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ABSTRACT The model of directional over current relays (DOCRs) coordination is considered as an
optimization problem. It is generally formulated as linear programming (LP), non-linear programming (NLP)
and mixed integer non-linear programming (MINLP), according to the nature of the design variables. For
each kind of formulation, the main goal is to minimize the summation of operating times of primary relays,
by setting optimal values for decision variables as time dial setting (TDS) and pickup current setting (IP) or
plug setting (PS). In this paper, we proposed an oppositional Jaya (OJaya) algorithm with distance-adaptive
coefficient (DAC), to effectively solve the DOCRs coordination problem. Firstly, by oppositional learning
(OL), the searching space of Jaya is expanded and the diversity of its population is strengthened; secondly,
by DAC, the population’s trends of running towards the best position and escaping from the worst position
is accelerated. The performance of OJaya is evaluated by 3-bus, 8-bus, 9-bus and 15-bus testing systems,
in aspects of convergence rate, objective function value, robustness and computation efficiency. The results
indicate the effectiveness and superiority of OJaya in solving DOCRs coordination problems compared with
standard Jaya.

INDEX TERMS Jaya, oppositional learning, distance-adaptive coefficient, over current relays coordination.

I. INTRODUCTION
Relays coordination problem is of great importance for the
operation of power systems. The aim of relays coordination
is to efficiently protect the power systems by quickly isolat-
ing the faulted sections to preserve services throughout the
remaining sections. Over the last 40 years, great progress has
been achieved in the development of relays for the protection
of power systems. Directional over current relays (DOCRs)
have been applied to the design of economical alternatives
for the primary and backup protection of power systems. The
operating times of DOCRs are depended on two parameters
as time dial setting (TDS) and pickup current setting (IP) or
plug setting (PS). Optimal coordination between the DOCRs
is able to maintain the reliability of the overall protection
system.

The mathematical model of DOCRs coordination problem
is generally formulated in three ways. Firstly, as a linear
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programming (LP) problem. In LP, the value of IP or PS
is assumed to be fixed, hence the operating time of each
relay (Ti) is calculated as a linear function of TDS. Even
though LP is a simple formulation, it requires experts for
setting the initial values of IP or PS, and it is easily get
stuck in local minima [1]. Secondly, as a non-linear pro-
gramming (NLP) problem. In NLP, both the TDS and IP
are considered as variables and calculated to minimize the
relay operating time (Ti), where IP takes continuous values.
By NLP, the total operational time of the primary relays can
be reduced and the coordination can be maintained well.
Thirdly, as amixed integer non-linear programming (MINLP)
problem. In MINLP, both the parameters of TDS and PS are
calculated and optimized. The difference between NLP and
MINLP is that, the parameter of PS takes discrete values in
MINLP, while IP takes continuous values in NLP.

Modern optimization algorithms were used to solve the
DOCRs coordination problems. Genetic algorithm (GA),
Hybrid GA and Hybrid GA-NLP were used in [2]–[4]. Two
modified particle swarm optimization (PSO) algorithms were
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used in [5], [6], where the repair algorithm and non-random
technique for initialization were introduced to the standard
version. Teaching learning-based optimization (TLBO) and
modified adaptive TLBO (MATLBO) were used in [7], [8].
Chaotic firefly algorithm (CFA), modified swarm firefly
algorithm (MSFA) and improved firefly algorithm (IFA)
were used in [9]–[11]. The new developed whale optimiza-
tion algorithm (WOA) and hybridized whale optimization
algorithm (HWOA) were used in [12], [13]. In [14], two
different two-phase solution approaches (IPM-BBM and
IPM-IPM) are proposed to solve the coordination prob-
lem. Lately, an adaptive coordination scheme of numerical
DOCRs is proposed in [15] by utilizing a mathematical pro-
gramming language (AMPL) based interior point optimiza-
tion (IPOPT) solver. Furthermore, in [16], optimum settings
of DOCRs considering different characteristic curves for AC
microgrids is presented. Recently, there are new published
articles on DOCRs coordination problems, such as ant lion
optimizer (ALO), invasive weed optimization (IWO) and
water cycle algorithm (WCA) [17]–[19], all of them achieve
good results, but they are faced with disadvantages of adjust-
ing the algorithm-parameters.

