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ABSTRACT This work proposes a new non-contact method based on Infrared andDepth cameras tomeasure
respiratory rhythm in real-life situations. The proposed algorithm consists on using both video feeds to
track the movements of the subject in real-time, compute the location of the face and calculate the most
suitable ROI to extract the respiratory signal in adult population. 20 subjects were measured while driving in
a car simulator with no constraints other than the simulator itself. The algorithm has been validated using a
commercial thorax plethysmography system. An opportunistic approach has been used to obtain pieces from
the tests for each subject, thus making a more realistic approach to the real-life situations where the signal is
likely to contain errors. The breath-to-breath respiratory signal and the instantaneous frequency from both
methods has been computed from each piece to characterise the error between the proposed method and
the reference system. The results show a high correlation between the measured rhythm from the reference
method and the proposed method, with relatively low error results and good sensitivity in cycle detection and
low errors for the instantaneous frequency between methods. The error results have also been compared with
the ones obtained in previous studies showing a good agreement between the obtained results and the ones
presented in the previous studies. No relationship between the length of the pieces and the error has been
found either for the respiratory cycle signal or the instantaneous frequency signal. The proposed algorithm
can be used tomeasure respiratory rhythm in unconstrained conditions andwith opportunistic measurements,
thus making it suitable to perform in real-life situations while driving. Further studies taking into account
vibrations or light changing conditions are needed to confirm that the proposed method performs with the
same accuracy with these constraints.

INDEX TERMS Non-contact, respiration, IR, camera-based, point-cloud, computer vision.

I. INTRODUCTION
In 2015 the European Sleep Research Society made a study
across 19 european countries [1] in which they estimated that
the prevalence of falling asleep while driving was 17 % of
the population across Europe. Moreover, they estimated that
as a direct consequence 7 % of the sleepy drivers would be
involved in an accident.

Nowadays detecting drowsiness while driving has become
a major topic. Examples of these algorithms and systems
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approving it for publication was Vishal Srivastava.

comprise algorithms to detect attention while driving [2],
electrocardiogram (ECG) or electroencephalogram (EEG)
acquisition and analysis systems [3], [4], or even respiratory
rhythm detection and analysis methods [5], [6]. One relevant
example in this last category can be found in [7], which is
based on the respiratory rate variability analysis in order to
detect the fight against to fall asleep.

Acquiring physiological variables through unobtrusive
methods is also a major topic nowadays. Examples of these
methods comprise from Doppler radar [8] to infrared ther-
mography [9] for respiratory signal extraction. Recently,
methods that rely on computer vision algorithms to extract
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physiological signals can also be found, from consumer-
grade cameras [10], [11] to more advanced depth point-cloud
based acquisition [12].

Recent studies of breathing detection using depth point-
cloud or Time-of-Flight sensors can be found in the literature:
the study [13] uses a Microsoft Kinect V2 camera to acquire
the breath signal in subjects lying down in a static position by
manually selecting specific pixels. The study [14] also uses
a Kinect camera but in this case the breathing is obtained
by a predefined region of interest (ROI) to assess expiratory
volume. More advanced algorithms can be found in [15]
as they compute the ROI based on the pose of the subject,
although these algorithms have better performance in real-
life situations than the two aforementioned articles, [15] does
not compare the obtained breathing with a reference system
and they only use fixed breathing frequencies to verify the
breathing signal. The study [16] presents an hybrid approach
to obtain the ROI based on inferring the position of the bed
and the subject using the Infrared feed of a Kinect camera,
and then applying the ROI to the Depth stream. This last
study uses the power spectral density (PSD) to compute the
breathing rate, so no information about the breath to breath
respiratory periods is obtained. All the cited studies use sub-
jects either in a seating position or lying down on a bed in
a static position, hence no movement errors are taken into
account.

Moreover, most of the aforementioned unobtrusive
camera-based methods and the previous mentioned studies
are not suitable tomeasure physiological signals in conditions
such as in a car cockpit, due to environmental variables
comprising vibrations, sudden lighting changes and move-
ments of the subject. Another limiting factor is that most of
these algorithms do not work in real-time, which is a key
factor to extract real-time information from the extracted
physiological variables.

