, T. Lu, H. Xia, B. Shao, and N. Gu, ‘‘ASTS: A string-wise address
space transformation algorithm for real-time collaborative editing,’’ in
Proc. IEEE 21st Int. Conf. CSCWD, Wellington, New Zealand, Apr. 2017,
pp. 162–167.

[27] H. Xia, T. Lu, B. Shao, G. Li, X. Ding, and N. Gu, ‘‘A partial replica-
tion approach for anywhere anytime mobile commenting,’’ in Proc. 17th
ACM Conf. CSCW Social Comput., Baltimore, MD, USA, Feb. 2014,
pp. 530–541.

[28] L. Chang, W. Sun, and W. Zhang, ‘‘Review of tourism route planning,’’
CAAI Trans. Intell. Syst., vol. 14, no. 1, pp. 82–92, 2019.

[29] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile
edge computing—A key technology towards 5G,’’ ETSI, Sophia Antipolis,
France, White Paper 11, pp. 1–16, 2015, vol. 11, no. 11.

[30] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. V. Berghe, and
D. Van Oudheusden, ‘‘A personalized tourist trip design algorithm for
mobile tourist guides,’’ Appl. Artif. Intell., vol. 22, no. 10, pp. 964–985,
2008.

[31] G. Ning, Q. Zhang, J. Yang, and Y. Wei, ‘‘DCV: A causality detec-
tion approach for large-scale dynamic collaboration environments,’’ in
Proc. Int. ACM Conf. Supporting Group Work, Sanibel Island, FL, USA,
Nov. 2007, pp. 157–166.

[32] B. Shao, L. Du, and G. Ning, ‘‘A sequence transformation algorithm
for supporting cooperative work on mobile devices,’’ in Proc. CSCW,
Savannah, GA, USA, Feb. 2010, pp. 159–168.

[33] A. Silberschatz and Z. Kedem, ‘‘Consistency in hierarchical database
systems,’’ J. ACM, vol. 27, no. 1, pp. 72–80, Jan. 1980.

[34] T. A. Funkhouser, ‘‘RING: A client-server system for multi-user virtual
environments,’’ in Proc. SID, Monterey, CA, USA, Apr. 1995, p. 85.

[35] O. Ulusoy and G. G. Belford, ‘‘Real-time lock-based concurrency con-
trol in distributed database systems,’’ in Proc. ICDCS, Yokohama, Japan,
Jun. 1992, pp. 136–143.

[36] S. Zhao, D. Li, T. Lu, and N. Gu, ‘‘Back to the future: A hybrid approach to
transparent sharing of video games over the Internet in real time,’’ in Proc.
CSCW, Hangzhou, China, Mar. 2011, pp. 187–196.

[37] H. Chen, L. Chen, andG.-C. Chen, ‘‘Effects of local-lagmechanism on task
performance in a desktop CVE system,’’ J. Comput. Sci. Technol., vol. 20,
no. 3, pp. 396–401, May 2005.

TE JIANG received the bachelor’s degree in Inter-
net of Things engineering from the Zhejiang Uni-
versity of Technology, in 2017. He is currently
pursuing the master’s degree in computer science
with Fudan University, Shanghai, China.

His current research interests include collabora-
tive computing and social computing.

TUN LU received the Ph.D. degree in computer
science from Sichuan University, in 2006. He was
a Visiting Scholar with the HCI Institute, Carnegie
Mellon University, in 2015. He is currently an
Associate Professor with the School of Computer
Science, Fudan University.

He has published more than 60 peer-reviewed
publications in prestigious journals and confer-
ences such as CSCW, CHI, WWW, NIPS, Ubi-
Comp, and so on. His research interests include

computer supported cooperative works (CSCW), social computing, and
human–computer interaction (HCI). He shared a best paper award at
CSCW’15 and an Honorable Mention Award at CSCW’18. He is a Senior
Member of China Computer Federation (CCF) and a member of ACM. He is
a Standing CommitteeMember of CCF Technical Committee of Cooperative
Computing. He has been active in professional services by serving as a
PC members (e.g., GROUP’18, CRIWG’17 & 2018, CSCWD’16), a PC
Co-Chairs (e.g. ChineseCSCW’17 & 18, CSCWD’10), an Associate Chairs
(e.g. CHI’19 & 20, CSCW’19 & 20), a Guest Editors (e.g. International
Journal of Cooperative Information Systems), and a Reviewers for many
well-known journals and conferences.

NING GU received the Ph.D. degree in computer
science from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, China, 1995.
He is currently a Professor and the Director of the
Cooperative Information and Systems Laboratory
School of Computer Science, Fudan University,
China.

His current research interests include CSCW
and collaborative computing, social computing,
and human computer interaction.

151704 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	ITINERARY PLANNING PROBLEM
	SELF-DRIVING WITH EDGE COMPUTING
	REAL-TIME COLLABORATION AND CONSISTENCY MAINTENANCE

	PROBLEM AND MODEL DEFINITION
	ITINERARY PLANNING UNDER SELF-DRIVING SCENARIO
	TECHNICAL CHALLENGES AND SOLUTIONS
	BASIC AST MODEL
	MODEL DEFINITION AND NOTATIONS
	BASIC UNITS AND PRIMITIVE OPERATIONS
	BASIC DATA STRUCTURE
	TIMESTAMP AND CAUSALITY
	T-ORDER FOR CONCURRENT OPERATIONS


	TECHNICAL SCHEME
	PARTIAL REPLICATION
	EXTENDED STRUCTURES AND NOTATIONS
	DATA SYNCHRONIZATION UNDER PARTIAL REPLICATED ARCHITECTURE

	APPLYING SNAPSHOT TO HISTORY OPERATIONS
	SNAPSHOT DESIGN

	OPTIMIZATION ON CONSECUTIVE OPERATIONS
	COMPRESSION OF CONSECUTIVE OPERATION
	SIMPLIFICATION OF CAR MOVEMENTS


	ANALYSIS OF CORRECTNESS
	CAUSALITY MAINTENANCE UNDER PARTIAL REPLICATION
	ACHIEVING SAME EFFECTS BY ADOPTING SNAPSHOT STRATEGY
	CORRECTNESS OF CONSECUTIVE OPERATION COMPRESSION
	DEALING WITH CROSS-BLOCK EDGE OPERATION

	EXPERIMENTS AND PERFORMANCE
	PARTIAL AND NON-PARTIAL REPLICATION SCHEME
	SNAPSHOTTED AND NON-SNAPSHOTTED COMPARISON
	IMPROVEMENT ON CONSECUTIVE OPERATIONS

	CONCLUSION
	REFERENCES
	Biographies
	TE JIANG
	TUN LU
	NING GU