Jaya algorithm is a newly developed yet advanced heuris-
tic algorithm proposed by Rao in [20]. It is totally free
from algorithm-specific parameters and only two common
parameters are required, which are maximum number of
iteration (Max_iter) and population size (N_pop). This sig-
nificant benefit makes it popularly applied in various real-
world optimization problems, such as photovoltaic cell and
module [21], economic load dispatch problems [22], Li-ion
battery model [23], isolated microgrid with electric vehicle
battery swapping stations [24], parameter estimation of pro-
ton exchange membrane fuel cells [25] and flexible job-shop
rescheduling problem (FJRP) [26].

In this paper, an oppositional Jaya (OJaya) algorithm with
distance-adaptive coefficient (DAC) is proposed to solve
the optimal coordination problem of DOCRs. Compared
with standard Jaya, there are two improvements in OJaya.
Firstly, by oppositional learning (OL), the searching space is
expanded and the diversity of its population is strengthened.
Secondly, with the help of DAC, which is determined by the
best position and the worst position in Jaya, the population’s
trends of running towards the best position and escaping from
the worst position is accelerated. The main contributions of
this paper can be summarized as follows:
• Jaya algorithm has been used to solve the DOCRs coor-
dination problem;

• OJaya algorithm has been proposed to expand the
population diversity and to accelerate the con-
vergence rate of Jaya, without adding any more
parameters.

• The performance of OJaya has been assessed by stan-
dard test systems of DOCRswith 3-bus, 8-bus, 9-bus and
15-bus;

• The results verified that, with the introduction of OL and
DAC, OJaya outperforms Jaya in all testing systems.

Rest of this paper is arranged as follows. In Section 2,
the formulation of DOCRs coordination problem is
constructed. Related works on Jaya, OJaya and the proce-
dures of solving DOCRs coordination problem are described
in Section 3. Experimental results and comparisons are
presented in Section 4. Finally, conclusions are given in
Section 5.

II. PROBLEM FORMULATION
A. OBJECTIVE FUNCTION
The coordination problem ofDOCRs in a ring fed distribution
system can be formulated as an optimization problem, where
the objective function is the sum of the operating times of the
primary relays in a system, as expressed below:

OF =
N∑
i=1

WiTi (1)

where N is the number of the primary relays,Wi is the weight
assigned for relay Ri which is equal to 1 for all the relays, Ti
is the operating time of relay Ri calculated by the following
formulations:

Ti = TDSi ×
α

(IFi/IPi)β − γ
+ L (2)

IPi = PSi × CTi (3)

where α, β, γ and L are constant parameters which, according
to the IEC curves, are assumed to be 0.14, 0.02, 1.0 and
0. TDSi is the time dial settings of relay Ri. IFi is the fault
current, IPi is the pickup current flowing through relay Ri for
a particular fault located in a particular zone. PSi stands for
the plug setting, CTi stands for the CT ratio, so the pickup
current IPi is calculated by Eq.(3).

B. CONSTRAINED FUNCTIONS
1) RELAY COORDINATION CONSTRAINTS
In a power system,when fault happens, it is sensed by primary
and backup relays simultaneously. To avoid mal-operation,
backup relay should takeover the tripping action, only after
primary relay fails to operate. The operating time of backup
relay (T backup) is decided by the operating time of primary
relay (T primary), plus the coordination time interval (CTI).
This is necessary for maintaining the selectivity of primary
and backup relays. This relay coordination constraint can be
stated as:

T backup − T primary ≥ CTI (4)

The value of CTI varies from 0.30s to 0.40s for elec-
tromechanical relays while it varies from 0.10s to 0.20s for
numerical relays.

2) RELAY CHARACTERISTIC CONSTRAINTS
The relay characteristic constraints are the physical and oper-
ational bounds of the relay parameters as follows:

Tmini ≤ Ti ≤ Tmaxi (5)
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TDSmini ≤ TDSi ≤ TDSmaxi (6)

IPmini ≤ IPi ≤ IPmaxi (7)

PSmini ≤ PSi ≤ PSmaxi (8)

where Tmini and Tmaxi in Eq.(5) are the minimum and max-
imum operating time of relay Ri for the fault at any point;
TDSmini and TDSmaxi in Eq.(6) are the minimum and maxi-
mum values of TDSi of relay Ri; IPmini and IPmaxi in Eq.(7)
are the minimum and maximum values of IPi for relay Ri;
PSmini and PSmaxi in Eq.(8) are the minimum and maximum
values of PSi for relay Ri.

C. CONSTRAINTS HANDLING
In this paper, penaltymethod is used to handle the constrained
functions. It consists of adding a penalty term to the objective
function to penalize the unfeasible solutions that violate the
constraints. A comprehensive survey of the most popular
penalty functions is given in [27].

