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ABSTRACT Real time dynamic magnetic resonance imaging (dMRI) requires that the image acquisition
and reconstruction are carried out simultaneously and the reconstruction speed catches up with imaging
speed. In this paper, a novel compressed sensing (CS) reconstruction algorithm for real time dynamic MRI is
proposed. The first frame with more k-space measurements is reconstructed precisely as the reference image.
Different from previous methods who start their reconstructions from zero-filled k-space measurements,
a Combined Fourier Transform (CFT) algorithm is implemented in our method, which can dynamically
aggregate the k-space measurements from previous sampled frames to create a highly accurate predictive
image for the current frame. We then combine the CFT algorithm with a 3D path-based dictionary leaning
algorithm, which is named as DLCFT in our work for fast real time dMRI reconstruction. The proposed
algorithm is compared with four state-of-the-art online and offline methods on two real and complex
perfusion MR sequences and a real functional brain MR sequence. Experimental results show that the
proposed algorithm outperforms these methods with faster convergence and higher reconstruction accuracy.

INDEX TERMS Dynamic magnetic resonance imaging, compressed sensing, combined Fourier transform,
dictionary leaning.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is a widely used imaging
modality in hospitals for diagnosis due to its superiority
in non-invasion and high contrast resolution of soft tissue.
However, current MRI facilities have several shortcomings,
one of which is the relatively slow imaging speed, particularly
in the field of dynamic magnetic resonance imaging (dMRI).
A dMRI sequence with high spatiotemporal resolution could
be time consuming due to the nuclear physics mechanism [1].
Slow imaging speed will cause motion artifacts, which still
constitutes the main challenge to dMRI, such as dynamic
cardiac cine. Patients are requested to hold their breath in
case of artifacts during the scan. However, many patients are
unable to sustain breath-hold for a long time, so the data
scanning process must be accelerated.

Undersampling in k-space to reduce the number of mea-
surements is a feasible way to improve imaging speed,
but it often leads to aliasing artifacts under the Nyquist
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sampling criterion. How to reconstruct high-resolution
dynamic MR images from undersampled k-space measure-
ments is an underdetermined problem that is still in challeng-
ing at present.

It is well known that most natural signals are sparse in
the transform domain that can be expressed by a small
number of parameters or features. For example, in Fourier
transform domain, an image can be represented by a small
number of transform coefficients; in a video sequence, adja-
cent frames can be represented by a reference image and a
residual image using motion compensation techniques. dMRI
sequences contain abundant redundancy in spatiotemporal
dimensions, which promotes the compressed sensing (CS)
technology wildly used in MRI reconstruction [2]–[10].
According to the theory of compressed sensing, a signal of
length n can be accurately reconstructed from a small number
of incoherent observations (k + k log n, k is the sparsity
of the signal) by a compressed sensing and reconstruction
framework, as long as the measurement matrix is incoher-
ent with the transform base and satisfies restricted isometry
property (RIP) [11], [12].
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FIGURE 1. Schematic of the proposed algorithm.

CS dMRI reconstruction methods can be implemented
in offline mode or online mode. Offline methods need to
obtain the whole frames before reconstruction, which takes
up a lot of time. Typical offline methods such as motion
correction [13]–[15], low rank approximation [16]–[18],
and dictionary learning [19]–[21], utilize the information and
sparsity characteristics of entire dataset for high-resolution
recovery, while their computational time is relatively long,
which limits their applications in real time situations. Online
methods implement their programs only on the previously
sampled data or reconstructed images, which saves the com-
puting time. Online mode is more suitable for real time
dynamic MRI, while the reconstruction accuracy cannot be
guaranteed due to the lack of prior information of the whole
dataset.

Online methods can implement their programs in parallel
or serial mode. In serial mode, a frame of image is recovered
using the prior information from adjacent frames, which is
a common strategy among exiting online schemes. How-
ever, it will lead to error accumulation on a long dMRI
sequence. Chen et al. [22] propose a Dynamic Total Varia-
tion (DTV) method to solve the error accumulation problem,
who uses the first frame with more measurements as a refer-
ence frame, and reconstructs the later frames one by one in
parallel mode. Wang et al. [23] extend this parallel mode to
arbitrary n-frame structure flexibly using Dictionary Learn-
ing and Dynamic Total Variation (DLDTV) as spatiotempo-
ral regularizations, which greatly improves the accuracy of
reconstruction.

All these CS-dMRI strategies focus on the sparsity from
the measurements in adjacent frames or the whole dMRI
sequence, while these measurements are scattered randomly
in the whole dMRI sequence. If a frame to be recon-
structed can aggregate the k-space measurements from sam-
pled images and give a highly accurate predictive image

before the CS reconstruction, it will greatly shorten the recon-
struction time.