The aim of this work is to present a non-contact camera-
based method [10] to measure respiratory rhythm (instanta-
neous frequency changes in the respiratory signal) with an
hybrid architecture, using a synchronized Infrared (IR) and
Depth point-cloud video feeds provided by the same camera.
The proposed algorithm is able to track the movements of
the subject using the IR feed, making it robust to sudden
posture changes and more robust than an RGB feed to illu-
mination changes. Using the same IR feed the face of the
subject is located in order to compute the best region of
interest (ROI) in the thoracic area to extract the respiratory
signal from depth point-cloud feed. By tracking the changes
in the thorax displacement of the subject the respiratory signal
can be extracted. The algorithm is designed to perform in
real-time as the extracted signal is intended to be used for
drowsiness detection while driving. In order to validate the
proposed method, the extracted respiratory signal has been
compared with a commercial thorax plethysmography sys-
tem based on an inductive band (RespiBand system from
BioSignalsPlux TM ) that has been used as a reference system.
A car simulator has been used to perform all the tests in static

conditions, where the only moving part was the subject being
measured. Both reference system and the two video feeds
from the camera were recorded simultaneously with the same
computer and synchronized among them.

II. MATERIALS AND METHODS
The proposed method is based on the simultaneous acqui-
sition of the infrared frame (IR) that the camera will use
to extract the depth information and the depth point-cloud
(Depth) itself. The camera uses two infrared feeds and a IR
laser projector to compute the disparity map between the
two IR feeds and then converts it to a depth point-cloud.
The proposed algorithm was built based on the OpenCV
(Version: 3.4) and Dlib [17] (Version: 19.16) libraries. The
whole code for the proposed algorithm has been written in
Python (Version 3.7 with CPP bindings like cython). The
feeds from the camera were obtained using the librealsense
library (version 1.12.1).

A. PROPOSED ALGORITHM
Fig. 1 summarizes the operational flow of the algorithm
including the IR and Depth frame and the processing steps
taken to compute the respiratory signal.

1) INFRARED FRAME
The infrared frame (IR) is used to perform two tasks, the first
is to detect the face of the subject, whose location and width
will be used to compute the ROI that will be used by the
depth point-cloud (Depth), and the second is to detect if the
subject is moving. In order for this algorithm to work, two
frames are needed: the previous frame and the actual frame.
The movement of the subject is computed in the following
way by the means of optical flow algorithms.

• First, the IR frame is decimated by a factor of 4 by
scaling the image to a 1/4 of its original size. This step
is necessary to compute the optical flow as the whole
frame would decrease the performance of the algorithm
and increase the computational cost, and further scaling
would decrease the accuracy of the optical flow.

• Then, the optical flow is computed by the means of the
pyramidal implementation of the Kanade-Lucas-Tomasi
(KLT) [18] algorithm by comparing the last frame from
the camera and the actual frame.

• The mask obtained from the background removal is
applied to the last step in order to remove possible false
positives due to background movements.

• Themeanmodulus of the optical flow is computed, if the
modulus does not exceed a certain threshold the last
frame is updated, if otherwise, the algorithm proceeds
to the face detection stage.

The face detection stage is only performed when the algo-
rithm detects that the subject is moving. To perform this
stage the original IR frame is used, without any decimation,
to increase the accuracy of the face detection algorithm.
To detect the face of the subject the Dlib library [19] has
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FIGURE 1. Flowchart of the proposed algorithm.

been used, this library uses the Histogram Oriented Gradi-
ents (HOG) feature combined with linear classifiers to detect
and compute the position of human faces inside an image.
Once a face is detected the ROI is computed as it can be seen
in Equation 1 and depicted in Fig. 2a.

Xroi = Xi + w/2

Yroi = Yi + h ∗ 2 (1)

where (Xi,Yi) are the left-corner coordinates of the rectangle
that defines the position within the image of the face, w and
h are respectively the width and the height of that given
rectangle and finally, (Xroi,Yroi) are the centre coordinates of
the computed region. All the coordinates and the reference
coordinates of the image can be appreciated in Fig. 2a.

