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ABSTRACT Urban traffic routing has to deal with individual mobility and collective wellness considering
citizens, multi-modal transport, and fleet traffic with conflicting interests such as electric vehicles, local
distribution, public transport, and private vehicles. Different interests, goals, and regulations, suggest the
development of new multi-objective routing mechanisms which may improve traffic flow. In this work,
Traffic Weighted Multi-Maps (TWM) is presented as a novel traffic routing mechanism based on the
strategical generation and distribution of complementary cost maps for traffic fleets, oriented towards the
application of differentiated traffic planning and control policies. TWM is built upon a centralized control
architecture, where a Traffic Management Center generates and distributes customized cost maps of the
road network. These maps are used individually to calculate routes. In this research, we present the TWM
theoretical model and experimental results based on microscopic simulations over a real city traffic network
undermultiple scenarios, including traffic incidentsmanagement. Experimental evaluation takes into account
driver’s adherence to the system and considers a multi-objective analysis both for the global network
parameters (congestion, travel time, and route length) and for the subjective driving experience. Experimental
results deliver performance improvements from 20% to 50%. TWM is fully compatible with existing traffic
routing systems and has promising future evolution applying new algorithms, policies and network profiles.

INDEX TERMS Dynamic traffic assignment, traffic control, traffic simulation, vehicle routing, traffic big
data, decision making, multi-agent systems, multi-map routing, TWM.

I. INTRODUCTION
Modelling and design of traffic management systems and
services have still important challenges to address, such as
matchingmulti-objective demand and resources in an optimal
and automated way. In one side Traffic Control Systems (TCS)
measure and react over the traffic network (resources) to
coordinate traffic demand by means of signaling systems,
traffic information panels, and regulatory policies and restric-
tions [36]. In the other side, we have vehicles represented by
their traffic agents, that plan routes dynamically, and react in
real time to traffic data input: traffic network status, signaling
directives and congestion information [35].

The need of individual route generation and dynamic
re-planning from a TCS has been addressed by many differ-
ent approaches and commercial proposals [1], [2], [5], [30].
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Many of them require complex architectures and intense com-
puting resources, raising as well important privacy concerns.

From the driver perspective, the main objectives are to
reduce and minimize travel time and route cost, consider-
ing risk-aversion and time-bounding (predictability). New
mobility paradigms for smart-cities and Urban Computing
concept [51] also focus on collective objectives considering
citizens, multi-modal mobility, and conflicting group inter-
ests: safety, electric mobility, car-sharing, air pollution, noise
footprint, special fleets requirements, scheduled traffic con-
straints, geo-fenced policies, event planning and fast reaction,
and public transportation.

Optimal traffic planning in TCS must consider and han-
dle all these factors, implementing new multi-objective cost
functions and the corresponding control models. This smart
mobility management may be enabled by the use of big data
techniques [25], [26] that handle the dynamic generation of
tons of information from city sensors and mobile agents on
devices.

153086 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-9162-4147
https://orcid.org/0000-0001-9228-1863
https://orcid.org/0000-0002-3026-7537


A. Paricio, M. A. Lopez-Carmona: Urban Traffic Routing Using Weighted Multi-Map Strategies

Our research is based on the fact that a traffic map is not
the same as the traffic network but just a representation of it,
a view. This view describes both physical features (lanes, dis-
tances, lat/long, etc) and logical features that are conventions
(lane directionality, speed, time-restrictions, weights, etc).
We propose a novel traffic route guidance model called
TWM -Traffic Weighted Multimaps- based on the genera-
tion and distribution of complementary cost maps for traffic
collectives (vehicles groups and/or fleets), oriented towards
the application of differentiated traffic planning and control
policies. TWM takes into account that traffic collectives may
have different interests, policies, and constraints, so it makes
sense to offer them differentiated network views (maps).

TWM proposes the distribution of multiple maps with
different link weights, based not only on speed but also on the
result of applying a multi-objective cost function. Optimiza-
tion in TWM is achieved by a) finding the optimal weight
values and map sets for the defined traffic groups, and b)
considering that only a percentage of drivers are going to
use or follow the recommendations. Individuals belonging
to the same group (fleet) share a group of maps. This group
and time assignment reduces the computational complexity of
the approach. There is a trade-off between individual optimal
route and global objectives fulfillment. In our research we
show how the aggregation of individual decisions tends to
satisfy the predefined control policy.

Traffic Weighted Multimaps approach is shown to be tech-
nically feasible and easy to deploy, being compatible with
current platforms and navigation systems. It requires few
resources to be implemented, and preserves individual’s pri-
vacy. Compatibility with existing routing frameworks based
on route-queries for origin/destination (O/D) is obvious,
as TWM can be applied at the TCS back-end when the user
asks for a route or an hyper-path.

Global traffic optimization may be then achieved by means
of TWM generation algorithms, based on data-driven with
machine learning approaches and predictive control tech-
niques. In this paper we focus on the effects of multimaps
on travel time and route length using randomly generated
weights for traffic dispersion in real urban traffic network.
We study both global effects and individual perceptions.

The main contributions of this paper include: (1) a novel
traffic route guidance model based on multimap distribu-
tion that enable differentiated route selection for individu-
als and collectives; (2) a microscopic simulation framework
for TWM evaluation and algorithm comparisons; (3) impact
analysis of TWM in congestion scenarios; (4) TWM usage
proposal for incident management, and (5) experimental
results based on simulations over a real urban network.
The research has promising future evolution applying TWM
calculation algorithms, distribution policies and network
profiles.