In this paper, we proposed a novel algorithm named Dic-
tionary Learning and Combined Fourier Transform (DLCFT)
for compressed sensing dMRI reconstruction (see fig. 1).
The 1st frame is sampled with more measurements and can
be reconstructed by any online method. In the 1st step,
we choose DLDTV algorithm to reconstruct the first two
frames together, which will be explained in the experiment
part. In the 2nd step, as soon as the t th frame (t >2) is sam-
pled, we add its k-space measurements to the reconstructed
2nd frame and use a Combined Fourier Transform (CFT)
algorithm to generate a highly accurate predictive image
before reconstruction. In the 3rd step, a 3D path-based dic-
tionary leaning algorithm is implemented on the subset of
the 1st image and the predictive image for fast reconstruction.
Numerical experiments conducted on two real and complex
perfusion MR sequences and a real brain MR sequence
validate the effectiveness and efficiency of the proposed
method.

The rest of this paper is organized as follows.
Section 2 reviews the background and some sparsity mod-
els in CS dMRI. Section 3 details the DLCFT algorithm.
Section 4 gives experimental procedures and compares our
method with four state-of-the-art online and offline methods.
Section 5 concludes the whole paper.

II. NOTATIONS AND RELATED WORK
A. IMAGING MODEL
Suppose a dMRI sequence is denoted as x=[x1, x2, . . . , xT]
where xT is the T th frame image, and its k-space partial
sampled Fourier measurements is denoted as y=[y1, y2, . . . ,
yT]. X ∈ RN×T and y ∈ CM×T , where M is the number
of k-space measurements and N is the number of pixels in
each frame. The vector form of the imaging system can be
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written as:

y = Fux+ e (1)

where e is the k-space sampling noise, Fu ∈ CMT×NT is the
sensing matrix of entire sequence. Equation (1) can be unfold
frame by frame as

y1
y2
...

yT

=

F�1 0 · · · 0
0 F�2 · · · 0

...
...

. . .
...

0 0 · · · F�T



x1
x2
...

xT

+

e1
e2
...

eT

 (2)

where F�i denotes an operator who only computes Fourier
coefficients at sampled locations indexed by �i. �i is ran-
domly selected at each frame to satisfy the incoherence
request of the CS reconstruction system.

B. COMPRESSED SENSING STRUCTURE
The compressed sensing dMRI reconstruction process can
be formulated as the following l0 regularized least-squares
problem:

min
x

1
2
‖Fux− y‖22 + λ ‖9x‖0 (3)

where the first term keeps the data fidelity towards the mea-
surements, the second term keeps the solution to be sparse in
the transformed domain 9, and λ is a positive regularization
parameter that makes a trade-off between two terms. The l0
optimization problem needs to list all possible linear combi-
nations of non-zero positions in x, which is non-convex and
NP hard [24]. Many greedy algorithms have been exploited
to solve this problem effectively, such as Basis Pursuit (BP)
and Orthogonal Matching Pursuit (OMP) [25], [26]. Another
appropriate solution is to replace the l0 norm with l1 norm
because l1 is the optimal convex approximation of l0 with
many efficient solutions, and l1 can also guarantee the solu-
tion to be sparse with the transform 9 [27]. Equation (3) can
be rewritten as a convex optimization problem based on l1
norm:

min
x

1
2
‖Fux− y‖22 + λ ‖9x‖1 (4)

where ‖x‖1 =
∑
|xi| calculates the absolute sum of each

element in x. Equation (4) can be solved by a lot of fast and
efficient methods such as Fourier transform, wavelet trans-
form and Total Variation (TV) regularization. However, these
methods with fixed sparse basis often fail to capture charac-
teristics of the entire sequence, which will emerge blocking
artifacts as the sampling ratio decreases.

Sparse representation over adaptive dictionary learning has
beenwidely used inmany applications such as image process-
ing and machine learning. Many researchers have explored
dictionary learning methods to reconstruct medical images.
Bai et al. [28] propose a CBCT algorithm based on 3-D
dictionary learning for volumetric CT image reconstruction.
Liu et al. [29] propose a KSVD dictionary learning technique
for 3D PACT reconstruction. Jiang et al. [30] propose a

dictionary training algorithm on patches with two different
resolutions for super-resolution CT imaging. Chen et al. [31]
propose a dictionary learning penalized imaging method
for PET reconstruction. Wang and Ying [32] propose a
spatiotemporal dictionary learning combined with 3D TV
method for compressed sensing dynamic cardiac cine MRI
reconstruction. All these DL methods work in offline mode
and their reconstruction speed are relatively slow. Nguyen-
Duc and Jeong [33] build a multi-scale 3D dictionary with
elastic net regularization for dynamic MRI reconstruction,
which can be implemented on GPU for efficient computation.