In DOCRs coordination problem, the relay coordina-
tion constraints and the relay characteristic constraints, are
included in the objective function using penalty method,
as shown in Eq.(9). If any constraint is violated, a value of
penalty is added to the value of objective function. Since the
objective function is of minimization type, a large number is
taken as the penalty factor.

OF =
N∑
i=1

T primaryi +

M∑
k=1

Penalty(k) (9)

whereN is the number of primary relays andM is the number
of relay pairs, the penalty term Penalty(k) is given by the
following equation:

Penalty(k) =


0, if (T backupk − T primaryk ) ≥ CTI

ξ |CTI − (T backupk − T primaryk )|,
otherwise

(10)

where ξ is the penalty factor for penalty method to make
the value of the objective function more significant during
minimisation. ξ is usually given a relatively high value, with
the aim to achieve zero penalties in optimal solutions [28].

III. OJAYA ALGORITHM
A. JAYA ALGORITHM
Jaya algorithm is a newly developed yet powerful heuristic
algorithm for solving constrained and unconstrained opti-
mization problems [20]. Compared with most of the other
heuristic algorithms that requiring for algorithm-specific
parameters, Jaya is totally free from the algorithm-specific
parameters, and only two common parameters named max-
imum number of iteration (Max_iter) and population size
(N_pop) are required, whose values can be initialised easily.
Pseudo code of Jaya is shown in Algorithm 1. The working
principle is explained as follows.

Suppose the objective function OF(X ) is required to be
minimized or maximized. Let the design variable number is
N_var where the index u ∈ [1,N_var], let the population

size is N_pop where the index v ∈ [1,N_pop], let the
maximum iteration number isMax_iter where the index w ∈
[1,Max_iter]. Then let Xu,v,w be the value of the uth variable
for the vth candidate population during the wth iteration, then
the new modified value Xnewu,v,w is calculated by:

Xnewu,v,w = Xu,v,w + r1 × (Xu,best,w − |Xu,v,w|)

− r2 × (Xu,worst,w − |Xu,v,w|) (11)

where Xnewu,v,w is the updated value of Xu,v,w. r1 and r2 are
two uniformly generated random numbers ranged in [0, 1].
Xu,best,w is the best population with the best fitness value and
Xu,worst,w is the worst population with the worst fitness value.
It should be explained that, in Eq.(11), the first term

‘‘Xu,v,w’’ represents the original position, which provides the
necessary start point for each population (each population can
be seen as amoving particle) to roam among the fitness space.
The second term ‘‘+r1×(Xu,best,w−|Xu,v,w|)’’ encourages the
population to fly toward the spot of the best position found so
far. The third term " ‘‘−r2×(Xu,worst,w−|Xu,v,w|)’’ represents
the tendency of the population to run far away from the worst
position found so far.

Algorithm 1 Jaya
Initialize N_var , N_pop and Max_iter ;
Generate initial population X ;
Evaluate the fitness value OF(X );
Set w = 1;
while w < Max_iter do

Identify Xu,best,w and Xu,worst,w within current X ;
for v = 1→ N_pop do

for u = 1→ N_var do
Generate updated population Xnewu,v,w by
Eq.(11);

end
Calculate OF(Xnewu,v,w);
if OF(Xnewu,v,w) is better than OF(Xu,v,w) then

Xu,v,w = Xnewu,v,w
OF(Xu,v,w) = OF(Xnewu,v,w)

else
Keep the old value;

end
end
w = w+ 1;

end

B. OPPOSITIONAL LEARNING (OL)
Oppositional learning (OL) is usually utilized by population-
based algorithm by calculating and evaluating the current
population and its opposite population simultaneously, and
choose the better one for going to next generation. By OL,
the searching space is expanded and the diversity of the
population is strengthened. It has successfully obtained bet-
ter results in biogeography-based optimization (BBO) [29],
whale optimization algorithm (VOA) [30] and krill herd
algorithm (KH) [31].
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Here goes the working principle. Suppose X = (X1,
X2, · · · ,Xu) and Xm ∈ [Am,Bm], where m = 1, 2, . . . , u.
Then the oppositional X is represented as Xo =

(Xo1 ,X
o
2 , · · · ,X

o
u ), which is calculated by:

Xom = Am + Bm − Xm (12)

In this paper, Eq.(12) is applied to the current popu-
lation {X} to generate the oppositional population {Xo}.
To illustrate it in details, we suppose the current popula-
tion Xu,v,w = (X1,v,w,X2,v,w, · · · ,XN_var,v,w), the corre-
sponding opposite solution can be defined as Xou,v,w =
(Xo1,v,w,X

o
2,v,w, · · · ,X

o
N_var,v,w), which is obtained by the fol-

lowing equation:

