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ABSTRACT Recent research has shown that human motions and positions can be recognized through WiFi
signals. The key intuition is that different motions and positions introduce different multipath distortions
in WiFi signals and generate different patterns in the time-series of channel state information (CSI). In this
paper, we propose Wi-Motion, a WiFi-based human activities recognition system. Unlike existing systems,
Wi-Motion jointly leverages the amplitude and phase information extracted from the CSI sequence. We first
construct the classifiers using amplitude and phase, respectively. The output of classifiers is then combined by
a posterior probability-based combination strategy. As the simulation results show,Wi-Motion can recognize
predefined 5 typical human activities with the mean accuracy of 96.6% in line-of-sight (LOS) environment,
and 92% in not line-of-sight (NLOS) environment. Furthermore, Wi-Motion evaluates the effect of the age
of the experimental subjects and relatively complex environments.

INDEX TERMS WiFi signals, human activity recognition, posterior probability combination.

I. INTRODUCTION
The machine-centric computing model is shifting toward a
people-centric computing model [1], [2], where it is crit-
ical to precisely sense and recognize human activities for
supporting the people-centric model. In the framework of
people-centric computing model, a fruitful of recognizing
techniques has been proposed to recognize human activities.
These conventional methods can be categorized into three
groups: vision-based, low-cost radar-based, and wearable
sensor-based approaches. However, there are several limita-
tions in deploying conventional techniques to sense human
activities. Vision-based approaches can only operate within
a certain range of line-of-sight (LOS) environments. They
are susceptible to lighting conditions, obstacles, and suffering
from the problem of dead angles. This also arises many con-
cerns on human privacy issues. Low-cost radar-based systems
have limited operation distances, which is usually in the order
of ten centimeters. Wearable sensor-based solutions although
achieve fine-grained behavioral awareness, its high cost and
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restriction on real-time nature make it not practical in some
applications (e.g. rescue applications).

In recent years, with the wide deployment of WiFi access
points, the WiFi signals become ubiquitous, particularly,
in indoor scenarios. Due to the unguided property of radio
signal propagation, radio signals are traveling freely in the
atmosphere which may reflect by the wall and/or other
objects. At the receiver, antennas thus receive the signals
from two or more paths, which is a so-called multipath phe-
nomenon. This phenomenon also applies to WiFi signals.
The key insight of human activity recognition through the
WiFi signal is that the moving body affects the multipath
propagation and different moves have dissimilar effects.
We can then analyze the received signals, in particular, ampli-
tude and phase, to recognize human activities. Amplitude and
phase information is already contained in the channel state
information (CSI), which is a complex value representing
the amplitude attenuation and phase shift of multiple paths.
Therefore, the question is how to obtain the CSI values and
extract the amplitude and phase information to generate a
unique pattern of human activities.

Some commercial WiFi devices (e.g. IWL5300 wireless
network card) where signals are transmitted and received over
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FIGURE 1. Five human activities recognized by Wi-Motion.

multiple subcarriers using multiple antennas at transmitter
and receiver sides can provide us a fine-grained1 CSI in time-
series. Because of the high data rate provided by thesemodern
commercial WiFi devices, we can get enough samples of
CSI measurements within the duration of human activities.
Thanks to these systems, researchers are able to focus on
analyzing CSI to recognize various types of human activities.

Existing work utilizes either the amplitude change in time
domain or phase shift in spatial and frequency domains of
the CSI values. The amplitude change usually generates dif-
ferent patterns for different humans, activities, gestures, etc.
It thereby can be used for human presence detection [3], [4],
fall detection [5], [6], motion detection [7], [8],
activity recognition [9], [10], and human identification/
authentication [11], [12]. On the other hand, CSI phase shift
highly associated with the signal transmission delay and
direction, which can be usually adopted for human localiza-
tion [13] and tracking [14], [15]. These systems follow the
general architecture of machine learning-based classification
systems and have four stages: data collection, noise removal,
feature extraction, and classification.

In this paper, we propose a WiFi-based human activ-
ity recognition system, namely Wi-Motion, which can sen-
sitively recognize predefined 5 different human activities,
as shown in Fig. 1. To summarize, the contributions of this
paper are shown as follows:
• Unlike most human body recognition systems, which
only process amplitude information or phase informa-
tion, we jointly utilize the amplitude and the phase infor-
mation in the CSI sequence collected from commercial
WiFi devices with three antennas, to improve the recog-
nition accuracy.

• To split the static environment and the waveform caused
by human activity, we propose an activity extraction
method combining a sliding window with a threshold-
based image segmentation. For phase and amplitude
information, we adopt different learning methods to
extract features and design classifiers.