In adaptive dictionary learning methods, the images of a
sequence need to be divided into overlap patches before the
training. Suppose the patch size is

√
N ×
√
N and the patch

matrix is denoted as X = {Rix}li=1, Ri is the operator taking
the overlap patches from images, l is the total number of
patches, Rix is the vector form of chosen patches. The objec-
tive function of patch-based dictionary learning algorithms
can be formulized as:

min
D,α

∑
i

‖Rix− Dαi‖22 s.t. ∀i, |αi|0 ≤ T0 (5)

where D is an overcomplete dictionary of sizeN×M(M>>N ),
which means the dictionary has more atoms (columns) than
rows.α ={αi}li=1 is the sparse coefficient matrix, and T0 is the
sparsity constraint. X is sparsely represented in the dictionary
D. Equation (5) can be rewritten as an unconstrained mode:

min
D,α

1
2

∑
i

‖Rix− Dαi‖22 + λ
∑
i

‖αi‖0 (6)

where λ is the regularization parameter related to spar-
sity. Researchers have exploited a lot of effective dictionary
learning algorithms, such as orthogonal dictionary learn-
ing, convolutional dictionary learning and K-SVD dictionary
learning. Here we chose the K-SVD mode in our work since
it is regarded as a standard algorithm for dictionary learning
and can be converged quickly, which is vital in real time
reconstructions.

III. PROPOSED METHOD
A. ALGORITHMS FOR THE REFERENCE IMAGE
In real time dMRI reconstruction, a highly accurate reference
image is vital, especially for the first few frames who are lack
of adequate information for reconstruction. dMRI sequences
contain much redundancy in temporal dimension, which
implicates that once the first frame is captured and accurately
reconstructed, the following images to be reconstructed will
be very close to it. The first frame can be used as a reference
frame for the whole sequence. The first frame needs to be
acquired with more sample data, as is a common strategy in
online methods. Many CS methods can be implemented on
this single frame image efficiently, such as total variation,
wavelet transform and dictionary learning.

Some online algorithms exploit both the spatial and tempo-
ral sparsity between the first frame and later frames, such as
dynamic total variation (DTV) and 3D Dictionary Learning
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(3D DL). The DTV method in [22] is formulated as the
following Lagrange relaxed form:

min
z

{
1
2
‖Az− y‖22 + λ ‖z‖TV

}
(7)

where z= xt − x1 is the residual image of the t th frame, A is
spatiotemporal sensing matrix. The authors use a reweighted
least squares algorithm to reconstruct the dMRI sequence
frame by frame in parallel.

DL methods can be easily applied to dMRI reconstruc-
tion by changing the patches into 3D blocks extracted from
adjacent frames. A novel algorithm combining Dictionary
Learning and Dynamic Total Variation (named as DLDTV)
has been exploited in our prior work [23], who takes full
advantage of the spatiotemporal sparsity of dMRI sequences,
and can be implemented in parallel mode for fast reconstruc-
tion. DLDTV aims to solve the sparsity-based optimization
problem expressed as follows:

min
x,D,α

∑
i

‖Rix− Dαi‖22 + λ1 ‖Fux− y‖
2
2 + λ2 |∇tx|1

s.t. ∀i, |αi|0 ≤ T0 (8)

where the first term corresponds to dictionary sparse repre-
sentation, the second term is relevant to data fidelity, and the
third term∇tx exploits temporal gradient sparsity on l1 norm.
λ1 and λ2 are penalty parameters.
All these online methods take full advantage of the prior

information in the 1st frame and temporal sparsity between
the first frame and later frames, but they cannot utilize the
global sparsity of the whole dMRI sequence, which will lead
to a decrease in the accuracy of reconstruction. It motivates
us to integrate these algorithms into our method and exploit
a new algorithm to utilize the global prior information in a
parallel online scheme.

B. COMBINED FOURIER TRANSFORM
Current offline methods are always too complex and slow to
implement their programs on massive data from the entire
sequence, while online methods cannot always guarantee
fairly high reconstruction accuracy due to the lack of entire
prior information. How to keep data concise while maintain-
ing the information rich seems to be a dilemma. Considering
the data measurement is done in k-space, it motivates us to
design a novel algorithm to aggregate all the k-space data into
an artificial MR image. The artificial image should be highly
similar to the current frame to be reconstructed, then this
dilemma can be easily solved. This dynamic data aggregation
algorithm is formulated as follows:

x̂k+1prei (kx, ky) =



x̂kprei (kx, ky)+ νx̂zfi (kx, ky)

1+ ν
,

(kx, ky) ∈ �i

x̂kprei (kx, ky),
(kx, ky) /∈ �i

xk+1prei (x, y) =
∣∣∣IFFT (x̂k+1prei (kx, ky))