The paper is organized as follows: first we review previous
studies and similar references, then we present the concep-
tual framework that we will use throughout the paper. After
that, we present a real traffic network (Alcala de Henares,

a Spanish mid-size city) with real multi-fleet demands. The
experiments show the TWM positive effects on global net-
work congestion indicators, and on individual driving experi-
ences. To conclude, the paper analyses simulations of traffic
incidents in real city scenarios and how they are addressed
by ad-hoc multi-maps to avoid congestions and enhance
end-user experience. Finally we present our conclusions and
show future research lines on the TWM topic.

A. BACKGROUND
We introduced TWM in [38] as a very preliminary proof of
concept of congestion mitigation mechanism for a synthetic
16x16 grid network. TWM are created by a TMC (Traffic
Management Center), which enables intelligent congestion
control as a global concern together with individual routing
needs.

Global parameters such as pollution level, noise footprint,
prioritization of vehicle type, contingency plans, etc, are
well described in [8], [9]. Individual intention-aware routing
proposals can be found at [13] and [46], that are sometimes
used for predictive routing [12] and [16]. There are other
works that propose collaborative RGS (Routing Guidance
Systems) systems fed by a traffic control center using Big
Data mechanisms to compute mobility management policies
in both distributed and centralized schemes [27], [40], [44].
They usually require permanent inter-connectivity between
vehicles and authorities.

In the same way, there are many multi-agent traffic man-
agement proposals such as those reviewed in [7], [10], [35].
They use different approaches such as automatic negoti-
ation, distributed optimization, predictive routing, predic-
tive control, and others [31], [32]. Genetic algorithms are
also used for cooperative vehicle coordination as described
in [14], [15]. Electric vehicles and their concerns related to
charging stations, receive specific attention and several works
deal with them [44], [48].

TWM is fully compatible with the hyper-path concept,
where individual traffic agents receive for each origin
and destination not a single route but a tree of alterna-
tives [11], [23], [34], [41]. Hyper-path route calculus con-
siders the uncertainty and variability of traffic dynamics, and
uses mainly historical data as traffic behavior patterns where
different analysis methods can be applied [19], [29], [33].
Hyper-path calculus to synthesize the pre-trips require a lot
of back-end computing while receiving data streaming for the
network and the mobile agents, and also en-route distribution
is required to the distribution servers. TWM is complemen-
tary to hyper-paths providing different network views for the
individuals of any traffic class. This network view can be
used for the hyper-path calculus. TWM is multi-purpose and
combines individual, group and global policies, in contrast
with hyper-path that is conceived for individual risk-averse
policies design (minimizing travel-time variance).

TWM relies on a traffic control system architecture which
may implement a distributed control in closed loop of routes
for the vehicles [30], [37], with capacities of planning

VOLUME 7, 2019 153087



A. Paricio, M. A. Lopez-Carmona: Urban Traffic Routing Using Weighted Multi-Map Strategies

FIGURE 1. Overview of TWM generation and distribution model.

and re-planning. There is no individual feedback about
selected route or current trip (no microscopic feedback) but
there is mesoscopic feedback collected through standard sen-
sors and cameras that provide measures about traffic conges-
tion and speeds.

Most of the navigation systems (RGS) that operate
today suggest the shortest route and hyper-path, derived
from real-time traffic density information and historical
data [1], [2], [5], [6]. Traffic agents use these recom-
mendations to make their individual decisions based on
this common information: they use the same network
view and the same traffic data. Agents that are travel-
ing from similar origin/destination or just share common
paths will take very similar decisions, causing traffic con-
gestion to be transferred. This is the so-called ‘‘common
resource distribution problem’’, from which the so-called
‘‘Minority Game’’ or ‘‘Farol Bar Problem’’ [43] derives.
It is therefore clear that there is a need for more
precise control of vehicle routes, that requires precise
individuals feedback and/or highly distributed sensor net-
works [24], [42], [50]. This control could be exercised
through individualised management at the microscopic level
of each route. However, microscopic control entails problems
of scalability, deployment and privacy, so TWM proposes an
alternative, scalable, non-disruptive control and management
methodologywith low communication load, limited feedback
and thus fewer implications for users’ privacy.

Similar strategies have been used with IP routing protocols
(MSTP) and SDN networks [18], [22], [28], [39]. These IP
traffic engineering techniques assume that the network oper-
ators modify link-weights dynamically to achieve routing
paths that obtain the required traffic goals (such as latency
and congestion).

Our architecture proposal uses a big-data module based
on data lake pattern where all the activity is stored in a
log-oriented basis. It enables inference of historical traf-
fic patterns that are used to calculate and design TWM.
References [17], [21], [45] have recently proposed similar
approaches for data-clustering and pattern detection.

II. DEFINITIONS
A. TWM - TRAFFIC WEIGHTED MULTIMAPS
A TMC can generate differentiated network maps for every
traffic group of agents (fleets), using cost functions that
assign weights to the links of the network, just altering the
max speed concept (that is in fact a fixed cost function).
Moreover, it could provide time-dependent maps valid only
for certain time frames.

These maps can be created considering several sources:
historical data, real-time traffic data, real-time events affect-
ing mobility (non-traffic data, but affecting the demand, such
as sport events, critical incidents and others), and of course,
synthetic data extracted from big-data sources. Figure 1 illus-
trates the basics for TWM generation.

Instead of having a heavy set of regulation, signaling,
geo-fenced constraints that every individual should process,
evaluate, and execute, it is easier to have them collected into
traffic map collections that are used by the individuals for
route selection.

TWMgeneration is executed in two possible time-policies:
1) in a scheduled way following traffic density loads (daily
and hourly in a typical configuration), 2) in a reactive way,
conditioned by events (incidental or planned ones).