• After getting the recognition results at each classifier,
we generate prediction results based on the output

1The fine-grained CSI means that CSI provides much more information
than received signal strength indicator.

posterior probability of two classifiers. To verify the
effectiveness of the combining algorithm, we conduct
a large number of comparative experiments. According
to the experiment results, the solutions we proposed
increase recognition accuracy indeed.

The rest of this paper is organized as follows. We present
the related work in Section II, followed by a preliminary
in Section III. Then we elaborate on the system
overview and data preprocessing methods of Wi-Motion
in Section IV and V, respectively. We present the classifi-
cation algorithms and implementation in Section VI and VII,
and finally conclude our work in Section VIII.

II. RELATED WORK
We review several related existing works in this section.

A. DEDICATED HARDWARE-ENABLED APPROACHES
WiSee [16] used the dedicated USRP devices as WiFi
transceivers on a 10 MHz channel at center frequency 5 GHz.
The system can recognize 9 actions by extracting the Doppler
shift from the WiFi signal caused by human motion as a
feature, with an accuracy rate of 94%. Adib et al. designed
WiTrack andWiTrack2.0 that applied designed special carrier
wave radio to track human movements behind a wall [17].

B. RSSI-BASED APPROACHES
Bahl et. al. proposed Radar [18], which is a system
for indoor localization based on received signal strength
indicator (RSSI). Sigg et. al. used USRPs as special-
ized hardware devices to capture RSSI values from
WiFi signals [19], [20]. They utilized RSSI values of WiFi
signals to recognize 4 activities including lying down, crawl-
ing, standing and walking and achieved over 80% recognition
accuracy for these 4 activities. Abdelnasser et al. proposed
WiGest [21], a gesture recognition system based on the
RSSI obtained by commercial WiFi access points. More
specifically, WiGest performed gesture recognition by ana-
lyzing the rising and falling edges of RSSI signal variations.
The accuracy can reach about 87.5% in the case of a single
access point, and it increases to 96% when there are three
access points. However, since RSSI only provides coarse-
grained information about channel variations, it is often
affected by multipath effects and noise.
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C. CSI-BASED APPROACHES
Compared to RSSI, CSI is a fine-grained value from the
physical layer [22], [23], which provides a channel estimation
of each subcarrier for each transmission link, i.e., it describes
the amplitude and phase on each subcarrier in the frequency
domain. Moreover, CSI can reflect the effect of small scale
fading andmultipath effects caused bymicro-movement [22].
WiHear [24] interpreted the transmitted signal gathered on
the mouth via beamforming technique and got the changes
in the mouth shape by analyzing reflected signals. The pro-
nunciation was represented by the mouth type, thereby it is
possible to implement WiFi-based lip recognition system.
WiFinger [23] extracted the fixed pattern of gesture signals
through principal component analysis (PCA), and used it
as a feature to identify gestures with an accuracy of 93%.
Ali et al. proposed WiKey that uses CSI values obtained
from commercial off-the-shelf (COTS) devices to recognize
keystrokes [25]. Zheng et al. built a novel non-intrusive
smoking detection system, namely Smokey [26], that is able
to accurately detect the smoking activities by exploiting the
impact of smoking on the CSI of WiFi signals. Shang et al.
proposed a WiFi signal-based sign language recognition sys-
tem WiSign [22]. Different from other systems, WiSign used
three WiFi devices to improve the recognition performance.
SpotFi [27] incorporated super-resolution algorithms to com-
pute the angle of arrival (AoA) of multipath components
and to identify AoA of a direct path between the localiza-
tion target and access point by incorporating novel filtering
and estimation techniques. It can achieve a median accuracy
of 40 cm in a rich multipath indoor environment. In addition,
a breathing detection was investigated using passive WiFi
radar in [28], which propose a real-time phase extraction
method to detect slow moving and small body movement.
It shows good performance in both LOS and not line-of-sight
(NLOS) scenarios using WiFi beacon and data packets. With
the inspiration of the above-mentioned works which splen-
did research specialized in specific application scenarios,
we propose a framework of WiFi-based activity recognition
to improve the human activity robustness.

III. PRELIMINARY
In general, different human activities may cause different
multipath distortions in WiFi signals. We can then leverage
the multipath property in the received signal to recognize
human activities.