The centre coordinates of the ROI are computed by taking
into account the length of the rectangle that defines the face.
The centre is located two times the height below the left-
corner in the Y axis and half the width of the rectangle at the
X axis as it can be seen in Fig. 2a. From that centre, the ROI is
defined as a centred square of 32 by 32 pixels. This amount
has been obtained by previous experiments as the one that
yields better results, as a wider ROI produced slightly better
results but required higher computational cost as well, and
narrower ROIs produced poor quality results.

2) DEPTH POINT-CLOUD
The depth point-cloud (Depth) is used to perform two differ-
entiated tasks: the first is to compute a background segmen-
tation mask, and the second is to extract the respiratory signal
given the ROI computed from the previous steps.

The background segmentation is performed by threshold-
ing the point-cloud within the range of 0.5 m to 1 m. This dis-
tances have been chosen as they are the most probable range
where the subject would be respectively from the camera,
according to the camera position in the measurement setup.
Once these thresholds have been applied to the point-cloud,
a mask is generated by replacing the resultant points to the
maximum value and the rest of the points to 0. This mask is
the one used in the IR stage to filter the modulus of the optical
flow.

Once the ROI is computed in the IR stage, the respiratory
signal is extracted from the depth point-cloud by performing
an average of all the points contained within the previous
ROI. The computed ROI can be appreciated as the blue square
depicted in Fig. 2b. The averaged distances are modulated by
the movement of the thorax hence related to the respiration
of the subject [20]. This final part of the algorithm is based
on the patent Respiratory Signal Extraction [10] published
in 2018 with number: WO/2018/121861 which has been val-
idated in [21] versus other two video sources and a reference
system for respiratory rhythm measurement.

B. MEASUREMENT SETUP
To acquire both the Infrared and Depth video feeds the
RealSense ZR300 from Intel [22] was used. The camera was
configured to acquire both feeds at 30 fps with a resolution
of 492 x 372 pixels. This resolution was chosen as it is the
highest resolution that supports distances as short as 0.5 m.
The camera was placed at an approximate distance between
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FIGURE 2. Capture examples of the IR feed and Depth Point-Cloud from the preliminary tests (not the actual setup), with the metrics used to compute
the ROI depicted in the IR feed and the final ROI represented as a blue square in the Point-Cloud. The ROI used to extract the respiratory signal (blue
square) from the Depth Point-Cloud can be appreciated in (b).

0.6 - 0.8 m from the subject (this distance range was obtained
after the analysis of the point-cloud for each subject).

The reference system used was the RespiBand
plethysmographic system from BioSignalsPlux. This system
is comprised of a Bluetooth transmitter and a thoracic band.
The respiratory signal is acquired by sensing the volumetric
changes of the thorax by the means of an inductive band. The
chest wall strain is measured with a 12 bit ADC and sampled
at 40 Hz, the signal is filtered with a 1st order analogue
band-pass filter with frequencies 0.058 Hz and 0.9 Hz. The
acquired signal is then sent to the computer by the means of
a Bluetooth classic (2.0) serial port.

To record both video feeds and the reference system simul-
taneously, a custom program based on the ROS (Robotic
Operative System) was used. Both signals where stored in
a *.bag binary file with their respective timestamps so a
posterior analysis could be performed. The ROS *.bag format
allows to emulate the time when the events were recorded,
using this emulation the algorithm has been tested for loss
of information due to processing speed, hence testing it to
perform in real-time environments. The version of ROS used
was kinetic Kame on an Ubuntu 16.04 LTS.

The laptop used to acquire and process the measurements
was an ASUS ROG gaming laptop with the following speci-
fications: Intel i7- 4710HQ, Nvidia GeForce GTX 850M and
8 GB of RAM.

C. MEASUREMENT PROTOCOL
Twenty healthy subjects, 10 male and 10 female, with ages
comprised between 23 and 49 years old (mean: 37.55 years,
sd: 6.66 years), with height comprised between 148.5 cm and
195 cm (mean: 171.48 cm, sd: 10.38 cm), weight comprised
between 49.5 kg and 114.5 kg (mean: 76.99 kg, sd: 18.02 kg)
and body mass index (BMI) comprised between 17.9 kg/m2

and 34 kg/m2 (mean: 26.04 kg/m2, sd: 4.87 kg/m2) volun-
teered for the study.