Xou,v,w = s× (Au,w + Bu,w)− Xu,v,w (13)

where s is a random number in [0, 1]. Au,w and Bu,w are
the dynamic bounds of uth variable in the wth iteration for
all the population, which can be obtained by the following
equations:

Au,w = min(Xu,v,w), Bu,w = max(Xu,v,w) (14)

As we know the searching space is shrinking with iteration,
this may cause the population stuck in local minimum. Thus,
we will update the dynamic bounds Au,w and Bu,w every
50 generations. Even though the dynamic bounds are good at
restoring searching experiences, they can make Xou,v,w jump
out of [Xminu ,Xmaxu ], where [Xminu ,Xmaxu ] are the minimum
and maximum limits in constrained functions of the uth relay.
If that happens, equation below should be used to reset Xou,v,w:

Xou,v,w = rand(Au,w,Bu,w) (15)

where rand(Au,w,Bu,w) is a random number within in
[Au,w,Bu,w].

In this work, OL is combined with Jaya in two aspects.
The first one, when we are generating the initial population,
we apply OL simultaneously to get its oppositional popu-
lation. Then by comparing the current population with its
oppositional population, we keep the better one as the initial
population. The second one, OL is applied to the current
population during the whole iteration process, with the aim
of jumping to a new position which may have greater oppor-
tunity to get closer to the optimal solution. By comparing
its fitness value, the fittest N_pop solutions are saved to the
next iteration and the others are removed. Pseudo code of OL
learning is shown in Algorithm 2.

C. DISTANCE-ADAPTIVE COEFFICIENT (DAC)
It can be observed from Eq.(11) that, searching process
towards better positions by Jaya is mainly guided by two
stochastic terms, one is the best position Xu,best,w and the
other one is the worst position Xu,worst,w. Therefore, reason-
able control of these two terms is of crucial importance in
searching for optimum solution efficiently and accurately.

Generally speaking, at the early stage of searching pro-
cess, the populations are expected to approach the promis-
ing regions as fast as possible; at the latter stage, since the

Algorithm 2 OL_Learning (X )

Calculate the fitness value of current population OF(X ) ;
s=rand(0,1) ;
for v = 1→ N_pop do

for u = 1→ N_var do
Calculate the opposite population Xo by Eq.(13)
;

end
Calculate OF(Xo) ;

end
Order{OF(X ),OF(Xo)} ;
Select N_pop fittest population from {X ,Xo} as new
population X ;

populations have converged to the promising regions, fine-
tuning should be implemented around the neighborhood to
find the global optima. In order to meet this requirements,
distance-adaptive coefficient (DAC) (dw) is introduced. The
mathematical representation of dw is given by:

dw =

(
OF(Xu,best,w)
OF(Xu,worst,w)

)2, if OF(Xu,worst,w) 6= 0

1, otherwise
(16)

whereOF(Xu,best,w) andOF(Xu,worst,w) are the fitness values
of the best solution and worst solution in Eq.(11). Then we
introduce Eq.(16) to Eq.(11):

Xnewu,v,w = Xu,v,w + r1 × (Xu,best,w − |Xu,v,w|)

− dw × r2 × (Xu,worst,w − |Xu,v,w|) (17)

We can tell that, dw has self-adaptive feature and its value
increases gradually, since the distance between Xu,best,w and
Xu,worst,w is becoming closer as the search process. Therefore,
when dw is small at the early stage, a relatively small term of
Xu,worst,w, compared with Xu,best,w, will result in significantly
accelerated speed in approaching Xu,best,w. In contrast, when
dw is gradually increasing to 1, it will fairly make the balance
between Xu,worst,w and Xu,best,w, so the population would
make use of both of the two sides to refine the Xu,v,w at the
latter stage. In addition, since the value of dw is calculated
adaptively, thus no additional parameter is introduced [32].