In communications, the multipath propagation of wire-
less channel can be described by its channel impulse
response (CIR), as [29]

h(λ; t) =
∑
n∈ps

anδ(λ− λn)︸ ︷︷ ︸
hstatic(λ)

+

∑
m∈pd

am(t)ζ (f )δ(λ− λm(t))

︸ ︷︷ ︸
hdynamic(λ;t)

(1)

where h(λ; t) represents the reaction of the channel in
response to an ideal Dirac pulse δ(λ). Due to the presence of

multiple propagation paths, the receiver could receive more
than one pulse, and each of themmay have different transmis-
sion delay. For easily understanding how the human activity
affect the multipath propagation, we divide the multiple paths
into two groups, static ps and dynamic pd . The static paths
labeling by n are not affected by the human activity and hence
have constant delay λn and attenuation an. Therefore, they
are not attracted by us. However, dynamic paths ∀m ∈ pd

will experience a time-varying change if a person is moving,
representing by the variations on both time-varying propa-
gation delay λm(t) and signal attenuation am(t) of each path
m ∈ pd . Moreover, ζ (f ) represents the frequency dependent
absorption cross section coefficient, which depends on the
body specific signal absorption [30].

For the time-varying impulse response h(λ; t), we define a
time-varying channel frequency response (CFR) H (f ; t) =∫
∞

−∞
h(λ; t)e−2jπ f λdλ in frequency domain by make a

Fourier transform of h(λ; t). The CFR is also known as the
CSI and has static and dynamic components, as

H (f ; t) =
∑
n∈ps

ane−2jπ f λn︸ ︷︷ ︸
Hstatic(f )

+

∑
m∈pd

am(t)ς (f )e−2jπ f λm(t)

︸ ︷︷ ︸
Hdynamic(f ;t)

(2)

where the dynamic component Hdynamic(f ;t) is our mainly
focus which contains the wireless channel variations caused
by human activities. Therefore, Hdynamic(f ;t) can be regarded
as a unique indicator of different human activities. In particu-
lar, we are able to collect Hdynamic(f ;t) from commercial WiFi
devices between a pair of transmitting antenna Ta and receiv-
ing antenna Ra at the subcarrier i with a central frequency fi,
which is defined by

HTa,Ra (fi; t) = ‖HTa,Ra (fi; t)‖e
j 6 HTa,Ra (fi;t) (3)

where ‖HTa,Ra (fi; t)‖ and 6 HTa,Ra (fi; t) denote its amplitude
and phase, respectively.

IV. SYSTEM OVERVIEW
In this section, we elaborate on the design of Wi-Motion.
Wi-Motion is a recognition system that enables commercial
WiFi devices to identify user’s activities using CSI measure-
ments collected from commercial WiFi devices. The flows of
Wi-Motion are illustrated in Fig. 2. The whole system has two
stages: data processing and classification.

A. DATA PROCESSING
Firstly, a regular WiFi signal affecting by human activi-
ties is acquired from a commercial WiFi device. Secondly,
the collected signal, which can be separated into ampli-
tude and phase information, are respectively preprocessed
using signal processing methods, such as filtering and linear
transformation. The purpose of preprocessing is to reduce
the effect of noise. After that, we would like to reduce the
dimension of the processed data in terms of the number of
subcarriers. The reason is twofold; (1) Different subcarrier
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FIGURE 2. System structure of Wi-Motion.

has different sensitivity to the human activities, i.e., some
subcarriers are very sensitive to the motion and have rela-
tively evident variations. It is better to only use the CSI data
from these sensitive subcarriers. (2) Using all the data from
the entire subcarriers also increases the computational com-
plexity of the system. To this end, we analyze the obtained
CSI sequence which contains the effect by not only the
valid activity but also the environment, and masterly extract
the signal segments mainly corresponding to the human
activity.

B. CLASSIFICATION
In the classification stage, useful features which can rep-
resent the relationship between the time-series of CSI and
different human activities are extracted from the processed
amplitude and phase information respectively, as a basis for
classification.We randomly select parts of feature vectors and
utilize the support vector machine (SVM) algorithm to build
two classifiers according to amplitude and phase information.
When an unknown activity sample enters, consulting the pre-
diction results of both two classifiers, Wi-Motion performs a
merge method based on the posterior probability to produce
the final recognition.

V. DATA PREPROCESSING
A. PHASE INFORMATION PROCESSING
1) PHASE ANALYSIS
As discussed in Section III, CSI measurements provide the
phase information of each subcarrier. The separated phase
information φ̂i (this paper replaces the phase symbol 6 HTa,Ra
in (3) with φ̂ in order to facilitate the expression.) for the
ith subcarrier can be expressed as

φ̂i = φi − 2π
ki
N
ϑ + β + Z . (4)

where φi denotes the true phase, ϑ is the timing offset at the
receiver, which causes phase error expressed as the middle
term, β means an unknown phase offset, and Z indicates some
measurement noise. ki signifies the subcarrier index (ranging
from −28 to 28 in IEEE 802.11n) of the ith subcarrier and
N represents the fast fourier transformation (FFT) size (which
is 64 in IEEE 802.11 a/g/n). Due to the unknowns listed
above, it is impracticable to obtain the true phase shifts with
solely commercial WiFi devices.