∣∣∣
(9)

where xprei is a combined predictive image for the ith frame,
x̂prei is its Fourier transform value in k-space, the superscript
k denotes the number of iteration. x̂zfi is the i

th frame k-space
acquisitions with zero-filled values at unsampled locations
and �i is the set of sampled locations. IFFT is the inverse
fast Fourier transform. Taking sampling noise into account,
the parameter v acts as a counterweight to balance the pre-
dictive image and current undersampled zero-filled image at
sampled locations. Parameter v is a constant related to the
standard variance (ν = q/σ ) of additive white Gauss noise,
where q plays the key role under noisy sampling condition
and will be discussed in experiments. Under noise free con-
dition, σ → 0 and ν → ∞, x̂prei = x̂zf i , which means the
sampled values x̂zfi should be fully trusted.
Equation (9) implements an alternating forward and

backward Fourier transform on the predictive image and
the current frame for data aggregation. Since the k-space
data in each iteration is a combination of the cur-
rent frame and the predictive image, we name it Com-
bined Fourier Transform (CFT) algorithm. x1pre3 = x2,
x1prei = xkprei−1 (see Fig.1), where x2 is the reconstructed
2nd frame using online methods listed in sections 3.1.
Algorithm 1 gives the flowchart of CFT algorithm. The func-
tion PSNR computes the peak signal to noise ratio of the
reconstructed image, which is used as stopping criterion for
each frame.

Algorithm 1 CFT
Input: x–ground-truth dMRI sequence, x2–reconstructed

2nd frame�–sampling mask, ε–stopping threshold
Output: xpre—predictive images for the whole sequence
Initialization: set default iterations n, seqlen=size(x,3)
for i = 3 to seqqlen

if i == 3
xtemp(i, 1) = x2;

else
xtemp(i, 1) = xpre(i− 1);

end
for j = 1 to n

implement forward CFT to get x̂temp(i, j+ 1);
implement back CFT to get xtemp(i, j+ 1);
if (PSNR(xtemp(i, j+ 1)) -PSNR(xtemp(i, j))) < ε

xpre(i) = xtemp(i, j+ 1)
break;

end
end

To our knowledge, it is the first time such a CFT dynamic
aggregation algorithm has been proposed for dMRI imag-
ing. From Fig.1, one can see that the CFT is actually a
data preprocessing operation independent of the CS meth-
ods, which means that it can be combined with any online
CS schemes. A highly accurate predictive image can save
the computing time tremendously, as is validated in our
experiments.
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C. DICTIONARY LEARNING
How to build an efficient over-complete dictionary D to
exploit the optimal sparse representation of images is the
key to reconstruction. Here we utilize an adaptive 3D dic-
tionary learning method for fast parallel reconstruction. The
dictionary learning extracts the overlapped patches from the
original dMRI sequence, which best match the unique struc-
ture characteristics of the images themselves. The objective
function of the reconstruction algorithm is as follows:

min
x,D,α

∑
i

‖Rix−Dαi‖22+λ ‖Fux− y‖
2
2 s.t. ∀i, |αi|0 ≤ T0

(10)

Equation (10) is a simplified vision of (8) without the
temporal gradient constraint ∇tx. It is because only the first
frame and a predictive image are used in our parallel scheme,
and these two images may not be sparse enough along the
temporal gradient when the interval between them increases.
Equation (10) is nonconvex and NP hard because the dic-
tionary D is over-complete. Typical greedy algorithms, such
as Orthogonal Matching Pursuit (OMP), Method of Opti-
mal Directions (MOD), andK-Singular ValueDecomposition
(K-SVD) adopt two-step alternating optimization to update
dictionary D and sparse coefficients αi [19]. Here we use
K-SVD to solve equation (10) for its simple structure, fast
convergence speed and flexible match to other sparse coding
methods such as OMP, MOD and MAP. Equation (10) can be
decomposed into two-step alternating iterations:

(1) Dictionary training and sparse coding
In this step the x is fixed, D and α are varying. Equa-

tion (10) turns into solving the following subproblem:

min
D,α

∑
i

‖Rix−Dαi‖22 s.t. ‖di‖2=1 ∀i, |αi|0≤T0 (11)

where di is the overlapping sampling step length. The mini-
mum ‖di‖2 = 1 is used in our method for the best learning
effect. The dictionary training and sparse coding problem
can be easily resolved by the standard K-SVD algorithm.
K-SVD employs a two-stage iterative update to optimize this
nonconvex problem.

In the first stage, a DCT dictionary is used as the initial
dictionary. The dictionary is fixed and αi is the only variable,
which can be solved by the following equation:

αki =argmin
αi

∑
i

∥∥∥Rixk−1−Dk−1αi∥∥∥2
2
∀i, |αi|0≤T0 (12)

where the superscript k denotes the iterations. This prob-
lem can be efficiently solved by standard OMP algorithms.
Rubinstein et al. [34] explore a faster Batch-OMP method to
accelerate the sparse coding programs.

In the second stage, the sparsity coefficients αi are fixed
and the dictionary is updated column by column using these
patches whose sparse coefficients related to the current col-
umn (atom), then the problem can be formulated as a simple

rank-1 approximation:

Dk=argmin
D

∑
i

∥∥∥Ek−dkαki ∥∥∥22 s.t. ∀i, |αi|0≤T0 (13)

where Ek = Rixk−1−
∑

j 6=k djα
k
i is the residual matrix with-

out the k th atom. The problem can be solved efficiently via k-
SVD decomposition. In the proposed method, the dictionary
is adaptively trained via K-SVD and coded via Batch-OMP.