The measurements were performed in a car simulator that
consisted on: a full size car chassis (with steering wheel,

FIGURE 3. Photos of the car simulator in the facilities of the
Biomechanics Institute of Valencia. (photos courtesy from the
Biomechanics Institute of Valencia)

pedals and car chair) and a highway simulator projected on
a wall screen in front of the vehicle. The setup is depicted
in Fig. 3.

Each subject was asked to wear the RespiBand BioSig-
nalsPlux system (reference system) and was asked to drive
normally following the road indications, to behave as normal
as they could and to act freely within the capabilities of the
simulator. Before the beginning of the test, the subject was
able to adjust the distance between the seat and the steering
wheel. All the measurements, and the protocol to perform
them, were dictated and performed by the Biomechanics
Institute of Valencia. The authors did not partake in the
realization of the tests, only the data obtained from the tests
was processed by the authors.

D. SIGNAL PROCESSING
After the extraction of the respiratory signal by the means of
the proposed algorithm, the normalisation, the piece selec-
tion and the performance analysis has been computed using
Matlab version 2018a and for the statistical computation R
version 3.6.0 has been used.

1) SIGNAL NORMALISATION
Prior to the cycle extraction from the respiratory signals
obtained with the proposed algorithm and the reference
system, and in order to perform its posterior comparison,
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FIGURE 4. Comparison between raw signal and normalized signal from
the Bioplux sensor.

the signals had to be normalized. The signal processing steps
taken in both respiratory signals were the following:
• First, the respiratory signal extracted from the depth
camera was interpolated at 40 Hz using a cubic spline.
This step was necessary to normalize the sampling fre-
quencies from both methods.

• A zero-phase 2nd order Butterworth digital bandpass fil-
ter was appliedwith cut-off frequencies between 0.05Hz
and 1 Hz. This filtering stage eliminates undesired com-
ponents and removes possible drifts in the signal.

• A moving median filter [23] was applied to the signals
in order to remove the peaks induced by the previous
step, produced by the transitory periods that were a
direct consequence of the change in the ROI due to the
subject movements. The resulting signal is obtained by
subtracting the median filter signal from the original
signal. The window of the filter was set to three seconds,
this length is enough to produce good results and shorter
than a complete normal respiratory cycle.

• Finally, in order to compress the signal between -1 and 1,
a non linear function was applied as defined in Equa-
tion 2 [24]

Sn[k] = arctan
S[k]√∑N

i=1(S[i]−S̄)2

N−1 ∗
√
2

(2)

where S[k] is the original respiratory signal, S̄ is the mean of
the respiratory signal and Sn[k] is the normalized signal.
An example of the raw respiratory signal and the normal-

ized signal for the reference system can be seen in Fig. 4.

2) OPPORTUNISTIC PIECE SELECTION
As the purpose of the proposed algorithm is to measure
respiratory rhythm in real-life conditions, each test has been
divided into variable-length pieces with a minimum duration
of 60 s, as it will be the most probable scenario in real-life
situations. Multiple pieces in an opportunistic manner have
been taken for each user, each piece has been selected by
visual inspection based on the amplitude of the signal from
the proposed method. A piece is deemed valid if the signal
amplitude is at least 0.5 and the length of this signal exceeds
60 seconds.

E. PERFORMANCE CHARACTERISATION
1) STATISTICAL PERFORMANCE
In order to characterise the relationship between the signals
obtained with the proposed method and from the reference
system, the respiratory cycle (RC) signal and the Instanta-
neous Frequency (IF) signal [21] has been computed for each
one of the opportunistic pieces.

To avoid errors when comparing the reference system and
the proposed method, the signals were aligned by the means
of the intra-class Fisher correlation (ICC) [25], iterating
around one period. As the maximum displacement between
the reference system and the one from the proposed method is
one period, using this length to slide the signals between each
other ensures the ICC correlation is maximized, and that both
signals are perfectly aligned between each other.

The steps needed to compute the RC series were the
following:
• First, the percentile 65 was computed in both signals
to obtain a threshold. This percentile was the one that
yielded the best results.

• The previous threshold was used to detect the intersec-
tion with positive slopes in the respiratory signal.

• Finally, the time between consecutive slopes was com-
puted to form the RC series.