2) PHASE CALIBRATION
To mitigate the effects of random noise, we execute a linear
transformation on the raw phases, as recommended in [31].
The key thought is to remove ϑ and β by considering phase
across the entire frequency band. Firstly, we define two inter-
mediate variables a and b as

a =
φ̂n − φ̂1

kn − k1
=
φn−φ1

kn − k1
− 2π

ϑ

N
. (5)

b =
1
n

n∑
i=1

φ̂i =
1
n

n∑
i=1

φi −
2πϑ
nN

n∑
i=1

ki + β. (6)

Considering that subcarrier frequency is symmetric, it means
that

∑n
j=i ki is vanished and b is simplified as b =

1
n

∑n
i=1 φi + β. Furthermore, by subtracting the linear term

aki + b from the raw phase φ̂i − aki in (4), we can get
a linear combination of true phases, denoted as φ̃i, where
the random phase offsets have been eliminated (omitting the
small measurement noise Z ).

φ̃i = φ̂i − aki − b = φi −
φn − φ1

kn − k1
ki −

1
n

n∑
j=1

φj. (7)

Although the above (7) can be used for calibrating phase
information, the raw phase is folded due to the recurrence
characteristic of phase, which requires us to map the raw
phase into the true value. Fig. 3(a) shows the raw phase
values of CSI for the three antennas at the receiver. What
we can clearly see is that the raw phase of each of the three
antennas is folded with the increase of subcarrier order and
the range of the phase is [−π , π ]. To obtain the true phase,
the folded phase can be recovered by subtracting multiple 2π .
Thus, we perform a phase calibration algorithm proposed
in [32]. Fig. 3(b) shows the transformed phase values for three
different antennas. It is noticed that the range of the trans-
formed phase becomes much smaller than the raw phase for
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FIGURE 3. Processing of raw phase information.

three antennas. Fig. 3(c) makes a comparison of unprocessed
raw phase and transformed phase information of the first
subcarrier of a stretch leg sample. As can be seen, the phase
without further calibration distributes extremely randomly.
But after calibration, it is relatively stable as expected.

B. AMPLITUDE INFORMATION PREPROCESSING
1) NOISE REMOVAL
Similarly, the raw amplitude measurement obtained from raw
CSI sequence is usually not reliable enough to be used for
feature extraction, because of the effect of noise, originat-
ing from environmental changes, radio signal interference,
etc. In our system, when the outliers are removed by the
Hampel [33], we utilize low-pass filtering to remove high-
frequency noise and further introduce weighted moving aver-
age (WMA) method to process the raw amplitude waveform.
The raw amplitude sequence of the first subcarrier at time t
is denoted by {α̂1,1, ..., α̂t,1} (this paper replaces the ampli-
tude symbol ‖HTa,Ra‖ in (3) with α̂ in order to facilitate the
expression.). According to the WMA algorithm, we process
the raw amplitude data as

α̃t,1 =
(m× α̂t,1 + ...+ 1× α̂t−m−1,1)

m+ (m− 1)+ ...+ 1
(8)

with m being a window size and the largest weighting factor.
The filter output is denoted by α̃. It can be easily found that
the most recent amplitude is assigned the highest weight.
In this paper, we empirically set m = 10. Fig. 4 shows the
original waveform of a stretch leg sample and the waveform
after WMA filtering. The comparison shows that WMA fil-
tering can remove most of the noise, which makes waveform
smoother.

The processing of the amplitude sequence from other sub-
carrier is the same, which is omitted.

2) DIMENSIONALITY REDUCTION
The IWL5300 provides 802.11n CSI in a matrix format
including the channel estimation for a group of 30 subcarriers.
At each subcarrier, the CSI describes how a signal propa-
gates from the transmitter to the receiver with the combined
influence of, for example, scattering, fading, and power decay

FIGURE 4. The original waveform of a stretch leg sample and the
waveform after WMA filtering.