D. OJAYA ALGORITHM
According to the previous work, an oppositional Jaya (OJaya)
algorithm with distance-adaptive coefficient (DAC) is pro-
posed. Pseudo code ofOJaya is shown inAlgorithm 3. It starts
by setting values for N_var , N_pop and Max_iter . Then the
initial population is created by OL_Learning (X ) according to
Algorithm 2. Then we use DAC to modify the Jaya function.
After that, the modified function is applied to update the
current population. Then OL_Learning (X ) is re-utilised to
select the better value. Finally, ifMax_iter is reached, stop the
iteration and record the best solution. Otherwise, re-calculate
dw and go to the next iteration.
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Algorithm 3 OJaya
Initialize N_var , N_pop andMax_iter ;
Generate initial population X ;
X = OL_Learning (X );
Evaluate the fitness value OF(X );
Set w = 1;
while w < Max_iter do

Identify Xu,best,w and Xu,worst,w within current X ;
Calculate dw by Eq.(16);
for v = 1→ N_pop do

for u = 1→ N_var do
Generate updated population Xnewu,v,w by
Eq.(17);

end
Xnewu,v,w = OL_Learning (Xnewu,v,w);
Calculate OF(Xnewu,v,w);
if OF(Xnewu,v,w) is better than OF(Xu,v,w) then

Xu,v,w = Xnewu,v,w
OF(Xu,v,w) = OF(Xnewu,v,w)

else
Keep the old value;

end
end
w = w+ 1;

end

The main procedures of using OJaya algorithm to solve
the DOCRs coordination problem are illustrated with further
details below, and the flowcharts are shown in Fig.1.

1. Set parameters. Common parameters of N_var , N_pop
and Max_iter are given.

2. Initialization. Initial population X is generated in the
form of:

X =


X1,1,w X2,1,w ... XN_var,1,w
X1,2,w X2,2,w ... XN_var,2,w
... ... Xu,v,w XN_var,v,w

X1,N_pop,w X2,N_pop,w ... XN_var,N_pop,w


where

Xu,v,w = Xminu + (Xmaxu − Xminu )

×rand(N_pop,N_var)

where Xu,v,w is the uth variable in the vth candidate
solution where u ∈ [1,N_var] and v ∈ [1,N_pop].
w is the iteration index number, which actually can be
ignored in the initialization step. Xminu and Xmaxu are the
lower and upper limits of the uth variable given by relay
characteristic constraints, as shown in Eq.(6), Eq.(7) or
Eq.(8).

3. Apply OL_Learning. The Initial population X is
updated according to Algorithm 2.

4. Evaluation. Fitness value OF(Xu,v,w) is calculated by
the objective function given in Eq.(1).

5. Identify Xu,best,w and Xu,worst,w within X according to
the best and worst OF value.

TABLE 1. Primary/Backup relay pairs and related parameters for 3-bus
system [33].

6. Apply DAC. Calculate dw by Eq.(16).
7. Update the population. The updated population Xnewu,v,w

is calculated by Eq.(17).
8. Apply OL_Learning. The current population Xnewu,v,w is

updated according to Algorithm 2.
9. Evaluation. The updated fitness value OF(Xnewu,v,w) is

calculated by the objective function, which is as the
same as in step 4.

10. Comparison. CompareOF(Xnewu,v,w) withOF(Xu,v,w) and
keep the better value.

11. Check the stopping condition. If the Max_iter is
reached, stop the loop and report the best solution;
otherwise set w = w+1 and go to step 6 to re-calculate
dw and continue the loop.

IV. NUMERICAL EXPERIMENTS
To evaluate the effectiveness of Jaya and OJaya in solving
DOCRs coordination problem, test systems of 3-bus, 8-bus,
9-bus and 15-bus have been investigated in this section. All
the systems are developed using MATLAB software (version
R2018b) and executed on a computer under windows 7 on
Intel(R) Core(TM) i5-6500 CPU 3.20GHz with 8GB RAM
environment.

Moreover, since the proposed OJaya algorithm is the
hybridization of Jaya, OL learning and DAC, it is quite
necessary to observe the relative effectiveness of each con-
stituent, hence three different algorithms are experimented
respectively.
• Jaya: The standard Jaya algorithm.
• DJaya: Jaya with DAC.
• OJaya: Jaya with OL learning and DAC.

A. 3-BUS SYSTEM
This 3-bus system consists of 3 buses, 3 generators, 3 lines
and 6 relays, as shown in Fig.2. 3φ fault at the midpoint
of each line is considered. The CT ratio, the listed pri-
mary/backup (P/B) relay pairs and the 3φ fault current of
each line are given in Table.1. All the relays have IDMT
characteristic. This system is experimented by LP, NLP and
MINLP formulations to make fair comparison with other
conducted studies in the literature.

1) CASE 1: 3-BUS SYSTEM WITH LP FORMULATION
In this case, CTI is 0.2s, IF, PS and CT are fixed con-
stants given in Table.1. The only variable is TDS, which is
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FIGURE 1. Solution process of DOCRs coordination problem by OJaya algorithm.

