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ABSTRACT To achieve load disaggregation in non-intrusive load monitoring (NILM) system, a load
event matching method based on graph theory is proposed, which is built on the improved Kuhn-Munkras
algorithm. In this method, firstly, an adaptive fitting method using time window is applied to detect the
load whether it is switched on and/or off. Particularly, to avoid the fluctuation of load signatures, the kernel
density estimation is then built by a number of the independent features of the load switching on, including
the active and reactive power signatures. The distribution of load signatures is thereby obtained, allowing the
load event to be classified by its features. The load matching, which is based on the improved KM algorithm,
is then utilized to resolve the matrix formed by the matching probability of the load event. Similarly, load
identification can also be realized by matching the features of events with the signatures in the database.
Finally, the experimental results using datasets of our lab and REDD demonstrate that the proposed method
can obtain the desirable result for load event matching, and promote the performance in load identification.

INDEX TERMS Non-intrusive, load event, load matching, KM Algorithm, load identification.

I. INTRODUCTION
A non-intrusive load monitoring (NILM) system, of which
the measurement device is installed at the main electric power
input, has become a mainstream technology to know the
energy consumption of individual appliances in a household.
Generally speaking, there are several significant advantages
of NILM [1] in contrast to the intrusive load monitoring:
(1) it’s the convenient way to install at main electric power
input, instead of the voltage sensor and current sensor in each
load, thus reducing the cost [2] and increasing the security
of measuring devices; (2) it can help build the ongoing smart
grid since the smart meter technology of NILM enables the
prediction of the power demand and the decision making
for policy makers [3]; (3) it can achieve easy maintenance
and extension when the new appliances join, and support
the revamping of appliances. Therefore, the study of NILM
becomes a hot trend for research institutions.

For NILM, the existing methods can be categorized into
three major groups: optimization method, supervised and
unsupervised methods. The optimization method [4], [5]
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is a straightforward way to solve the load disaggregation
task, which is to compare the extracted load signatures
with the features in database and obtain the minimal error
by optimization strategy. In recent research, optimization
model is improved by various methods, such as optimized
support vector regression [6], optimized bird swarm algo-
rithm [7], genetic algorithm [8], and particle swarm opti-
mization method [9]. The supervised disaggregation methods
require existing specific information of devices and need
initial training phase. Particularly, it depends on the adequate
labelled data for learning the model. Generally, the funda-
mental of this type of recognition methods is to transform
the load signature into a feature space for classification [10],
such as Bayesian classifiers [4], Support Vector Machine
(SVM) [11], and Artificial Neural Network (ANN) [12] as
well as its extensions [13], [14]. The unsupervised meth-
ods [15], which can operate without a priori information and
reduce the intrusiveness of the training step, take the cluster as
its strategy for recognition, including HiddenMarkovModels
(HMMs) [16] and its extensions [17]. Moreover, some liter-
atures take several algorithms into consideration to promote
the performance of NILM, thus obtaining the comprehensive
result as discussed in [18].
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FIGURE 1. Flow chart of the proposed method.

Since there are many methods for NILM, each method has
its ability to achieve load identification. However, some mod-
ern appliances such as intelligent air-conditions are taken into
using in the smart home. This particular type of load may not
have the fixed signatures, thus making some of NILM meth-
ods fail to identify these loads. Therefore, several methods are
proposed to deal with the modern appliances, such as deep
learning-based technique [19], particle filtering method [20]
and KL-based expansion [21]. These methods in general
can also cope with the following appliances [22], [23]: single
state, multi-state, and continuously varying appliances [24],
among which multi-state appliances are more common and
more complicated to be identified. Nevertheless, those above
methods may fail to match the load events, especially when
multiple appliances work together. The optimization method
is not capable to identify the aggregated appliances as the
number of load increases, especially for loads with overlap-
ping signatures. Though the supervised methods have high
accuracy, it’s hard to be implemented for practical household
data since they need a lot of training. As for unsupervised
methods, they usually have high computational complexity
and are prone to fall into local optimum.