with distance. After filtering noise, we can get a relatively
accurate amplitude matrix of each activity sample. However,
if all subcarriers are used to perform the following opera-
tions, it will cause a high computational complexity of the
system. On the other hand, in some existing works, e.g. [23],
they already stated that different subcarriers had different
sensitivity to the same activity. Hence, the CSI information
from different subcarriers will experience different changes.
In some subcarriers, the changes are relatively small because
these subcarriers are not sensitive to human activities. In con-
trast, some subcarriers are largely changing caused by human
activities. The changes on the CSI value can be represented
by the variance of the CSI sequence, where high variance
corresponds to the large variations. Therefore, we use the
variance as an indicator of the sensitivity of the subcarrier
with respect to human activities. Fig. 5 illustrates an example
of time series CSI changes for 30 subcarriers when a user
performs a stretch leg activity, we notice clearly that the
variance of different subcarriers shows a big difference when
performing the same activity. Specifically, including these
subcarriers with high sensitivity to noise but very low sensi-
tivity to human activity may bring unpredictable effects (usu-
ally, negative effect) to the following classification processes.
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FIGURE 5. Different subcarriers have different sensitivities for the same
activity.

FIGURE 6. The first principal component after PCA processing.

Therefore, reducing the data dimension and eliminating these
non-significant subcarriers are very important. In this paper,
we leverage PCA algorithm to reduce the dimensions of the
CSI sequence and eliminate redundant information remain-
ing in the data sequence. Based on our experiment results,
we finally choose the first principal component waveform for
subsequent operations, which is shown in Fig. 6.

C. ACTIVITY DETECTION
1) FIRST PRINCIPAL ANALYSIS
After previous processing steps, we can obtain high-quality
CSI data, which contains not only valid activity information,
but also static environment information when there is no
activity occurs. So what we need to do next is to analyze
the extracted principal component and pick up the signal
segments corresponding to human activities. According to the
results of previous research [23], the main effects of human
motions on the CSI sequence are either rising edges, falling
edges, or pausing. Wi-Motion exploits an activity extraction
method which combines sliding window and threshold image

FIGURE 7. The generating binary image inside the approximate range of
the first principal component sequence of a stretch leg sample.

segmentation, and it can be used to detect the waveform
segment corresponding to human activity in both amplitude
and phase information waveforms.

2) ACTIVITY DETECTION
For amplitude information, we extract the activity from the
first principal component after dimension reduction. Firstly,
setting the sliding window length to 10, we get a window
matrix and immediately calculate the variance of each sliding
window as [Va(1), ...,Va(l)], where l denotes the number of
sliding windows. Then, by using a threshold T , an approx-
imate position range (As,Ae) of motion waveform can be
estimated, where As and Ae represent the starting and ending
points of the range. What we can imagine is that the obtained
sequence can be regarded as a ‘‘two-dimensional image’’.
Based on this hypothesis, we transform and convert normal-
izing sample image into a binary image utilizing optimal
threshold computed using maximal variance between clusters
(MVBC) algorithm proposed in [34]. Fig. 7 shows a binary
image of the approximate range. Subsequently, we refer the
time when the rising or falling edge that first appears into
the pseudo starting time Ws, indicating by the red circle.
By utilizing Ws, we obtain an intermediate split time St ,
which is computed as St = As + Ws to separate the above-
mentioned approximate range into two parts (As, St ) and
(St ,Ae). For the region within (As, St ), the above process-
ing is similarly performed to obtain another binary image.
Synchronously, we consider the rising or falling edge time in
the binary image as the preliminary starting time, expressed
by Ps. Similarly, the last time point where rising or falling
edge occurs in the binary image of another part (i.e., (St ,Ae))
can be regarded as preliminary ending time Pe. Fig. 8 shows
these two preliminary time points. However, if the variance
of the pixel values is relatively high, the starting and the
ending points determined by MVBC are not the one what
we expect for. The reason is that the threshold in MVBC is
mainly affected by the pixel values, rather than the variance.
For this case, we perform sliding variance processing on the
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FIGURE 8. The preliminary start time and the preliminary end time.

FIGURE 9. Start and end points detected by Wi-Motion.

sequences in (As,Ps) and (Pe,Ae) respectively, where the
window size L is 3 and the threshold is the average of variance
sequence. Fig. 9 gives the final result detected by Wi-Motion
using the above method. Two red dotted lines respectively
represent the true starting point Ts and true ending point Te
of activity. Experimental results clearly show that our method
can accurately extract the activity waveform.

Similarly, for phase information, we can also extract the
motion waveform using the above method by setting suitable
parameters, such as window length, threshold, etc.