These multimaps provide a different routing weights set
for each fleet at each edge. For instance, a city center
will have different network map sets for the fleets taxi,
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electric vehicles, logistic distributions, and conventional cars.
The edge weights will be different for each fleet, promoting
or penalizing traffic for each edge. Of course, these maps can
be static or time-dynamic, depending on multiple strategies.

O/D route calculation can be generated by the individ-
uals using the network maps and the navigation applica-
tion, but also can be generated by a TCS that receives the
origin-destination requests for route and delivers a set of pos-
sible routes [30]. In both cases, multimap approach is valid as
it considers optimal route evaluation against a weighted map.
It is always the individual who decides which route/path to
use.

As stated above, traffic classes are subsets of mobile ele-
ments (that we will call fleets) that share similar a) traffic
goals, b) network constraints, c) regulations, d) traffic indica-
tors and e) individual behaviors.

Privacy and data protection are main concerns in modern
routing systems [20]. TWM prevents individual data expo-
sure, as the traffic agent self-qualifies for a fleet that is
used for map selection upon those distributed in the TWM.
For the server-side route recommendation mode, the agent
should provide its fleet qualification in order to obtain the
corresponding TWM for it.

B. MODEL FORMULATION
TWM can be expressed by a formulation including the mul-
timap, routing and agent perspectives. Together with the for-
mulation, we include as well the simulationmodel that is used
in the experimental part of the paper. Table 1 summarizes
basic TWM notation.

1) TWM MULTIMAPS
A TWM multimap function Π (1) takes as inputs a traffic
network 2, a set of traffic groups [�k ] (called fleets), a set
of time constraints 0k,m and a dynamic view 8 of the traffic
usage of the network, in order to obtain a set of network maps[
µk,m

]
.

Π : 2, [�k ] ,
[
0k,m

]
, 8→ [µk.m] (1)

In this paper we address static traffic routing with TWM,
leaving the dynamic routing based on8 using different rout-
ing algorithms (not only Dijstra) for future works.
In general, each traffic group�k has a set of map instances[
µk,m

]
as a customized representation of the traffic net-

work2, under certain time constraints
[
0k,m

]
. There are two

main types of time constraints
[
0k,m

]
: those formed by peri-

odic scheduled constraints (i.e. traffic restrictions over certain
hours) and eventual time constraints (i.e. works, demonstra-
tions, etc).
Urban areas 2 have a standard traffic network representa-

tion (2) formed by a directed graph of geographical nodes ηn
connected by edges, being each edge εi,j a set of links (lanes)
that connects nodes ηi and ηj with a weight β

k,m
i,j as expressed

by the tuple:

2 =
{
[ηn] ,

[
εi,j
]}

(2)

TABLE 1. Notation summary.

εi,j =
(
ηi, ηj, β

k,m
i,j

)
(3)

Each TWM map µk.m is an instance of specific values
for each weight βk,mi,j . As a proof of concept we propose a
multi-map Πstd that just considers linear scaling α of link-
speed Si,j for providing each edge weight βk,mi,j :

Πstd : [εi,j], [�k ] ,
[
0k,m

]
→ [µk.m] | β

k,m
i,j = α ∗ Si,j

(4)

In our initial experiments, we have tried normal and uni-
form functions (5) to create weight distributions that allow
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traffic dispersion in the network. These perspectives are cre-
ated scaling weights by a factor δ determined by distribution
functions δnormal = normal(a, b) (a stands for the mean
value and b stands for the statistical dispersion amplitude) and
δuniform = uniform(a, b) (ranging from a to b):

Πδ : [εi,j], [�k ] ,
[
0k,m

]
→ [µk.m] | β

k,m
i,j

= α ∗ Si,j ∗ (1+ δ) (5)

Design of optimal TWM weight distribution functions Πx
will be subject of future research, considering factors such
as: network topology, vehicle fleets, historical traffic data,
real-time traffic information and time constraints.

2) TRAFFIC DEMAND, ROUTING AND AGENTS
We assume a mobile population of

[
υka
]
vehicles grouped by

[�k ] fleets. Those vehicles that do not belong explicitly to a
fleet are assigned to the standard �0 fleet. The percentage of
vehicles that effectively use TWM at any time is called the
adherence factor ψ :

ψ =

∑[
υka
]
TWM∑[
υka
] (6)

Vehicles generate
[
Wk

a
]
trips during observation epochs.

Each trip, as described in (7) is composed by the vehicle iden-
tification, the starting timestamp, the starting point (origin
node) Oa, the destination point (node) Da and a tuple with
possible intermediate stops [Pka] :

W k
a = f

(
υka , t

0
a ,Oa,Da, [P

k
a]
)
|∀υka ∈ �k (7)

Traffic demand is grouped by geographical areas called
TAZ (traffic assignment zones, ∆m) that summarize trips as
traffic flows, for all the trips starting in the same geo-fenced
area.

For the map-distribution approach, depending on each con-
crete time epoch, each fleet may have a specific navigation
map set

[
µk,m

]
. In client-based routing, each map µk,m is

distributed to its individuals (on-demand or by publication
to subscriptions) and in server-based routing the map is used
for individual route calculation. Vehicles not classified or in
general belonging to standard �0 fleet use the standard map.

The routing agent will calculate for each trip the best route
Rk,ma or hyper-path using the corresponding map (standard or
ad-hoc received multimap). This calculation uses some of the
available routing algorithms (Dijkstra, A*, etc). Presented
experiments use Dijstra.