In order to alleviate the complexity of load disaggre-
gation, this paper presents a different approach based on
graph theory. The graph-based method is potential to solve
the problem of NILM, which is used in building mathe-
matic model [25]–[29]. The proposed method transforms the
matching problem of load on-off events and load identifica-
tion process into a bipartite graph model. With the kernel
density probability as the weights of the bipartite graph,
the improved Kuhn-Munkras algorithm is then used to solve
the matching matrix, thus obtaining the optimal matching and
finding the type of load in the database.

The rest of the paper is organized as follows. Section II
introduces the procedures of the proposed method, including
load event detection, load signature representation, statistical
model building of load signature, load event matching, and

load recognition. The experiments for verification are then
tested by using our lab and the REDD datasets in section
III. Finally, the conclusions of the work are drawn in the last
section.

II. MATERIALS AND METHODS
The load event almost consists of the status of switching on
and switching off, i.e., the switching-off event is usually in
pair with the switching-on event. In this paper, this match
mechanism is utilized to implement the load event match-
ing. Generally, the proposed method consists of load event
detection, load signature representation, signature modelling
and the procedures using improved KM algorithm to do the
matching of load events as well as load recognition, as seen
in Fig. 1. It should be noted that in Fig.1, the ‘‘Px and Qx’’
denotes the active power and reactive power signature of the
load when it is switched on, and the ‘‘Py and Qy’’ denotes
the power signature when the load is switched off. In the
following sections, we will discuss them in detail.

A. LOAD EVENT DETECTION
Load event detection is usually performed to get the status
change of appliance whether it’s switched on or off. Roughly
speaking, it is similar to the edge detection in load power
curve, as seen in Fig.2. The active power P undergoes almost
a signification change, thus considering as the appliance is
switched on or off, as seen the blue curve for example.

In this work, the adaptive method for load event detection
is proposed by using the time window. The fundamental idea
is to fit the active power data in the window. Assuming that
there is a load event happened, the data in two sides of the
occurrence point must be quite different, whereas in each
side, the power data does not change significantly. Thus,
the load detection can be implemented by the fitting method.

Let {xi}i=1∼N represents the data samples in the time
window, which can be divided into two categories. The load
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FIGURE 2. Fitting method for load event detection.

events in the window are detected by:

yt = β0 + β1xt + et , t is in the time window, (1)

where t is a time point; β0, β1, et denote a constant term,
a slope term and an error term respectively. Obviously, when
the appliance works in steady state, its slope in the window
is usually considerably stable. On the contrary, when there is
an appliance being switched on or off, it will make relatively
large error et , and the β1 will vary during the window moves,
as seen the black curve in Fig.2.

The occurrence point can be then obtained by the fitting
method. Let the data samples in the detection window be
divided into two classes by the time k: classC0{x1, x2, . . . , xk}
and class C1{xk+1, xk+2, . . . , xL}, and the objective function
of the method is defined as:

mink


k∑
i=1

(xi−m(C0))2 +
L∑

i=k+1

(xi−m(C1))2

 (2)

where L is the length of the window; m(C0) and m(C1) are
the centers of the two classes as follows

m (C0) =
1
k

k∑
i=1

xi (3)

m (C1) =
1

L − k

L∑
i=k+1

xi (4)

It’s noted that when there is a curve appearing the climbing

status, the occurrence point is determined if
k∑
i=1

(xi−m(C0))2

is larger than a threshold.

B. LOAD SIGNATURE REPRESENTATION
Load signatures [30] are inner characteristics of the appliance
during its switching on or off and its working. In general,
the active power P is considered as the physical quantity of
greatest interest [31], since it can directly reflect the energy
consumption. The reactive power Q is another important
parameter which can determine the type of appliance, such
as inductivity, capacitance or resistance of electrical devices.