VI. CLASSIFICATION
A. FEATURE EXTRACTION
1) AMPLITUDE FEATURE EXTRACTION
Discrete wavelet transform (DWT) can analyze signals on
multiple frequency scales and has a better extraction ability
for local features. Considering the speed on different body
parts may be different, direct extraction in time domain will
lose a lot of detail related to human activity. Through the
wavelet transform, the wavelet coefficients of each frequency
band can be obtained. Specifically, we perform DWT on

FIGURE 10. Complete process of discrete wavelet transformation.

the extracted amplitude waveform based on the first-order
Daubechies wavelet, where the decomposition layer number
is 2. Then, the approximate coefficients of the last layer are
taken out and the normalized coefficient sequence can be
used as the feature vector. By the DWT process, the contour
information of the amplitude waveform preserves completely
in the feature vector, and the remaining noise is suppressed as
the detail coefficients are discarded. The complete binary tree
of the DWT process can be shown in Fig. 10.

2) PHASE FEATURE EXTRACTION
For the phase informationmatrix, which includes phase infor-
mation of 30 subcarriers, is also necessary for us to remove
residual noise. In this paper, Wi-Motion further introduces
WMA method into the transformed phase information to
obtain more accurate data that can be used for feature extrac-
tion. Subsequently, we sort the subcarriers according to the
variance of phase sequence in each subcarrier. After select-
ing the top 20 (which is an empirical value) subcarriers for
PCA process, the obtained first component is chosen for
constructing the classifier.

B. CLASSIFIER TRAINING
We select a high-effective SVM classification to recognize
5 activities according to the performance of existing works.
As is known to all, the choice of kernel function plays a
key role in the performance of classical SVM. For example,
a Gaussian kernel function kζ that is simple in form and
widely used can be defined as

kζ (x, xc) = exp[− ‖ x − xc‖2/2σ 2]. (9)

where vector xc represents the center of the kernel function,
σ is a width parameter which controls the radial extent of the
function, and ‖ x − xc‖2 denotes the Euclidean distance of
any vector x to the center of the kernel function.
For our extracted features, we find that the feature vec-

tors of different human activities may not share the same
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FIGURE 11. Classification performance of two classifiers.

length, so the traditional SVM algorithm, which requires
the dimension of the feature vector to be consistent cannot
be nicely applied in classifying our features. Under this sit-
uation, Wi-Motion further exploits dynamic time warping
(DTW) to calculate the distances among feature vectors.
In contrast to Euclidean distance, DTW offers intuitive dis-
tance between two waveforms and can be resilient to signal
distortion or shift. DTW distance is the Euclidean distance of
the optimal warping path between two waveforms calculated
under boundary conditions and local path constraints [35].
DTW aims to compare two time-dependent series which can
be discrete signals (time series) or, more generally, feature
sequences sampled at equidistant points in time. In this paper,
Wi-Motion replaces the Euclidean distance in the Gaussian
kernel function by using DTW distance to construct a new
kernel function

k`(x, xc) = exp[−D`(x, xc)2/2σ 2]. (10)

where k` represents the DTWkernel function, andD` denotes
the DTW distance. Finally, we classify our feature vec-
tors using the SVM model with the kernel function defined
in (10).

C. PREDICTION
In our experiments, we collect the CSI samples of 5 differ-
ent activities (‘‘bend’’, ‘‘halve squat’’, ‘‘step’’, ‘‘stretch leg’’
and ‘‘jump’’) to test our two classifiers. Results are shown
in Fig. 11. Obviously, for an activity like ‘‘step’’, we can use
phase features individually to perfectly classify it. However,
for an activity like ‘‘jump’’, the classification performance of
the phase classifier is not satisfactory. Conversely, the ampli-
tude classifier performs well for ‘‘jump’’ activity, but bad for
recognizing ‘‘step’’ motion. To tackle this, we propose a joint
prediction algorithm based on the output from two classifiers,
which outperforms the case of only using a single classifier.

Traditional combination algorithms, such as boosting algo-
rithm, multiple decision method, etc., facing higher complex-
ity and requiring at least three classifiers. However, in our

experiment, there are only two classifiers, which leads to that
the traditional combination algorithms are not suitable for
Wi-Motion system. In WiSign [22], Shang et al. proposed
weighted voting on two laptops and got the final prediction
result, where they combined two prediction vectors of clas-
sifiers on two laptops instead of choosing the result with the
highest confidence on one laptop. Inspired by their prediction
mechanism, we propose a combination strategy based on the
output of two SVM classifiers. The output is given in the form
of posterior probability, representing the probability of each
activity. More specifically, given training samples ξj where
j = 1..., s, labeled by yj ∈ (+1,−1), the binary SVM
computes a decision function f (ξ ) such that sign(f (ξ )) can be
used to predict the label of any test sample ξ . According to the
method proposed by Platt et al. [36], the SVM standard output
value can be mapped to [0, 1] using the Sigmoid function to
obtain the SVM posterior probability, as

P(y = 1|ξ ) ≈ Pψ,ω(f (ξ )) =
1

1+ exp(ψ f (ξ )+ ω)
. (11)

where P(y = 1|f (ξ )) indicates the posterior probability on
each class, ψ and ω are parameters that need to be optimized
and can obtain using the training set for maximum likelihood
estimation. Let each τj be an estimate of f (ξj). The target
model function can be expressed as following equation

min
z=(ψ,ω)

F(z)=−
s∑
j=1

[tj log(pj)+ (1− tj) log(1−pj)].