Non-TWM users will use the standard default road map
�0 for best-route calculation and the TWM users will use
the corresponding map from the offered set according to the
selected policy (per fleet for instance) as shown in:

Rk,ma =

{
(Oi,Dka, [Pa], µk,m) υka ∈

[
υka
]
TWM

(Oi,Dka, [Pa], µ0) υka /∈
[
υka
]
TWM

(8)

Travel-time TT ka taken by each vehicle υka is the sum of the
partial travel times at each edge, and can also be expressed as

a composition of congested STT ka and non-congested times
MTT ka . Wewill use these parameters for individual and global
performance:

TT ka = STT ka +MTT
k
a (9)

Distance RLka run by each vehicle is expressed as:

RLka =
∑

length(εi,j), εi,j ∈ Rk,ma (10)

For traffic routing performance analysis, we consider at
every timestamp t those trips that have been already com-
pleted

[
Wk

a
]t
end , those that have been started

[
Wk

a
]t
run and

not completed
[
Wk

a
]t
pend , and those that haven’t been started

yet (11):[
Wk

a

]t
total
=

[
Wk

a

]t
end
∪

[
Wk

a

]t
run
∪

[
Wk

a

]t
pend

(11)

3) OPTIMIZATION OBJECTIVES
There are two sets of optimization objectives: global
objectives such as congestion or pollution, and individual
objectives such as travel-time, trip cost or route length.
Individual performance measurement is critical for TWM as
it influences drivers’ confidence: multiple positive individ-
ual adoptions would enable viral adoption of the multimap
recommendations.

These variables can be measured and optimized globally
for the whole network of by fleet. Some of the objectives can
be expressed and measured at every single network edge and
are marked with (*).
• Global network objectives:

– Dispatched traffic demand: DTDt as the percentage
of routed demand compared against the total traffic
demand exposed to the network:

DTDt =
card(

[
Wk

a
]t
end )

card(
[
Wk

a
]t
total)

(12)

– DTDTWM as successfully TWM routed traffic,
as ratio of TWM routed traffic versus incoming
traffic:

DTDTWM =
card(

[
Wk

a
]
TWM )

card(
[
Wk

a
]
total)

| W k
a ∈

[
Wk

a

]
end

| υka ∈
[
υka

]
TWM

(13)

– TTS t total time spent by the vehicles in the traffic
network:

TTS t =
∑

TT ka |W
k
a ∈

[
Wk

a

]t
end
∪

[
Wk

a

]t
run

(14)

– THS t , Total Halting Time (Congestion Time, Wait-
ing time) (*) , as the total sum of halting times of
the vehicles in the network:

THS t =
∑

STT ka |W
k
a ∈

[
Wk

a

]t
end
∪

[
Wk

a

]t
run

(15)
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– NHDt , Number of halted demand (vehicles) (*):

NHDt = card(
[
vki
]
)

|Wk
a ∈

[
Wk

a

]t
end
∪

[
Wk

a

]t
run

| speed(vki ) <= 0.1 (16)

– VKT total distance traveled by the vehicles that
started their trips in the network:

VKT t =
∑

RLka |W
k
a ∈

[
Wk

a

]t
end
∪

[
Wk

a

]t
run

(17)

– Edge traffic (*): number of vehicles, mean speed,
edge occupancy.

– Gas Emissions (*): CO, CO2, HC, PMx, NOx
of vehicles (as stated by HBEFA fleet assign-
ments).SUMO simulator provides these edge mea-
sures.

– Consumption (*): fuel, electricity.
– Noise emissions (*). SUMO simulator provides this

edge measure.
• Individual objectives, comparing how all the individu-
als1 are being affected by TWM adoption versus the
non-TWM standard situation (marked as experiments
no-TWM and TWM ). They are measured using paired
statistics in simulations, comparing every individual trip
between the standard routing scenario and the TWM
routing scenario. Relative change is considered for
improvement analysis, though in certain circumstances
the absolute value analysis could be relevant from the
user’s subjective perspective.
– TTCk

rel Individual relative travel time change (as
a percentage over original travel time), where

TT ka
|
|TWM and TT ka denote travel-time of a single trip

using TWM or not respectively:

TTCk
rel =

TT ka
|
|noTWM − TT ka

|
|TWM

TT ka
|
|noTWM

(18)

– RLCk
rel Individual route length relative change (as

a percentage over original route length), where

RLka
|
|TWM and RLka

|
|noTWM denote route-length of a

single trip using TWM or not respectively:

RLCk
rel =

RLka
|
|noTWM − RLka

|
|TWM

RLka
|
|noTWM

(19)

– Individual consumption: fuel, electricity.

4) TWM SIMULATION MODEL
The simulation model explores some of the concepts used in
the formulation. The following variables are considered for
our traffic impact analysis with TWM.
• Network variables:

1Whole vehicle population including TWM and non TWM users

– Topology of urban network (2n =
{[
ηnk

]
,
[
εi,j
]}
).

We consider in our experiments a real city network.
• Traffic demand variables:

– Types of urban traffic (�k ) where we distinguish
typically fuel-cars, zero-emissions cars, taxis, com-
mercial distribution, buses and motorcycles among
others, or even emission models classification such
as HBEFA or similar standards.

– Traffic zones (TAZ,∆m) to generate in/out and inter-
nal traffic inside the network.

– Traffic demand density (
[
Tk
j

]
), expressed by num-

ber of trips.
– Traffic demand directionality, where we have tested

both crossing and internal traffic. Real scenarios
combine both types of traffic.

• Multi-map variables:
– TWM enabled/disabled.
– TWM cardinality, or number of maps to distribute

and apply, to check out which number of maps will
be the best option for each situation. We use in our
experiments 2n maps {0, 1, 2, 4, 8...}.

– TWM, weight distribution functions Π , using βk,mi,j
factor to increase current path weights, and thus
impacting route calculus. Current functions imple-
mented are the Πstd and Πδ with normal and uni-
form distributions. Some weight factors are:
∗ No influence: βk,mi,j = 1.

∗ Random Lowweight, using βk,mi,j = α∗Si,j∗(1+
normal(0.5, 0.5)).