Let v(t) and i(t) are the transient voltage and current in
time t , and the active power and reactive power can be defined
as follows:

P =
T∑
t=0

v (t) i (t) (5)

Q =
T∑
t=0

v
(
t +

1
4
T
)
i (t) (6)

where T is a period obtained from the sampling frequency.
Usually, these two features are the typical steady-state

load signatures used in load identification [32], [33]. What’s
more, the combination of feature P and Q constitutes the P-Q
plane [32], which has also become the most commonly used
plane in load identification.

C. STATISTICAL MODEL OF LOAD SIGNATURE
In this part, the statistical model is built in order to avoid
the obtained signatures deviating from the actual signa-
tures of load event, thus promoting the performance of anti-
interference of voltage and current fluctuations.

Let the load events be classified into two types. One is the
events of switching on, which is defined as a node set X , and
the other is the load events of switching off, which is defined
as a node set Y . The matching problem between these two
sets can be then solved by graph theory, as seen in the next
section.

Let {Ai (i = 1 ∼ n)} represents the appliances
needed to be identified in the test scene. The active power
of appliances switched on is collected as a set Px =
{Px1,Px2, . . .Pxn}. Among them, Pxi is considered as the
independently obtained active power from the appliance i.
In general, the obtained value of Pxi is followed by Gauss
distribution. Similarly, the set of active power changes corre-
sponding to switching off can also be obtained through load
event detection, and denoted as Py = {Py1,Py2, . . .Pyn}. The
reactive power changes of switching-on event is defined as set
Qx = {Qx1,Qx2, . . .Qxn}, and the reactive power changes of
switching-off event is defined as setQy = {Qy1,Qy2, . . .Qyn}.
In order to estimate the similarity of signatures P and Q

respectively during the matching process, the Parzen window
algorithm of kernel density method is used to build the prob-
ability density f (x).
Supposing that x1, x2, x3 ... xn are a set of independent

samples, the kernel density of set {x} is estimated as:

fh(x) =
1
nh

n∑
i=1

K (
x − Xi
h

), (7)

where n denotes the number of samples, h represents the win-
dow width, and K (·) is the kernel function. Generally, kernel
function decides the distribution characteristic, and window
width can affect the smoothness of the density function. Here,
Gaussian function is chosen in this work as follows:

K (u) =
1
√
2π

e

(
−

1
2 u

2
)

(8)
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It is worth noting that according to Gaussian distribution
N (µ, σ ), the probability density function f (x) is closely
related to the standard deviation σ of the samples. So the
optimal width of window h is estimated as:

Ĥ= 1.06σn−
1/5 (9)

D. LOAD EVENT MATCHING
1) KM ALGORITHM
KM algorithm [34], aimed at finding the best matching, is a
method based on bipartite graph. Given two acquired set of
measurements,X = {X1,X2, . . .Xn} and Y = {Y1, Y2, . . . , Yn},
a graph G can be defined by the matching nodes, in which
each node of X has its corresponding node in Y .

Assuming that M is a match of a graph G, the KM algo-
rithm is employed to get the optimal matching that makes
the edge weights

∑
{ω} of M maximum. Without loss of

generality, the procedure of KM algorithm can be concluded
as follows:

1: < initializing the value of feasible vertex labeling >
2: for i = 1→ n do
3: lx (x) and ly (y) record the vertex label values of nodes

in set X and Y respectively
4: lx (xi) is set as the maximum weight of all edges e (xi,

yi) associated with xi, ly(yi) = 0
5: end for
6: < find the perfect matching of equal subgraph with

Hungarian algorithm >

7: < check: lx (xi)+ ly (yi) ≥ ω(xi, yi) >
8: if not, revise the value of the feasible vertex label for

accessed vertex x, its feasible label is subtracted from d ; for
all visited vertex y, the feasible label is added d :

d = minxεX ,yεY {l (x)+ l (y)− ω (x, y)} (10)

9: end if
10: iterate step6-step10 until the perfect matching of the

equal subgraph is found.