(12)

with

tj =


s+ + 1
s+ + 2

, if yj = +1

1
s− + 2

, if yj = −1

(13)

where (ξj, yj) represents the training sample (with s+ of the
yj’s positive and s− negative), pj = Pψ,ω(f (ξj)). In our
experiments, we extend the two-class SVMprobability-based
to the multi-class in a one-to-one manner using the method
completed in [37].

After an unknown sample enters, two classifiers predict
it and generate a posterior probability vector respectively.
Immediately after, Wi-Motion adds these two prediction vec-
tors and gives the final prediction. For example, assuming
the prediction vector reported by the two classifiers are
(0.1, 0.2, 0.78, 0.9, 0.27) and (0.12, 0.2, 0.87, 0.14, 0.24),
we can clearly see that the first classifier cannot distinguish
the third and the fourth activity (since the difference between
0.78 and 0.9 is too small). If we always choose the result with
the highest confidence on one classifier, we possibly make
a wrong decision. But if we combine these two prediction
vectors, we can get (0.22, 0.4, 1.65, 1.04, 0.51). Based on the
final combined prediction vector, the correct prediction (third
activity) can be obtained.

153294 VOLUME 7, 2019



H. Li et al.: Wi-Motion : Robust Human Activity Recognition Using WiFi Signals

FIGURE 12. Environment set of data collection.

TABLE 1. Characteristics of test users.

VII. IMPLEMENTATION AND EVALUATION
A. ACTIVITY DATASET GENERATION
In order to ensure that our system can operate in any environ-
ment, two complex office environments expressed in Fig. 12
are chosen. In our paper, we firstly build a dataset for 6 users,
and each of them provides five human activities, as shown
in Fig. 1. The basic characteristics of test users are presented
in Table 1. We use a commercial TP-Link wireless router as
the transmitter operating in the IEEE 802.11n AP mode at
2.4GHz. An Acer Aspire EC laptop running Ubuntu 14.04 is
used as a receiver, which is equipped with off-the-shelf Intel
5300 card (three antennas) and the modified firmware. Dur-
ing the process of receiving WiFi signals, the receiver pings
the router 33 pkts/s and records the CSI of each packet. For
each activity in different environments, every user provides
30 instances to evaluate the performance of our system.
We randomly select some activity samples from the dataset
as the training set and the rest as the testing set. Specifically,
a random sequence generator is adopted to determine the
serial number of selected samples for each selection process.
The impact of the number of training samples on overall
recognition will be discussed in Section VII-D.

B. ACTIVITY RECOGNITION ACCURACY
Figure 13 shows the mean prediction accuracy of our pre-
diction combination model and classification model on each
classifier of user 1. We can clearly see that our system

FIGURE 13. Prediction accuracy of different activities.

improves recognition performance for all supported activi-
ties. For example, ‘‘halve squat’’ is unsatisfactory to classify
on both amplitude and phase classifier, however, after merg-
ing the prediction results of two classifiers, our system has
a great prediction accuracy of 94.7%. For ‘‘step’’, both the
phase classifier and our system achieve an accuracy of 100%,
while the amplitude classifier only has a prediction accu-
racy of 87.9%. For ‘‘stretch leg’’, the prediction accuracy is
respectively 85% and 89.5% for the amplitude and phase clas-
sifier, while our system has a better result of 97.8%. In short,
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FIGURE 14. False positives of different activities.

FIGURE 15. True positives of different activities.

experiment results show that we can get more accurate activ-
ity estimation by combining output posterior probability of
two classifiers.

C. FALSE POSITIVE AND TRUE POSITIVE
In order to test the recognition performance of Wi-Motion,
we further explore the false positive and true positive of each
activity supported. We use the dataset collected from user 1,
and the evaluation results are illustrated in Figs. 14 and 15.
It is clear that the false positive of prediction can be improved
to about 0.75% and the true positive rate generated by the
combined model reaches 97.1% by combining two classi-
fiers, which is significantly higher than that produced by the
single classifier. To summarize, the combination algorithm
we proposed reduces the recognition errors and facilitates the
recognition of activity.