∗ Random High impact, that will apply a nor-
mal distribution using βk,mi,j = α ∗ Si,j ∗ (1 +
normal(2, 0.5)).

∗ Uniform Low and High impact, using the uni-
form functions instead of the normal ones.

– TWM time triggering (
[
0k,m

]
: Time constraints for

TWM
[
µk,m

]
), reflecting the time instant where

the multimaps are applied. This is used to check if
maps are used to avoid congestion before it occurs,
or used to help congestion clearance while it is
occurring. We use:
∗ Always on.
∗ When-congested, where the vehicle uses multi-

map when congestion is detected or forecasted.
∗ On incident occurrence or clearance.
∗ On schedule to set time and Geo constraints in

the traffic network.
• Routing algorithms:

– TWM route selection algorithm . We support both
Dijkstra and A* for the initial experiments ( [23],
[47], [49]).
Route selection, can be used at centralized route
delivery where the agent requests the best route to
follow, or decentralized where the agent calculates
the best route by itself.
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TABLE 2. Traffic fleet composition.

TABLE 3. Driver adherences.

• MTA Agent variables (individual / vehicle):

– MTA multimap adherence ψn, or n-percentage of
vehicles that use TWM in the traffic network. ψn
is composed by the specific ψn,k adherences at
each fleet �k . In this paper we use the aggregated
value ψn.

III. APPLICATION OF TWM TO URBAN TRAFFIC
To demonstrate the feasibility of traffic weighted multi-maps,
we created a simulation engine that is based on the micro-
scopic simulator SUMO [9] and apply TWM to real urban
networks under free-flow and congested conditions.

Considering the traffic demand as a main parameter, sev-
eral profiles have been created to reproduce situations of low,
normal and high levels of traffic congestion. Two types of
traffic are used: internal traffic are those trips with random
origins and destinations, while directional traffic is formed
by trips that cross the whole network.

Several fleets are considered and shown in Table 2. Bus
traffic won’t use TWM as they follow prefixed routes.

To study TWM impact on traffic use several driver adher-
ences ψn as percentage of vehicles effectively using the new
routing recommendations. They are shown in Table 3.

For results analysis several diagrams are used:

1) Histograms to represent travel-time distributions, both
global and individual. In these histograms we add both
mean and median values to show how overall behavior
has changed.

2) Evolution of traffic congestion in time, measuring
the number of congested traffic nodes, mean network
speeds and number of halted vehicles.

3) Histograms to represent individual improvement (pos-
itive or negative) of travel-time. It can be absolute
or relative, and is zero-centered: positive values show
how many vehicles have reduced their travel-time, and
negative just those who have been impacted.

TABLE 4. Alcala de Henares TAZ composition.

4) Cumulative probability of individual travel-time
improvement to see the impact of TWM.

A. REAL CITY NETWORK EXPERIMENTS
We have used the traffic network from Alcala de Henares
to test the TWM framework. It is a mid-size city of 250K
population, located at 30km north-east of Madrid, Spain.

1) URBAN NETWORK DESCRIPTION
This city is a good experimental scenario as it has a
middle-age downtown with heavy traffic restrictions and
pedestrian areas, tourism, administrative facilities and resi-
dential usages causing high density of internal traffic demand.
The city has around the downtown extensive industrial, com-
mercial and citizen service areas (hospitals, wide-area uni-
versity campus and others). The city is crossed east-west by
an intensive highway connecting Madrid and Barcelona. Due
to the closeness to the airport and Madrid’s business center,
there is a heavy daily traffic in and out caused by people going
to and from their workplaces. Also, the city has heavy traffic
exchange with the surrounding villages.

We have identified the traffic flows in the city using Traffic
Area Zones (TAZ) as shown in Figure 2 and in Table 4.
We consider TWM adherences of ψ0.1, ψ0.2, ψ0.5 and ψ1.
Traffic types (fleets) distribution is shown in Table 2.

2) CONGESTED TRAFFIC NETWORK USING 16-TWM
Our simulation includes traffic flows between all the TAZ
estimated using real data which correspond to heavy traffic
hours. Several sources have used for data curation: public
APIs, private crowd-sensing and city local traffic service
web [3], [4]. Demands estimations are shown in Table 5.
We select a 3 hours simulation.

To execute our TWM evaluation, we use a TWM
with 16 maps that will be uniformly distributed and used by
the fleets with the probability distribution shown in Table 6.
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FIGURE 2. Alcala de Henares traffic network and TAZ mapping.

TABLE 5. Alcala de Henares traffic demands.

TABLE 6. TWM usage distribution on traffic classes.

Buses usemapµ0 for their fixed routes. Routing uses Dijkstra
algorithm.

TWM maps have been generated using the Uniform Ran-
dom High Impact Πδ . The configuration file is shown in
Figure 3.

FIGURE 3. 16-TWM composition.

3) GLOBAL TRAFFIC EVOLUTION
USING 16-TWM RANDOM MAPS
We can see the impact of using TWM over travel-times in
Figure 4 and Table 7, that compare traffic evolution of a
congested scenario under two situations: no TWM usage
and TWM usage with certain driver adherence. Travel-time
is measured in the simulation for every single trip from
departure to arrival. The histograms represent number of
trips per travel-time duration. We have selected traffic his-
tograms for the highest adherences as it easier to observe how
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FIGURE 4. Alcala de Henares simulation, TWM impact on TT with ψ0.5 and ψ1 adherences.

TABLE 7. Alcala de Henares simulation, TWM impact with ψ0.1, ψ0.2,
ψ0.5 and ψ1 adherences.