2) LOAD EVENT MATCHING BASED ON IMPROVED KM
ALGORITHM
Although the KM method is a good solution for matching,
it is necessary to do some modification for real problems,
especially in the weight of matching.

Assumed that the two bipartite graphs G(X , Y , W ) and
H (X , Y , W ) are constructed to represent matching process
of active power and reactive power respectively in this work,
where X and Y have been defined as the set of the load
switching-on event and load switching-off event respectively;
W denotes the weight.

Let M (xi, yj) be a matching of Xi and Yj. The matching
probability of load events corresponding to X , Y is indicated
by the weight ωG(xi, yj) and ωH (xi, yj), which belong to
MG(xi, yj) andMH (xi, yj) respectively. In general, the value of
the probability can reflect the similarity between the event Xi
and Yj. Therefore, the best solution of matching obtained by
the KM algorithm ensures that the sum of the edge weights

reaches maximum, that is, the load switching-on signatures
are most similar with switching-off signatures.

Let the matching probability of active power and reac-
tive power be a two-dimensional matrix [fji]n×n and [hji]n×n
respectively, where an element in the j-th row of the matrix
denotes the signature’s probability of a switching-off event,
and the values are obtained from the signatures’ distribution
of the switching-on events. To avoid the fluctuations of volt-
age and current which can make the matching probability of
a single matrix [fji]n×n or [hji]n×n cause errors, the optimal
load matching model can be reformulated as:

{M (i, j)} = max(α
n∑

i,j=1

fji + β
n∑

i,j=1

hji), (11)

where {M (i, j)} is the matching result; i represents the
sequence of switching-on events; j represents the sequence
of switching-off events; and the index i and j are taken only
once during calculation. α and β, which are heuristically
chosen, are the weight of [fji]n×n and [hji]n×n respectively,
with (α + β = 1) to trade off the factor of active power
and reactive power. For convenience, the matrix [kji] n×n is
defined as the matching matrix of {M (i, j)}. Thus, the impact
of voltage and current fluctuations can be alleviated during
the solution using the improved KM method.

In order to determine the values of α and β, the uncertainty
of multiple samples belonging to load signature S is defined
as µ(S)

µ (s) =

√∑n
k=1 (sk − D(S))

2

n (n− 1)
, (12)

where D(S) is the average value of the signature S from
multiple samples; and sk (k = 1 ∼ n) is the independent
sample k of signature S.
To distinguish load signatures of different appliances,

the uncertainty µ of a signature is used to represent the
average distance between the cluster that appliance a belongs
to and the clusters of other devices, denoted as µa. Thus,
the discriminability coefficient g of the signature S between
appliance a and appliance b is defined as [35]:

gab (S)=


|Da (S)−Db (S)|−µa (S)

max {µa (S) , |Da (S)−Db (S)|}
a 6=b

0 a=b

 , (13)

where Da and Db are the average values of load signature
belonging to a and b respectively. Notably, gab (S) is zero
when a and b are the same device. Then, the discriminability
index Gdis of the load signature S can be obtained from
‘‘(13),’’ as:

Gdis (S) =

∑m
a=1

∑m
b=1 gab (S)
m2 . (14)

Here, m is the number of appliances, and the discriminability
of load signatures can be indicated by the difference between
discriminability index and one.
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FIGURE 3. Framework of load recognition.

Thus, the values of α and β can be obtained as:

α

β
=
GPdis
GQdis

, (15)

whereGPdis andGQdis are the discriminability index of active
power and reactive power respectively. Since α + β = 1,
the corresponding weights of P and Q features can be finally
worked out according to ‘‘(15),’’.