D. DIFFERENT NUMBER OF TRAINING SAMPLES
In spite, the activity samples Wi-Motion requires are not on
a very high magnitude, according to our experiment results,
we notice that the number of training samples has a certain

FIGURE 16. The influence of the different number of training samples.

FIGURE 17. The influence of different users on different environments.

impact on the recognition accuracy. Fig. 16 shows our exper-
imental results which generate based on the dataset collected
from user 1. Obviously, with the increase of training sam-
ples, the classification accuracy of the amplitude and phase
classifier has a certain degree of increase. The reason is that
the more training samples the richer the information, i.e., the
hyperplane position of the SVM is more accurate. However,
the gain of our combination system is relatively small because
the average recognition accuracy of our system is already
at a very high level. What we all know is that the more
training samples, the longer training time the SVM system
takes, inevitably leading to an increase in system complexity.
Therefore, we set the number of samples used for training
to 105 in our experiments, which can achieve a good balance
between the training time and accuracy.

E. DIFFERENT USERS
Even for the same activity, the operation range and speed may
not be the same since different people tend to have different
habits. Thus, to make sure our system can work for different
users, we perform an experiment to evaluate the influence
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FIGURE 18. Performance for two users.

generated by different users. In each environment, we further
evaluate the data collected from users 2 to 6 in Table 1, and the
results are shown in Fig. 17. In environment A, we can find
that the prediction performances are still good for these users.
Although themean prediction accuracy decrease by about 3%
respectively in environment B, the recognition accuracy is
always at an acceptable level.

F. PERFORMANCE FOR MULTIPLE USERS
In order to ensure that our system can work properly in
a multi-user environment, we do an experiment where not
only the target user is moving, but also there exists another
user who generates interference by doing some activities,
such as walking, standing up, sitting down, etc. Moreover,
the generation time of the interferential activity is not fixed,
which means it may occur during the time period where
the target user generates any activities. Here we present
Wi-Motion’s performance for two users as shown in Fig. 18.
As we can expect, the overall performance decreases with
the number of users increasing compared with a single user.
More specifically, We can clearly see that in the case of two
users, the average accuracy of phase and amplitude classifiers
reduced to 70% because the probability of confusion among
the users increases in such situation. Nonetheless, the clas-
sification accuracy still remains above 80% by combining
two classifiers. Furthermore, we also do experiments under
the situation where there are two interferential users, but the
accuracy achieved was less than 68%. Obviously, it performs
not as good as our expectation and is left as our future study.

G. DIFFERENT AGE OF USERS
The motivation behind studying the impact of user age is
to see whether Wi-Motion’s accuracy is impacted by any
physiological properties caused by human’s age. We do more
data collection sessions in environment A for users 7 to 10
whose basic characteristics are presented in Table 1. Sim-
ilarly, each user also provides 30 samples for each of the
5 activities in each collection session. Finally, we evaluated

FIGURE 19. Performance for users with different ages.

FIGURE 20. Waveform comparison when users with different ages do the
same activity continuously.

the performance of Wi-Motion and the final results are as
follows. Fig. 19 plots the mean recognition accuracy for each
user. We observe that our combination strategy still has good
performance in recognition accuracy, while the achieved per-
formance gradually decreases with a certain degree as the age
increases. We further analyzed the potential reason for this
phenomenon. Fig. 20 plots two consequent amplitude wave-
forms generated by the same activity ‘‘stretch leg ’’ for user 7
and user 8. Obviously, the waveforms of user 7 are basically
the same while the two waveforms of user 8 still have a large
difference although the waveforms are generated by the same
activity. This shows that during the process of data collection,
the physiological function of the person decays as the age
increases, which makes the movement slower and difficult to
control in a stable situation.

VIII. CONCLUSION
In this paper, we proposed a WiFi-based indoor activity
recognition system called Wi-Motion. Compared to existing
related systems, we adopt both amplitude and phase informa-
tion to construct classifiers in our system in order to further
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improve the recognition performance. Moreover, to enhance
the robustness of Wi-Motion, the final recognition result of
our system is determined by combining prediction results on
all classifiers based on output posterior probability rather than
simply obtaining from the single classifier. We intensively
evaluated our system performance in various aspects. Exper-
imental results verified that our system can get better mean
false positive of 0.75% and mean true positive of 97.1%.
Besides, Wi-Motion improves the recognition accuracy to
96.6% in the LOS environment compared with the origi-
nal implementation that uses only one classifier constructed
with amplitude or phase information. More meaningfully,
in NLOS and the environments with multi-users interference,
Wi-Motion also shows certain robustness in recognition per-
formance.
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