TWM affects travel-time: the number of vehicles with shorter
travel-times increases (peaks in the left side). The right side
of each histogram shows local peaks where some vehicles are
taking longer to complete their trips: TWM adoption moves
this peak to the left shortening travel-times. We can also see
how mean and median travel-times are reduced, flattening
the curves and affecting all the trips in an homogeneous
way. Travel-time gets improved when driver’s adherence
to TWM usage grows, ranging to 19,6% of improvement
in the full-adherence scenario. The scenario considers the
whole traffic network with many different fleets and types of
roads: from small one-way edges to a big crossing high-way
with 6 lanes in two senses. Traffic and congestion are strongy
heterogeneous in the scenario, and TWM provides routing
alternatives for congested edges.

Not only travel-time (TT) is improved but also the routed
traffic demand (for the time interval considered): the TWM
scenario is routing 3,1% more vehicles. It is the multimap
route clearing effect: TWM is reducing global congestion
when drivers select the alternative best-cost routes.

The penalty of using TWM is reflected in route lengths,
which grow slightly due to the fact of using alternative maps,
but mean affection is just 1.9%. If we consider the 19.6%
reduction in mean travel-time against 1.9% of mean route
change we can consider that the balance of using TWM is
worthy.

From the previous results we would expect that the global
congestion measures get also positively affected in terms of:
• Reducing number of congested edges.

FIGURE 5. 16-TWM number of congested nodes, halted vehicles and
mean speed.

• Reducing number of halted vehicles.
• Increasing mean speed in the network.

In Figure 5 we can observe how global network variables
evolve in time for different vehicles adherences. The traffic
network gets progressively congested while traffic demand
is growing being able to route completely at the end of the
simulation. The graphs confirm our hypothesis as the three
mentioned indicators are significantly improved:
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FIGURE 6. Alcala de Henares, TTCrel travel-time relative individual
experience with ψ0.5.

• Congestion peaks (height of figure - number of con-
gested edges and halted vehicles) are significantly lower
using TWM.

• Congestion duration (width of figure - time with halted
vehicles) is also significantly reduced using TWM.

• Mean network speed is also increased with TWM.
When we consider different TWM driver adherences,
we notice that results get improved. Drivers will give positive
feedback to the loop, and expectations are that adherence will
grow. We can expect that the system will tend to increase
adoption in time. This kind of system dynamics is left for
future research.

B. INDIVIDUAL DRIVING EXPERIENCE USING 16-TWM
Global statistics hide the individual driver perception that
is a key factor for adherence dynamics. To analyze driver’s
experience we use paired statistics, where we compare single
o/d trip of the same vehicle under different scenarios and
create travel-time histograms.

In Figure 6 we analyze individual travel time variation with
adherence ψ0.5 as percentage of affected vehicles over the
whole vehicle population. Variations do not follow normal
distributions, as confirmed from the results of standard paired
tests (T-Test, Shapiro and others).
• 0-Value represents frequency of individuals that do not
perceive any significant changes when using TWM.

• Negative values show the percentages of vehicles whose
travel time has been penalized. When the TWM assigns
a weightedmap that differs from the original one, drivers
are going to diverge in their decisions from the opti-
mal ones considering just the free-flow empty network.
Some of the individual travel-times TT ka are negatively
affected mainly due to the increments in route lengths
RLka and lower speed. For the subjective experience we
should also take into account the individual halted time
STT ka that is reduced.

• Positive values from 0 show percentage of drivers whose
travel time has been improved. The higher values, the
bigger improvement, and also the main promoters for
TWM adoption.

Relative impacts represent better the impact on driver’s
experience. The driver evaluates how much improved
using TWM,when compared to the original non-TWMvalue.

FIGURE 7. Alcala de Henares, comparison of individual experiences for
TWM/non TWM users (relative) with ψ0.5.

Individual improvement is measured in travel-time, route-
length, energy consumption and other parameters. We focus
on travel-time which is the main indicator.

At the right side of Figure 6 we find that the subjective
improvement is more relevant: a big number of drivers have
significantly reduced their travel times respect to the original
travel time expectations. They were the previously congested
vehicles.

TWM benefits reach all the vehicles, not only for those
that use TWM but also the other ones. This is the obvious
consequence of routing some traffic out of the preferred
paths: the whole network status gets highly improved.

Figure 6 also shows that some vehicles are suffering
travel-time penalty as TWM weight adaptation forces eval-
uation of new optimal routes. Global TWM impact needs to
consider the two factors shown in the graph: a) the relative
impact for each driver and b) the number of drivers that are
reducing travel-time.

1) TWM AND NON-TWM DRIVING EXPERIENCES
If we think in terms of awareness and reward (‘‘What is
my reward for using the multimap?’’) we need to consider
two different populations: those drivers that use TWM and
non-using drivers.

Though TWM users achieve the expected benefits,
non-TWM users benefit as well, and even more than the
TWMusers, generating a global improvement. Application of
TWM on maps covering the original best-cost routes, derives
a significant amount of the traffic out of them, thus triggering
a congestion clearance on them: the multimap route clearing
effect.

Figure 7 compares the variation/improvement for each
population where we can see how both populations are being
affected by TWM usage in a similar way.

2) MAXIMUM ADHERENCE SCENARIO
We have seen so far the ψ0.5 scenario; we study now
the scenario where all the vehicles are using TWM, ψ1.
Figure 4 shows the global measures for different adherences,
and Figure 8 shows the maximum relative improvements
for the traffic network and the considered traffic demand.
As expected, we find a right-side slope that reveals that most
of the vehicles are having a better driver experience with a
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FIGURE 8. Alcala de Henares, TTCrel at ψ1adherence.