E. LOAD RECOGNITION
In our model, the best matching between the switching-on
event and the switching-off event is achieved by the improved
KM algorithm. Similarly, the load recognition also can be
implemented through the matching between signatures of the
load event and signatures in the database. Thus, the proce-
dures of the improved KM method can be used to obtain the
final identification. For more understanding, the recognition
framework is illustrated in Fig. 3.

III. RESULTS AND DISCUSSION
In this section, we shall present the results of the proposed
method by using our lab test data and REDD dataset for
verification. Notably, α and β are chosen differently accord-
ing to the different test scenario. The whole algorithm is
implemented by the C language program in our equipment
as seen in Fig. 4, of which the data sampling rate is 8 kHz.
And it calculates the signatures per two seconds. The data
and results are stored in the MySQL database for the test.

A. TEST SCENARIO
In this test, the data is from our lab, where the devices
contain air conditioner, electric heating, electric kettle, TV,
microwave oven, hair drier, rice cooker, and induction cooker.
The signatures are obtained by switching on and off each
appliance for several times, and the P-Q signatures of each
appliance are shown in Fig. 5 and Fig. 6. It can be seen that
the P-Q signatures have their own distributions. Particularly,
some of them have partial overlaps, such as the signatures of
induction cooker and electric kettle. The circles drawn in the
Fig. 5 and Fig. 6 can help find the areas of the probability

FIGURE 4. Measurement equipment of our lab.

FIGURE 5. P-Q signatures of appliances during on status.

FIGURE 6. P-Q signatures of appliances during off status.

density. It can be seen that the distributions of some appli-
ances aremore centralized, whereas some aremore dispersed.
Here, the range of the active and reactive power information
of single appliance is recorded in Table 1, and it’s regarded
as the load signature database.

Figure 7 illustrates a test by switching on and off the appli-
ances, where the real matching sequence of the appliances
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TABLE 1. Household load power information.

FIGURE 7. Active and reactive power changes of the tested appliances.

switching on and off are: X1-Y7, X2-Y6, X3-Y4, X4-Y2,
X5-Y3, X6-Y1, X7-Y8, X8-Y5. In this sequence, X1∼X8 rep-
resents the air conditioner, electric heating, electric kettle, TV,
microwave oven, hair drier, rice cooker, and induction cooker,
respectively. Notably, the fluctuation of signature occurs dur-
ing the appliances work together as seen in Fig.5 and Fig.6.
On the basis, α and β are set as 0.60 and 0.40 respectively
according to ‘‘(15),’’.

Table 2 shows the load events detected by our method. It’s
noted that the length of the event detection window in this test
is 10 sampling points, and the threshold of the slope term is set
to be 20. However, the difference of active power around the
occurrence point may deviate from the actual load signature
to a certain extent, especially for appliances with climbing
power characteristics, such as air conditioners. To our knowl-
edge, it may increase the complexity for load event detection,
load event matching, and load identification. Nevertheless,
our method can obtain the accurate occurrence point when
the climbing shape occurs, as shown in Table 2. This is the
key step for the following load signatures extraction.

In addition, to estimate the similarity of load event, a num-
ber of tests about each appliance switching on and off are
carried out, thus obtaining the sets of load signature data.
Here, each test of the appliance is independent from the
others. The probability distribution is then drawn by using
the kernel density function according to ‘‘(7),’’, as shown

TABLE 2. Load events of the tested appliances.

FIGURE 8. Distribution curves of active power.

in Fig. 8 and Fig. 9. It can be seen that the probability
distributions of most appliances are followed by Gaussian
distribution, although there exist some exceptions, of which
the distribution presents several peaks. This can be explained
that the appliance may have multiple states during it works.

Table 3 lists the average values from the steady work state
of the appliance, which are extracted as the signatures of
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TABLE 3. Signatures of load events.

FIGURE 9. Distribution curves of reactive power.

FIGURE 10. Active power matrix.

load. Notably, the negative sign of active power denotes the
switching off event. So, the signatures should be inverted
during matching.