FIGURE 2. IEEE 3-bus DOCRs coordination problem model.

continuous lying in [0.1,1.1]. For Jaya and its variants,
the common parameters of variable number (N_var) is 12,

population size (N_pop) is 5, maximum iteration number
(Max_iter) is 20. The optimum settings of TDS obtained by
Jaya, DJaya and OJaya are given in Table.2. Simultaneously,
simplex method [1], LP using matlab [5], PSO [5] and seeker
algorithm [33] have also been presented to be compared.

Table.2 shows that, all the compared algorithms give the
same objective function value as 1.9258(s), but Jaya, DJaya
and OJaya are able to give more optimized value as 1.7804(s).

Fig.3 depicts the convergence curves, from which we can
observe OJaya shows super fast convergence rate and reaches
its best value within 4 iterations. Fig.4 provides the OF values
distribution over 20 running times. We can see that, most
of the runs are able to reach optimum result in this case.
But there exist some ‘‘outliers’’ with extreme values by Jaya
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TABLE 2. Time dial setting for 3-bus system by LP formulation.

FIGURE 3. Convergence characteristics for 3-bus system by LP
formulation.

FIGURE 4. Independent runs for 3-bus system by LP formulation.

and DJaya, which illustrates that, different from OJaya, Jaya
and DJaya are suffering problems of falling into local optima
which is far away from the global optima.

Table.3 shows the value of coordination time interval
(CTI), we can see that, the constraints are satisfied in every
P/B relay pair.

2) CASE 2: 3-BUS SYSTEM WITH NLP FORMULATION
In this case, the design variables are TDS and IP, which lies
in [0.1,1.1] and [1.5,5.0] respectively, and both of them are
continuous values. System data is obtained from Table.1. The
common parameters of N_var is 12, N_pop is 20, Max_iter
is 50. The optimum settings of TDS and IP are presented

TABLE 3. Coordination time interval for 3-bus system by LP formulation.

TABLE 4. Time dial setting and pickup current for 3-bus system by NLP
formulation.

FIGURE 5. Convergence characteristics for 3-bus system by NLP
formulation.

in Table.4. Simultaneously, GSO [34], IGSO [34] and Ana-
lytic [35] algorithms have been provided to be compared.

From Table.4, we can observe that IGSO [34] achieves
the best OF value as 1.2918(s), the proposed OJaya ranks
the second place as 1.4718(s). But it needs to mention that,
even though IGSO provides better OF value than OJaya, it is
not strictly-satisfying all the constraints of CTI, because there
are some CTIs a little bit less than 0.2(s), which is underlined
in Table.5. However, all the CTI constraints are fully-satisfied
by Jaya, DJaya and OJaya.

Fig.5 shows that, both DJaya and OJaya converge faster
than Jaya. Fig.6 shows the outlines of OF value by 20 running
times. As in Case 1, there are extreme ‘‘outliers’’ by Jaya and
DJaya, but none by OJaya. It illustrates the robustness of Jaya
and DJaya is not as good as OJaya.
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FIGURE 6. Independent runs for 3-bus system by NLP formulation.

TABLE 5. Coordination time interval for 3-bus system by NLP formulation.

TABLE 6. Time dial setting and pickup current for 3-bus system by MINLP
formulation.

3) CASE3: 3-BUS SYSTEM WITH MINLP FORMULATION
In this case, TDS is continuous in [0.1,1.1], PS is discrete in
steps of 0.5 within [1.5,5.0]. System data is obtained from
Table.1. Common parameters of N_var is 12, N_pop is 20,
Max_iter is 50. Optimum settings of TDS and PS are shown
in Table.6. The standard branch-and-bound (SBB) [33],
Seeker [33], BBO [36] and BBO-LP [36] algorithms are
provided to be compared.

We can observe from Table.6 that, the minimum value of
OF is achieved by OJaya as 1.4984(s), followed by DJaya
as 1.5006(s). The average time spent by OJaya and DJaya is
0.0331(s) and 0.0275(s), which are super short times com-
pared with Seeker, BBO and BBO-LP.

In Fig.7, DJaya and OJaya show better convergence capa-
bility than Jaya, because Jaya needs more times of iteration

FIGURE 7. Convergence characteristics for 3-bus system by MINLP
formulation.

FIGURE 8. Independent runs for 3-bus system by MINLP formulation.

TABLE 7. Coordination time interval for 3-bus system by MINLP
formulation.

to reach its optima. In Fig.8, we can observe that, OF value
varies in large range by Jaya andDjaya, but it is kept relatively
stable by OJaya.