(2) Image reconstruction
In this step, D and α are fixed, the image x is reconstructed

by solving the following least squares problem:

xk=argmin
x

∑
i

∥∥∥Rix− Dkαki ∥∥∥22+λ ‖Fux− y‖22 (14)

By taking the derivative of the only variable x in (14) and
setting it equal to 0, we get the solution to x:

xk =

∑
i
RTi D

kαki + λF
H
u y∑

i
RTi Ri + λF

H
u Fu

(15)

where FHu is the Hermitian transpose of Fu, RT is the inverse
matrix of R,

∑
RTi Ri = nI is an identity matrix and n is the

patch size in vector dimension. In order to reduce the matrix
operation complexity, the operation process is transformed
from image domain to Fourier domain. Equation (15) can be
rewritten as follows:

Fxk =

F
∑
i
RTi D

kαki + λFF
H
u y

F
∑
i
RTi RiF

H + λFFHu FuFH
(16)

where FuFHu are k-space acquisitions with zero-filled values
in unsampled locations, which is denoted as x̂zf , FFHu FuF

H

is a p × p diagonal matrix (p is the dimension of the whole
MR images) with a 1 in the diagonal at the sampled locations
or a 0 otherwise. Equation (16) can be simplified as:

x̂kreconi (kx, ky)=



x̂kDL(kx, ky)+
λ
n x̂zf (kx, ky)

1+ λ
n

,

(kx, ky) ∈ �i

x̂kDL(kx, ky),
(kx, ky) /∈ �i

(17)

where x̂kreconi is the reconstrued i
th frame, x̂kDL is the k-space

values reconstructed by dictionary learning. Here we define
λ/n = q/σ = ν which has the same meaning as the
parameter in (9). A uniform parameter setting could simplify
the complexity of our algorithm.

The DL algorithm implements these two iterative steps on
a dynamic subset denoted as xk+1s =[x1,xkDL , xprei ] for a faster
and better reconstruction of ith frame (x1s =[x1, xprei ]), x

k
DL

is the k th reconstructed image of the ith frame. Each subset
only contains the first frame and the predictive image of
the current frame; therefore, the proposed algorithm runs in
parallel. On the other hand, a smaller subset and dictionary
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size will speed up the reconstruction, which is vital in real
time imaging.

The major steps of the proposed optimization algorithm
are presented in algorithm 2. The proposed algorithm can be
decomposed into three independent parts. Step 1 reconstructs
the first two frames in high quality for reference to the later
frames, where the optimal DLDTV algorithm is selected
based on our previous work. Step 2 figures out a highly accu-
rate predictive image for each frame by the CFT algorithm,
which is independent of the DL algorithm. Step 3 utilize a
parallel 3D DL scheme to reconstruct the dMRI sequence
frame by frame.

Algorithm 2 DLCFT
Input: x–ground-truth dMRI sequence, �–sampling

mask, ε–stopping threshold in each step, i, j–default
iterations.

Output: reconstructed dMRI images xrecon
Initialization: k=1, xrecon =xzf
Repeat:

Step1: reconstructing first two frames [x1, x2] using
Eq. (8);
Step2: computing xpre for each frame using Eq. (9);
Step3: computing xrecon using Eqs. (11) and (15).

stopping criterion for ith frame in step2 and step3:
(PSNR(xk+1prei )− PSNR(xkprei )) < ε,
(PSNR(xk+1reconi )− PSNR(xkreconi )) < ε.

IV. EXPERIMENTS AND COMPARISONS
A. EXPERIMENT SETUP
All experiments and numerical comparisons are evaluated
using MATLAB on a laptop with 2.9GHz Intel core i7
3520M CPU and 12G DDR3 RAM. We compared our
scheme with three online methods: TV and Dynamic Total
Variation (DTV) [22], Dictionary Learning and Dynamic
Total Variation (DLDTV) [23], and one offline method: k-t
SLR [18]. We use the default settings of these methods from
each author’s homepage.

Two real and complex cardiac perfusion sequences (of 3D
size 192 × 192 × 30) and a real functional brain sequence
(of 3D size 128 × 128 × 40) are selected here to evaluate
algorithm performances. The pixel values (real) or modu-
lus (complex) in each sequence are normalized to (0,1) before
reconstruction. We prefer the real sequences in our experi-
ments if not specifically mentioned.

Pseudo radial sampling masks are used here to simulate
the undersampled scheme. In each frame, the initial phase
angles of radial lines are generated randomly to get more
prior information from different frames, which is vital in our
method. The first frame is set to a 50% sampling ratio if not
specifically mentioned in all experiments.