Figure.10 and Figure.11 show the intermediate matrixes
to match active power and reactive power respectively. It is
calculated by substituting the power of switching-off events
into the power probability curve of the switching-on events.
From the result, it can be seen that the differences between the
weights in each column of active power matrix is larger than
them of reactive powermatrix, which demonstrates that active
power is more reliable than reactive power to distinguish
different load event.

Figure.12 (a) shows [kji] constructed by ‘‘(11),’’. The
value of each row can reflect the similarity between the

FIGURE 11. Reactive power matrix.

FIGURE 12. (a) Sum matrix; (b) matching result of the sum matrix.

switching-on event and the switching-off event. In most
cases, it can be considered that the switching-on appliance
and the switching-off appliance with the greatest possibility
belong to the same appliance. The final result matrix using the
improved KM algorithm is shown in Figure 11(b). For more
understanding, the load event matching result can be listed as
follows:M (x1,y7),M (x2,y6),M (x3,y4),M (x4,y2),M (x5,y3),
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FIGURE 13. Load identification matrix.

FIGURE 14. Identification result matrix.

M (x6,y1),M (x7,y8),M (x8,y5). In this matching set, the total
edge weight of the optimal matching reaches 4.252. The
result is almost the sum of the largest value of each column,
except the fifth column. This implies that the improved KM
algorithm is to obtain the optimal solution within a defined
space of all appliances instead of local optimization. So, our
method can cope with the situation that the load switched
off is wrongly matched by the single matching, thus pro-
moting the performance of load disaggregation. Taking this
test as an example, the optimal matching for X5 in Fig.12(a)
corresponds to Y7, whereas considering all the appliances,
the optimal matching for X5 is Y3. Eventually, the test
result coincided with the actual load events of the tested
appliances.

Figure.13 shows the load identification matrix accord-
ing to the same load recognition method introduced above.
It can be seen that, the event Y1, Y2, Y4, Y6, Y7, Y8 can
be determined directly, whose matching weight is equal to
two. So the rest event Y3 and Y5 are easy to be matched
by KM algorithm. Finally, Figure.14 shows the identifica-
tion result obtained by using KM algorithm, and this opti-
mal matching result is consistent with actual test scenarios.
This demonstrates that our method is very effective for load
recognition.

FIGURE 15. Performance of the proposed method and HMM model.

B. REDD DATASET
In order to further verify the proposed method, this paper
also use several groups data of house 3 in the REDD dataset
for comparison. This test contains twelve different appli-
ances such as furnace, refrigerator, lightings, washer-dryer,
microwave, and smoke-alarm. In this dataset, there also exist
somemulti-state appliances such as the furnace and refrigera-
tor. Here, the value of α and β are set as 0.45 and 0.55 respec-
tively according to ‘‘(15),’’.

For the sake of fairness, our method is compared with the
common used HMM model which is to detect the system
mode with certain probability by utilizing the relevant infor-
mation of the system [36]. The results of this method and
the HMM model in this test are shown in Fig.15. It can be
seen that the proposed method can identify loads effectively
compared with the HMM model, and almost has desirable
matching and identification results.

IV. CONCLUSION
In this paper, an effective NILM approach built on the emerg-
ing graph-based method is proposed, which contains three
steps. The first step is to detect load event by using an adaptive
load event detection method. Then, the statistical model of
load signatures is built, which draws upon the signatures
extracted from the load switched on. Particularly, the proba-
bility of load event matching is utilized to form the matching
matrix, thus improving the KM algorithm to solve the matrix
of the load event matching and load identification. Finally,
experimental results on the REDD dataset and our lab’s data
show that the proposed method has a desirable performance
in the load event matching and load identification. In the near
future, the load identification matrix in our method will be
consisted of more appliances and their corresponding load
events when the quantity of appliances increases, and then
apply our model into wide applications.
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