Table.7 illustrates that, the CTI constraints are satisfied in
all P/B pairs by Jaya, DJaya and OJaya.

B. CASE 4: 8-BUS SYSTEM
This 8-bus system is considered as MINLP formulation. It is
composed of 8 buses, 2 generators, 2 transformers, 7 lines
and 14 relays, as shown in Fig.9. The near-end 3φ fault is
considered. The CT ratio and 3φ short circuit current for each
P/B pair are given in Table.8. CTI is selected to be 0.3(s).

In this case, the design variables are TDS and PS, where
TDS is continuous ranged in [0.1,1.1], PS is discrete from
{0.5,0.6,0.8,1.0,1.5,2.0,2.5}. Common parameters of N_var
is 28, N_pop is 50, Max_iter is 2000. The optimized TDS
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FIGURE 9. IEEE 8-bus DOCRs coordination problem model.

TABLE 8. Primary/Backup relay pairs and related parameters for 8-bus
system [37].

FIGURE 10. Convergence characteristics for 8-bus system by MINLP
formulation.

and PS are displayed in Table.9, and the results are compared
with Seeker [33], GA [3], GA-LP [3].

TABLE 9. Time dial setting and plug setting for 8-bus system by MINLP
formulation.

TABLE 10. Coordination time interval for 8-bus system by MINLP
formulation.

Although this case has a small dimension, it is a
highly constrained network with limited number of dis-
crete PS values, so it can not get a feasible and optimal
solution easily. As shown in Table.9, GA and GA-LP are
not capable of achieving feasible solutions, which is also
mentioned in [36]. However, Jaya, DJaya and OJaya are able
to obtain feasible solutions, and the OF value keeps decreas-
ing from 10.2325 (s) to 9.8520(s). Even though Seeker [33]
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FIGURE 11. Independent runs for 8-bus system by MINLP formulation.

FIGURE 12. IEEE 9-bus DOCRs coordination problem model.

provides the least OF value as 8.4270 (s), it is not strictly-
satisfying all the constraints of CTI, because there exist
some CTIs a little bit less than 0.3(s), which is underlined
in Table.10. On the contrary, all the CTIs are fully-satisfied
by OJaya.

The convergence behaviours are represented in Fig.10.
We can observe that, all the algorithms converge in similar
trends, but OJaya reaches lower OF value than Jaya and
DJaya. The amplitudes of OF values are shown in Fig.11,
it can be seen that Jaya and DJaya fluctuate in quite
large ranges, which means their robustness still need to be
improved further. But OJaya is always able to keep the OF
value minimum and stable.

C. CASE 5: 9-BUS SYSTEM
In this case, the coordination problem is modeled as NLP
problem. It is with one single-end fed and equal impedances
for all of the lines, as shown in Fig.12. This system has 3φ
fault at the midpoint of each line. The P/B pairs, the fault cur-
rent passing through the relays, the maximum and minimum
fault current are given in Table.11. All the DOCRs have same
CT ratio of 500:1, the CTI is selected to be 0.2s. It is to be
noted that, no backup relay for relays {17, 19, 21, 23}, and

TABLE 11. Related parameters for 9-bus system [38].

FIGURE 13. Convergence characteristics for 9-bus system by NLP
formulation.

FIGURE 14. Independent runs for 9-bus system by NLP formulation.

the minimum operating time of each relay (Tmini ) is taken as
0.2s. For each relay, TDS is continuous ranged in [0.025, 1.2],
and the minimum and maximum limits of PS are calculated
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TABLE 12. Time dial setting and plug setting for 9-bus system with NLP
formulation.

by the following equations:

PS imin =
In,i × OLF

CTR
(18)

PS imax = Iminf ,i ×
2

3CTR
(19)

where In,i is the nominal current rating of the circuit protected
by the relay Ri, OLF is the overload factor equal to 1.25, Iminf ,i
is the minimum fault current detected by Ri.
Common parameters of N_var is 48, N_pop is 30,

Max_iter is 200. The optimum settings of TDS and PS
are presented in Table.12. It is noticed that, no feasible
solution can be found by NLP [4]. The best result is
obtained by GA-NLP [4] with values of 6.1786 (s), fol-

TABLE 13. Coordination time interval for 9-bus system by NLP
formulation.

TABLE 14. CT ratio for the relays of 15-bus system [33].

FIGURE 15. Convergence characteristics for 15-bus system with NLP
formulation.

lowed by OJaya, DJaya and Jaya with values as 6.3713(s),
6.8319(s) and 7.1378(s), respectively. But the authors found
that, the system data used in [4], is a little different from the
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TABLE 15. Primary/Backup relay pairs and related parameters for 15-bus
system [33].