Quantitative analyses are presented to compare the recon-
structed performance among different models using three
criteria: peak signal to noise ratio (PSNR), root mean squared

error (RMSE), and structural similarity index (SSIM), which
are formulated as:

PSNR(x̂) = 20 lg(1/RMSE(x̂)) (18)

RMSE(x̂) =
∥∥x̂− x

∥∥2
2 /N (19)

SSIM (x̂) =
(2µx̂µx + c1)(2σx̂x + c2)

(µ2
x̂ + µ

2
x + c1)(σ

2
x̂ + σ

2
x + c2)

(20)

where x̂ denotes the reconstructed image and x is the ground
truth image, µ and σ are the mean and standard deviation of
a frame image, σx̂x is the covariance of x̂ and x. c1 and c2 are
small constants used to avoid the denominators equal to zero.
For the whole dMRI sequence, we simply take their mean
values for performance evaluation.

All experiments are conducted in a noise-free environment
if not specifically mentioned.

B. RECONSTRUCTION OF THE FIRST TWO FRAMES
Since the 1st frame is used as the reference image for later
frames, its reconstruction precision plays a key role in our
method.Many onlinemethods can be implemented here, such
as TV, DTV [20], DL [22], and DLDTV [23]. All these meth-
ods can make full use of the spatiotemporal sparsity between
the first two frames for better performance. We use their
default settings and applicate them on the first two frames.
While in the DLDTV method, only two frames are imple-
mented in each iteration, we cannot use the default patch
size [3, 3, 3]. Table 1 compares the reconstructed PSNR (dB)
values vs. patch size in this method. One can see that [3, 3, 2]
is the optimum selection for both frames.

TABLE 1. Reconstructed PSNR of the first two frames vs. patch size by
DLDTV method.

Table 2 compares the reconstructed PSNRs by different
methods. It’s obviously that DLDTV outperforms other algo-
rithms on both frames, especially the 1st frame, which is used
as reference image for later frames. DLDTV is the best choice
to reconstruct the first two frames in our method.

TABLE 2. Reconstructed PSNR of the first two frames by different
methods on the perfusion sequence.

C. RECONSTRUCTION ACCURACY COMPARISONS
Once the first two frames have been reconstructed, the rest
of these frames can be implemented in our DLCFT method.
Many parameters should be set optimally. In the CFT step,
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FIGURE 2. Reconstruction quality evaluated by PSNR and algorithm convergence on the brain sequence. (a) Reconstruction convergence.
(b) The fully-sampled image. (c) Reconstructed image. (d) Errors × 5. (e), (f), (g), (h) are corresponding items on perfusion sequence.

TABLE 3. PSNR and computing time (in seconds) vs. patch size and
sparse level T0 on the perfusion sequence by proposed method.

the maximum iteration is set 10 or reaching the stop criterion
(PSNR(i+ 1)− PSNR(i) < 0.002) to balance reconstruction
accuracy and computing time. For later frames, the temporal
gradient sparsity regularization in DLDTV cannot be used
because the later frames and the 1st frame may not sparse
enough in temporal dimension. Here we only use the DL
algorithm and CFT predictive algorithm to reconstruct later
frames, so the parameters of DL need to be reset properly.

Table 3 gives the reconstructed results vs. the patch size
and sparse level T0 by the proposed method. One can see that
the optimal selection of the combined parameters is [nx , ny,
nt ] = [2, 2, 2] and T0 = 1, weighing the accuracy and speed
of the reconstruction.

Other parameters in DL step are set as follows: the selected
patch numbers for online training n=5000, the overcomplete-
ness of dictionary is set k ≥ 4, which is common strategy in
traditional DL method, so the dictionary size of the proposed
method is fixed at 8 × 32 and only trained once in each DL
iteration for fast reconstruction. Our method works well with
these settings and the reconstructed values are robust to minor
changes in these settings.

Fig. 2 shows the results and algorithm convergence by the
proposed method at 15% sampling ratio on both sequences.
The reconstructed PSNRs rise rapidly and tend to be stable

TABLE 4. Reconstruction accuracy comparisons of different methods on
two sequences.

within only three iterations, which indicates that our method
converges quickly. Compared with the fully-sampled image,
the reconstructed errors of both images are minimal even
multiplied by 5, which indicates that the visual effects are
consistent with numerical values.

The reconstructed results of a frame are presented
in Figs. 3 and 4 for the two sequences respectively. DLDTV
and our method provide higher quality images, especially
around the ventricles and lesion sites in brain. while TV
method lags behind a lot with obviously artifacts because
it only reveals the spatial sparsity in both sequences. From
the mean RMSEs (see Table 4) and the visual comparisons,
our method is even better than the state-of-the-art offline
methods.

Table 4 compares the reconstructed PSNRs, RMSEs and
SSIMs by different methods. One can see that the proposed
DLCFT leads others a lot in PSNR (0.73 dB), RMSE (0.0007)
and SSIM (0.0027) on the cine sequence, which also validates
the superiority of our algorithm.