The Instantaneous Frequency for both the proposed
method and the reference system, was obtained following the
same procedure that in [21] and defined in [26] as the first
derivative of the instantaneous phase of the respiration signal:
• First, the Hilbert transform was obtained from both
signals.

• The unwrapped phase of the Hilbert transform was
obtained and corrected with increments of 2π to ensure
continuity.

• The difference between adjacent angle samples was
obtained conforming the instantaneous frequency in
radians.

• A conversion between radians and Hz was performed.
• Finally, a Hodrick-Prescott [27] filter was applied to the
resulting signal with a smoothing factor of 2 ∗ 106.

The Hodrick-Prescott filter is applied to the signal in order to
remove the effects of impulsive noise produced by jumps of
2π radians in the argument of the Hilbert Transform.

2) DETECTION ASSESSMENT
In order to compute the cycle respiratory signal and to eval-
uate the performance of the cycle detector in the RC time
series, a confusion matrix has been computed using the fol-
lowing parameters:
• True Positive (TP): number of respiratory cycles that
have been detected in both the proposed method and the
reference system.

• False Positive (FP): number of respiratory cycles that
have been detected on the proposed method but not in
the reference system.
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• False Negative (FN): number of respiratory cycles that
have been detected in the reference system but not in the
proposed method.

• Sensitivity (SEN): ratio between TP and TP + FN.
• Positive predictive value (PPV): ratio between TP and
TP + FP.

For further analysis, the FP and FN for both RC series have
been discarded in order to avoid further errors, only the TP
are taken into account to conform the RC series for both the
proposed method and the reference system.

In order to asses the accuracy of the respiratory cycle (RC)
detection on the proposed method, a cycle to cycle com-
parison between the proposed algorithm and the reference
system has been performed and evaluated using the following
methods: mean absolute error (MAE) (3) and mean absolute
percentage of error (MAPE) (4). The standard deviation of
the error (SDE) (5) has also been used for both RC and IF
signals.

ek [i] = Sk [i]− Gk [i]

MAEk =
1
N

N∑
i=1

|ek [i]| (3)

MAPEk =
1
N

∑N
i=1|ek [i]|

1
N

∑N
i=1Gk [i]

∗ 100 (4)

ēk =
1
N

N∑
i=1

ek [i]

SDEk =

√∑N
i=1(ek [i]− ēk )2

N − 1
(5)

In the previous expressions, S[i] represents the RC series
obtained from the proposed method, and G[i] represents the
RC series obtained from the reference system, N represents
the total number of respiratory cycles for each piece and k
represents the piece being analysed. No distinction between
subjects has been made.

3) ERROR ASSESSMENT
Bland-Altman (BA) [28] plots comparing all the breath to
breath cycles obtained from eachmethod and the mean IF and
the SD IF for each piece have been computed. No distinction
between subjects or pieces has been made in the cycle BA,
for the instantaneous frequency BA the samples have been
grouped by pieces with no distinction between subjects. The
mean IF is defined as the mean instantaneous frequency for a
given piece, the SD IF is defined as the standard deviation of
the instantaneous frequency for a given piece.

In both IF BA the median and the 95% reference interval
(percentiles 2.5 and 97.5) has been used instead of the limits
of agreement as the samples did not present a normal distribu-
tion as indicated by the Anderson-Darling Test (ADT) [29].

The ADT was also applied to the standard deviation of the
error (for both cycles and instantaneous frequency) and the
lengths of the pieces to verify if this data presented a Gaussian

statistic or not, the tests from cycle SDE and the length of the
pieces gave a p > 0.05 which indicate that they adjust to a
normal distribution. On the contrary the test for the SDE of
the instantaneous frequency gave a p < 0.05 which discards
the null hypothesis that this data has a normal distribution.

In order to verify the hypothesis that there is no dependence
between the length of the pieces and the SDE of the proposed
method versus the reference system, an ANOVA test [30]
has been performed taking into account the length of each
piece and the mean SDE of the cycles for each piece. For the
instantaneous frequency a Kruskal-Wallis test [31] has been
performed taking into account the length and the mean IF
SDE for each piece.

AnANOVA test between cycle SDE and PPV has also been
performed to verify the relationship between the increase in
False Positive detection and the increase in the cycle SDE.