FIGURE 16. Independent runs for 15-bus system with NLP formulation.

commonly-used system data given in Table.11. Because the
primary relay 13 and 14 in [4] has only one backup relay;
actually, the primary relay 13 and 14 has two backup relays,
as showed in Table.11. This difference may lead to the OF
value of GA-NLP is less than OJaya. In fact, [38] uses the
same system data as Table.11, which shows that, OJaya is not
only better than the algorithms of DE and SOA, but also better
than GA (14.5426), PSO (13.9472) and HS (9.2339) [38].

TABLE 16. Time dial setting and plug setting for 15-bus system by NLP
formulation.

TABLE 17. Comparison of the results for 15-bus system with NLP
formulation.

Because of limited space of the table, we did not show all
the algorithms from [38], but the comparison illustrates that,
OJaya is still the best performer in this case.

The convergence characteristics could be seen in Fig.13,
from which we can observe that, both OJaya and DJaya
converge faster than Jaya, and obtained lower OF values as
well, while OJaya obviously achieves the lowest OF value.
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TABLE 18. Coordination time interval for 15-bus system by NLP
formulation.

Fig.14 shows 20 times of independent runs, we can observe
that OJaya shows the strongest ability in maintaining the
minimum value of OF (with Std equals to 1.4472), while
DJaya suffers several times of premature problem (with Std
equals to 2.2792), and Jaya has the worst robustness (with Std
equals to 2.8335).

Table.13 shows the operating time and CTI, we can see that
there is no selectivity constraint is violated.

D. CASE 6: 15-BUS SYSTEM
This 15-bus system is experimented as NLP formulation,
which consists of 15 buses, 21 branches, 42 DOCRs and
82 P/B relay pairs. 3φ close-in fault is considered in all
the lines. This case is a highly distributed generation (DG)
penetrated distribution networks, where CTI is 0.2 (s), TDS
is from 0.1 to 1.1, PS is from 0.5 (A) to 2.5 (A). The CT
ratios, P/B relay pairs and currents for 3φ faults are available
in Table.14 and Table.15.
Common parameters of N_var is 84, N_pop is 50,

Max_iter is 10000. The optimum settings of TDS and PS
are given in Table.16. We can observe that, OJaya is the
best performer among Jaya, DJaya and OJaya in terms of
OF value (15.5233). However, when we compare OJaya with

other published algorithms for this case, OJaya is not the best
one, as shown in Table.17. It means that, OJaya still has space
for improvements.

The convergence characteristics are given in Fig.15, we can
observe that, all the algorithms converge in a similar trend,
but OJaya achieves much lower OF value than Jaya and
DJaya. The distribution of OF value by 20 times runs is given
in Fig.16, the comparison confirms that, OJaya maintains the
best robustness with Std equals to 1.996.

Table.18 shows the operating time and CTI, we can see that
there is no selectivity constraint is violated.

V. CONCLUSION
This paper proposed an oppositional Jaya (OJaya) algorithm
with distance-adaptive coefficient (DAC). With the help of
oppositional learning (OL) and DAC, the searching space of
standard Jaya is expanded, the diversity of its population is
strengthened, the convergence speed in approaching promis-
ing regions is accelerated as well. To compare the perfor-
mances of Jaya and OJaya in solving real-world optimization
problems, they are applied to the DOCRs coordination prob-
lem including 3-bus, 8-bus, 9-bus and 15-bus. Then we get
conclusion that, OJaya has improved Jaya’s performance in
aspects of convergence rate, objective function value, robust-
ness and computation efficiency in all the testing cases.

It worth mentioning that, there are three attractive prop-
erties of OJaya. The first one is, even though the concepts
of OL and DAC are introduced, no more parameter is added
throughout the whole implementation. The second one is,
the working principle of OJaya is easy to understand. Thirdly,
the overall frame of OJaya can be easily transported to other
population-based evolutionary algorithms (EAs), such as
PSO, teaching-learning-based optimization (TLBO), cuckoo
search (CS) and artificial bee colony algorithm (ABC), which
is one of the authors’ interests in research in the future.

In the future study, the authors will mainly focus on two
aspects. Firstly, how to improve the performances of OJaya in
larger test systems as 30-bus or 42-bus in DOCRs coordina-
tion problem. Secondly, how to expand OJaya’s applications
in power system, such as apply OJaya to the overcurrent
protection of AC microgrids by DOCRs.
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