Fig. 5 compares the reconstructed RMSEs frame by frame
on both sequences. From the results, one can see that the
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FIGURE 3. Results of a frame on brain sequence. (a) The fully-sampled
image. The rest images are reconstructed by (b) TV; (c)DTV; (d) k-t SLR;
(e) DLDTV; (f) proposed method.

proposed method gets the smallest reconstruction error over-
all. However, DLCFT lags slightly behind our previous work
DLTV in the first few frames but still superior to other
online methods. It is because the CFT algorithm can only
use limited k-space measurements in the first few frames
and the DL algorithm is executed frame by frame in parallel
in the proposed method, while our previous work DLDTV
can use the adjacent 3 or 4 frames as a subset (with more
measurements) for each parallel reconstruction at the cost
of computing time. Detailed comparisons of computing time
will be discussed in the following subsection F . As the num-
ber of frames increases and more k-space measurements are
gathered, the superiority of our method becomes obvious (see
the later frames in Fig. 5), especially compared to those who
only use inter-frame prediction and tend to be hampered by
error accumulation.

Keep the sampling ratio of the first frame unchanged,
we switch the sampling ratios of the rest frames from 15%
to 40%. Fig. 6 compares the mean reconstructed errors of the
whole sequence by different methods. TV still performsworst
at any sampling ratio. DTV and k-t SLR perform moderate
and get very close values. Our method outperforms other

FIGURE 4. Results of a frame on perfusion sequence. (a) The fully-
sampled image. The rest images are reconstructed by (b) TV; (c)DTV;
(d) k-t SLR; (e) DLDTV; (f) proposed method.

TABLE 5. Numerical comparisons of reconstructed mean RMSEs vs.
sampling ratios (15%-40%) by different methods.

methods at low sampling ratios but very close to DLDTV at
high sampling ratios. Table 5 gives the numerical compar-
isons of mean RMSEs vs. sampling ratios by different meth-
ods. The proposed method leads quite a lot at low sampling
ratios but slightly inferior to DLDTV at 40% sampling on the
perfusion sequence, which is consistent with Fig. 6. However,
a lower sampling rate is necessary in rapid dMRI, that is
where our algorithm leads.
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FIGURE 5. Comparisons of reconstructed RMSE. (left) On brain sequence. (right) On perfusion sequence.

FIGURE 6. Comparisons of mean RMSEs vs. sampling ratios. (left) On brain sequence. (right) On perfusion sequence. The
sampling ratio of the first frame is fixed at 50% on both datasets.

As a typical online method, only two frames are conducted
in each iteration, our method relies heavily on the reconstruc-
tion quality of the first frame, which is proportional to the
k-space sampling rate on it. Fig. 7 shows the reconstructed
RMSEs vs. this parameter. One can see that the RMSEs of
the first few frames vary dramatically when the sampling
ratios of the 1st frame changes. It is because less k-space
measurements are available for the first few frames and they
are more dependent on the first frame for reference. For the
later frames, these gaps are subtle as more measurements are
aggregated into the predictive image by the CFT algorithm
who plays the key role in reconstruction quality. A fully-
sampled 1st frame is the optimal choice if allowed.

D. COMPLEX DMRI RECONSTRUCTION
Since the real MR images are often complex image domain,
we use a complex perfusion sequence of size 192×192×30 to
validate the efficiency of the proposed method. Some param-
eters should be adjusted accordingly. For the first two frames,

FIGURE 7. Comparisons of RMSEs vs. sampling ratios of the first frame by
proposed method on perfusion sequence. The sampling ratio of the
remaining frames is 15%.

we still select the optimal DLDTV algorithm. In the 1st step,
the real and imaginary parts of complex images reconstructed
by KSVD and batch-OMP independently. In the 2nd step,
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FIGURE 8. Noise robustness comparison on perfusion sequence at 20% sampling ratio, the AWGN noise level is evaluated by its standard
deviation σ in k-space or PSNR (dB) in image domain. (left) Reconstructed RMSE vs. q by proposed method. (right) robustness vs. σ by
different methods.

the modulus of images instead of their complex pixel values
are used in DTV subprogram. For more details of this strategy
we refer to [21]. In the CFT subprogram used for later frames,
the predictive image for each frame should also be complex.
Equation (9) can be rewritten as:

x̂prei (kx, ky) =



x̂prei (kx, ky)+ νx̂zfi (kx, ky)
1+ ν

,

(kx, ky) ∈ �i

x̂prei (kx, ky),

(kx, ky) /∈ �i

xprei (x, y) = IFFT (x̂prei (kx, ky))

(21)

where the combined forward and backward Fourier transform
is executed only once in complex mode (using complex
xprei instead of its modulus), and the default xpre3 = x2,
xprei = xprei−1 .