FIGURE 9. Alcala de Henares, cumulative probability distribution for ψ0.1,
ψ0.2, ψ0.5 and ψ1.

wide satisfactory perception. The ψ1 histogram shows how
real bottlenecks are eliminated, represented in the right peaks:
previously halted vehicles are now routed.

3) CUMULATIVE PROBABILITY DISTRIBUTION OF DRIVING
EXPERIENCE VARIATION
In the cumulative probability distribution for ψ0.1, ψ0.2, ψ0.5
and ψ1 (Figure 9) we observe how the improvement is
achieved. We point out that:
• Starting with very low adherence such asψ0.1 (10%) the
probability of being positively impacted is considerable.
TWM generate benefits even with a small number of
drivers.

• Probability of having improvements increases with the
adherence almost linearly with it, and when we reach
full adherence, the benefit is maximum.

IV. TWM APPLICATION ON URBAN ROAD INCIDENTS
TWM offers a wide number of use-cases for real application.
One of them is to design ad-hoc traffic weighted multi-maps
to minimize impacts of traffic incidents. These traffic inci-
dents could be planned works (scheduled) or caused by a
real-time event.

In case of incident to be managed by some TWM applica-
tion, we will follow these steps:

1) Identify the physical coordinates of the incident.
2) Identify the edges and nodes affected by the incident,[

εi,j
]
x

3) Create an ad-hoc multi-map
[
µk,m

]
x (20) around the

affected edges, within a distance radius of Rx . The
multi-map will be valid for a certain time lapse that will

typically cover from the incident detection to some time
after incident clearance.

Πx : [εi,j]x , [�k ] ,
[
0k,m

]
, Rx → [µk.m]x (20)

1) Distribute the TWM
[
µk,m

]
x to the adequate fleets.

Some fleets may not use it for some possible reasons,
for instance, in case of using fixed routes (like buses).

2) In case of supervised routing, where we don’t know in
advance the time duration of the incident:
a) Monitoring traffic conditions during the traffic

incident.
b) Restoration of original TWM conditions.

Generated
[
µk,m

]
x maps for incidents are the result of merg-

ing edge weights of current
[
µk,m

]
that could be currently

in use, or the standard map µ0 if there is no previous TWM
usage.
In the creation step of the new

[
µk,m

]
x for the incident,

TWM generator allows us to apply several routing policies
with different functions 5δ as we mentioned in the formula-
tion chapter:
• Apply a fixed weight penalty of value K to all the edges
surrounding the affected edge with N edges of distance.

• Apply a random weight penalty amplified by value K to
all the edges surrounding the affected edge with N edges
of distance. Random distributions allow that different
paths will be selected by the vehicles.

Radius Rx is a distance metric that expresses the maximum
number of edges belonging to the possible traffic paths that
converge into the affected edge

[
εi,j
]
x . It is not measured in

meters nor miles, but in number of edges. This distance cal-
culus is more convenient in urban areas as once the vehicles
have entered the edge they should complete the whole edge
distance.

A. INCIDENT EXPERIMENT DESIGN
To analyze a realistic scenario, we use the Alcala de Henares
traffic network, with ad-hoc traffic demands. Impact of TWM
usage in case of traffic incidents has a very different impact
depending on the congestion stage of the whole network:
highly congested traffic networks are not going to receive the
same improvement as other non-congested scenarios.
Our traffic scenario consists on a heavy directional traffic

flow that crosses the city (traffic area zones taz5 and taz50).
The flow consists on around 2000 vehicles/hour distributed
in the first hour. This flow generates some congestion points
in the most used edges.
The traffic incident location is shown in Figures (10 and 11).

It occurs in an edge belonging to the most selected routes,
though it is not at the top congested edges to avoid forcing
experimental results. The incident lasts from timestamps
2000 (incident) to 4800 (restore).
Figures 12 and 13 compare both global scenarios of

free-flow with or without the incident, showing the evolu-
tion of total number of halted vehicles in the network and
travel-times of the vehicles using it. The incident creates a
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FIGURE 10. Alcala with directional traffic and incident in the main path.

FIGURE 11. TWM routing command for incident management.

FIGURE 12. Effect of incident on travel-times.

FIGURE 13. Impact of road incident on halted vehicles.

congestion situation as can be seen in the red right side of the
histogram where many vehicles are increasing their travel-
times. Also it can be observed that total number of halted
vehicles raises until incident clearance.

FIGURE 14. 5x :

[
µk,m

]
x

multi-maps for incident management.

FIGURE 15. Configuration file for the TWM map generator.

B. TWM DESIGN FOR THE INCIDENT
In the experiments, the framework distributes the correspond-
ing multi-map

[
µk,m

]
x with the assumption that the incident

is detected in the same time instant that it has been produced,
and that the TWM generation and distribution is immediate.
This assumption is used for simplicity, as the results will be
similar using different times.

The linear multi-map
[
µk,m

]
x used in the experiment is a

simple one, that will be used by three of the four fleets; the
fourth fleet, buses, is going to use its regular fixed paths.

The linear functionΠlin described in (21) is used to create
the new weights based on the standard ones based on max
speed constraints, setting the new edge weight has a combi-
nation of a fixed penalty (parameter a) and a variable scaling
factor (parameter b). Our objective is to amplify the edge
weights around the incident so that they won’t be selected
for the new best-route calculation, thus discouraging drivers
from using them.

Πlin : [εi,j]x , [�k ] ,
[
0k,m

]
,Rx → [µk.m]x

| β
k,m
i,j = a+ b ∗ Si,j|

{
a = 20
b = 5

| Rx = 5

| 0k,m ∈ [2000, 4800]

Figure 15 shows TWM map generator configuration, where
the parameter pen_edges_steps=5 indicates that we are using
a distance radius of Rx = 5 as explained before. Traf-
fic is dispersed around the incident avoiding edges with
distance 5 to the incident and re-calculating the best-path to
their destination.