Table 6 compares the results on the complex perfusion
sequence by different methods. One can see that although
DLDTV has a narrow lead over the proposed method, it runs
slowly and takes more than 400 seconds, which means it
is not fit for real time complex dynamic MR imaging. The
CFT algorithm in the proposed method give a highly accurate
prediction to each frame, which greatly accelerate conver-
gence. The proposed method is optimal considering both
reconstruction speed and performance.

TABLE 6. Reconstruction comparisons by different methods on a
complex perfusion sequence.

E. NOISE ROBUSTNESS COMPARISONS
If the data acquired in k-space is polluted by the noise,
it will greatly affect the accuracy of reconstruction. Assume a
noisy dMRI measurements obtained in k-space described as
x̂n = Fux+n, where n is the additive white Gaussian noise
of power σ 2 added in k-space, which can also be measured
by PSNR (dB) in image domain. The constant q in both CFT
and DL algorithms plays an important role to reconstruction
quality in noisy environments.

Fig. 8 (left) reveals mean RMSEs vs. q in vari-
ous noise environments. It’s easy to find that the mean RMSE
is insensitive to q in a medium-noise or low-noise environ-
ment (e.g., σ = 0.001, PSNR=60dB). While in a high-
noise environment (e.g., σ = 0.03, PSNR=30dB), the results
depend heavily on it. Here we fixed q = 5.5 × 10−3 to
minimize the reconstructed errors at different noise levels.

Fig. 8 (right) compares robustness to added noise cali-
brated by mean RMSEs among different methods. The per-
fusion sequence of 20% sampling ratio is used here to testify
this performance. One can see that only slight deterioration
of RMSEs occurs in a low-noise case (40-60dB), which is
easily encountered in actual situation. While in high-noise
case (30dB), only the proposed method and DLDTV can
maintain relatively low error. In general, the proposedmethod
has the best noise robustness.

F. ALGORITHM SPEED COMPARISONS
Algorithm speed is vital for real time imaging. The compu-
tational complexity of the proposed method mainly depends
on the dictionary learning process. The process of dictionary
learning includes dictionary training and sparse coding and
the main calculation work occurs in the sparse coding step.
An efficient batch based OMP algorithm explored by Rubin-
stein is implemented in our method for sparse coding, who is
5-7 times faster than standard OMP algorithm. On the other
hand, Fig. 2 points out that the proposed method converges
quickly and it is also acceptable to run the DL iteration only
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once. Table 7 compares the results using DLCFT and its
two simplified versions (using the DL iteration only once for
each frame’s reconstruction, which is named as simplified
DLCFT, or just CFT itself without the DL iteration, which
is named as CFT) on the perfusion sequence. One can see
that the simplified version is still comparable to DLCFT
while its speed is much faster. CFT without DL is obviously
the fastest while the reconstructed values lags behind a lot.
Table 7 demonstrates that the CFT algorithm pays the key
role in ourmethod. The proposedmethod can be implemented
flexibly in different modes to meet different needs.

TABLE 7. Comparisons of proposed method and its simplified versions.

Table 8 compares the computing time of different method
on both sequences. The average reconstruction speed of our
method is 0.81 (24.3/30) seconds per frame on the perfusion
sequence and 0.67 seconds per frame on the brain sequence.
The simplified DLCFT who uses the DL algorithm only once
for each frame lead a lot in reconstruction speed. The speed
of our method is calculated in MATLAB implementation,
which can be further accelerated by GPU parallel computing
algorithms because our method is implemented in parallel.

TABLE 8. Computing time (in seconds) of different methods on both
sequences.

In our method, once a frame of measurements is obtained,
the predictive image can be calculated immediately since the
CFT is a fast-linear transformation. Then the DL algorithm
can reconstruct the current frame immediately only using the
1st frame and the predictive image. In short, our method can
be called a real-time method.

V. CONCLUSION
we have proposed a novel reconstruction algorithm (DLCFT)
for real time dynamic MRI, which uses a combined Fourier
transform to dynamically aggregate k-space measurements
and creates a highly accurate predictive image for reference,
was demonstrated to successfully reconstruct three real and
complex dynamic MR sequences with different accelera-
tors. It provided images with superior spatiotemporal reso-
lutions compared to four state-of-art methods. The source of
improvement is the dynamic k-space data aggregation mode
who uses the whole sampled frames, instead of conventional

models who only use the inter-frame sparsity with respect
to a single reference frame. Our contribution provides a fast
and flexible method to implement CS reconstruction on real
time dynamic MRI. The leading superiority of our method
is not obvious in reconstruction quality and speed while
using the complex dMRI sequences. It is because the DL
algorithm converge slowly in complex mode without other
sparse regularizations. In the future, we plan to combine
our method with other efficient sparse regularizations and
exploit a more accurate prediction algorithm from both image
domain and Fourier domain to accelerating the algorithm fur-
ther. The design of CFT scheme can also be extended to other
CS dynamic MR imaging applications. Further accelerating
the running time using high-performance computing systems
such as GPU parallel computing is another future direction to
explore.
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