The experiments that have been executed, consider differ-
ent driver’s adherences of ψ0.1, ψ0.2, ψ0.5 and ψ1 for the
multi-map adoption.
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FIGURE 16. New
[
µk,m

]
x

weights.

FIGURE 17. Travel-time variation with ad-hoc TWM on incident for ψ0.5
and ψ1.

TABLE 8. Travel-time variation with ad-hoc TWM on incident for ψ0.5
and ψ1.

Both the linear function used and the selected parameter
values are part of basic experiments, and no optimization
algorithms have been applied. They will be subject of future
research in order to obtain optimal results: optimization
function, linear factors, distance radius, number of maps to
be used and other parameters that offer a wide range of
possibilities.

C. TWM APPLICATION RESULTS
As we can observe at histograms in Figure 17 and Table 8
for ψ0.5 and ψ1adherences, the initial congestion is cleared

FIGURE 18. Global evolution of incident managed by TWM: Halted
vehicles.

FIGURE 19. Global evolution of incident managed by TWM: Congested
edges.

by the TWM, rerouting traffic out of the boundaries of the
incident edge. Travel-time variation perceived by the drivers
in this case raises up to 79% for a full ψ1 adherence, but it
is clear that this value depends on the incident instant and
duration and the route lengths of all the vehicles. Right side
of the histograms (green side) show the incident situation
where vehicles are blocked by the incident; red left side shows
how the vehicles using TWM find alternative paths and get
rerouted, thus reducing their travel-times.

Figures 18, 19 and 20 show how global congestion due to
the incident is impacted by TWM usage depending on the
adherence to the system by drivers:
• Halted vehicles initially collapse the network for the
selected paths when the incident appears (red line).
Usage of TWM with maximum adherence is able to
flatten the curve, reducing to a minimum the impact of
the incident (black line). The big gap occurs while jump-
ing from 50% to 100% adherence where the maximum
efficiency is achieved.

• Number of edges congested also gets flattened with
application of TWM, reducing the congestion peak.

• Mean speed in the network is raised globally while
applying TWM.

Subjective individual variation is shown in Figure 21 forψ1
adherence where it is clear that vehicles that where initially
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FIGURE 20. Global evolution of incident managed by TWM: Mean speed.

FIGURE 21. Individual travel-time relative variation.

blocked by the incident (right-side) have obtained a great
reward for using TWM in terms of travel-time. Very few
vehicles have been negatively impacted.

V. CONCLUSION AND FUTURE WORKS
Traffic weighted multimaps (TWM) is offering a new
approach for both static and dynamic traffic management,
as it considers enhancing both global network and individual
traffic objectives. It considers the fact that traffic network usu-
ally provides multiple paths for the same O/D pair, but traffic
agents recommendations usually propose the same routes as
they use network and traffic load data, not taking into account
the different traffic groups objectives and capabilities.

We have shown with our experiments in a real city traffic
network under real traffic conditions, how TWM application
can lead to improvements of global travel time indicators
between 20% and 30%, depending on scenario conditions,
enhancing greatly congestion situations. The penalty paid is
using slightly bigger routes. TWM behaves correctly in low
and high traffic density scenarios:
• In low-density traffic scenarios, individual improvement
has no valuable impact as agents are close to their
ideal performance (travel time), but group and global
Smart-City indicators are greatly improved.

• In high-density traffic scenarios (close to congested
networks), multimap algorithms offer their best perfor-
mance, as they are able to enhance individual objectives
improving also group and global indicators.

• Real-Time response to changes in network such as
incidents, is fast and effective, by means of releasing
new multimaps sets with link costs adapted to the new
situation.

The benefits of TWM include the following:
• The possibility of automating early and real-time deci-
sion making for drivers and authorities.

• Generation of an integral model for the application of
management and control policies.

• It can be offered as a service (SaaS model), as it uses a
non intrusive architecture.

• It is conceived as a evolutionary planning model, based
in on traffic feed back and learning cycles.

• Compatible with existing traffic management frame-
works and traffic agents.

• Drivers’ agents autonomy is preserved as the multimap
model takes into account individual freedom of route
choice.

• It allows for the articulation of contingency plans and
the integration of traffic prognosis models.

TWM stands out from an innovative perspective in the
following:
• Offers an integrated planning and re-planning model,
extensible and open.

• Enables traffic categorization for application to very
different groups and situations: electric vehicle, pay-
to-drive and car-sharing fleets, commercial distribution,
disabled people, pollutants, dangerous transport, routing
due to weather, timetables, etc.

• It is replenished and self-learning.
• Route calculation can use standard optimization algo-
rithms and techniques.

• Uses existing data (Smart-Cities, OpenData) and adds
value.

• TWM can be implemented easily in current traffic con-
trol systems, creating a new routing module that uses
differentiated maps as defined by TWM. It does not
require the installation of additional infrastructure.

• TWM does not require V2V communications nor
deployment of sensors, panels or communication
infrastructures.

• From the user perspective, it is compatible with existing
traffic agents, as we will replace the maps they use.

• TWM usage does not require all vehicles to adopt it.
May be used in a biased manner (only for certain cat-
egories or policies).

There are many open future research works that mainly deal
with dynamic traffic assignment with TWM, creating evo-
lutionary algorithms and optimization functions for finding
local area minimum for routing maps that can cover eventual
time-dependent situations, and also releasing new reference
networks, such as radial topologies, roundabouts, etc.

Also modeling user-perspective for influencing the adher-
ence factor that is shown as a key condition for TWM impact
is a topic of future research. Generation of hyperpaths based
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on TWM is a promising research direction, and adding new
simulation engines such as mesoscopic ones.
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