III. RESULTS
A. SIGNALS
The number of pieces obtained from each subject was
6.53 ± 3.22 (mean± sd) pieces, the length of each piece had
a median of 167.5 s (percentile 25 %: 108 s, percentile 75 %:
271.38 s), the number of respiratory cycles per piece had a
median of 47 cycles (percentile 25 %: 27 cycles, percentile
75 %: 77 cycles). The cycle length for piece had a median
of 3.45 s (percentile 25 %: 2.98 s, percentile 75 %: 4.55 s) for
the reference system and a median of 3.45 s (percentile 25 %:
2.98 s, percentile 75 %: 4.63 s) for the proposed method.

Fig. 5 has been obtained from one of the pieces from a
given subject. An example of the comparison between the
signal obtained from the proposed method and the reference
system is depicted, along with the computed Respiratory
Cycle series and the Instantaneous Frequency series for both
methods.

In Fig. 5 it can also be observed that both respiratory
signals from both methods are on top of each other, indicating
a high concordance between them. On the respiratory cycle
plot it can be seen that both signals follow the same temporal
evolution with practically the same changes with small dif-
ferences in the number of computed respiratory cycles. For
the instantaneous frequency plot, it can be observed that both
signals behave in the same way with the same temporal and
amplitude evolution.

If the interval between 40 s and 60 s is taken as an example
for both the respiratory cycle and the instantaneous frequency,
when the RC signal increases (the respiratory cycle increase
its length) an equivalent decrease can be seen in the IF signal
(the instantaneous frequency decreases), the same behaviour
can be appreciated if the IF signal increases.

B. PERFORMANCE
Table 1 summarizes the results for the confusion matrix,
sensitivity (SEN) and the positive predictive value (PPV). The
TP, FP and FN presented in Table 1 refer to the aggregated
amount of TP, FP and FN without any distinction between
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FIGURE 5. Comparison between the signals obtained from the reference system (Dashed) and the Proposed Method: raw respiratory signal, respiratory
cycles and instantaneous frequency.

TABLE 1. Confusion elements, sensitivity and PPV.

TABLE 2. Breath to breath ICC, MAE and MAPE expressed as mean ±

standard deviation.

subjects or pieces. SEN (Global) and PPV (Global) have been
computed using the aggregated number of TP, FP and FN
making no distinction between subjects or pieces. SEN and
PPV have been computed for each piece with the TP, FP and
FN of each piece and the mean and standard deviation have
been presented without making distinction between subjects.

Results for the mean correlation between the respiratory
cycles for both methods and all pieces, the standard deviation
of the error, the mean absolute error and the mean percentage
error can be found in Table 2. The intra-class Fisher corre-
lation (ICC) between the respiratory cycle signals has been
obtained from the true positive (TP) RC series from both the
proposed method and the reference system.

Both the MAE and MAPE results were obtained from the
true positive respiratory cycle series. For the MAPE results
in Table 2, as the MAPE is influenced by the length of the
sample, the weighted mean and standard deviation has been

used to avoid errors due to the difference in length between
pieces.

1) ERROR CHARACTERISATION
For the Bland-Altman representation, some outliers have
been removed based on the following criteria: for the res-
piratory cycles, the cycles that exceeded more than 2 times
the standard deviation of the group were eliminated. For the
instantaneous frequency, if the difference for a piece was
below the 2.5 % or above the 97.5 % percentile of the error,
these pieces were discarded. A total of 100 cycles were
removed and a total of 4 pieces were removed from both
IF BA.

Fig. 6 contains three Bland-Altman plots, the first plot
(Fig. 6a) compares the respiratory cycles for the refer-
ence system versus the respiratory cycles for the proposed
method, where no distinction between subjects or pieces
has been made. The second and third Bland-Altman plots
(Figures 6b, 6c) compare respectively: the mean instanta-
neous frequency of the reference system versus the mean IF
of the proposed method for each piece, and the standard devi-
ation of the IF for the reference system versus the standard
deviation of the IF for the proposed method for each piece.
In these last BA plots no distinction between subjects has
been made.

Table 3 contains the mean and standard deviation for the
BA differences of the respiratory cycles and the median and
95% reference interval for the BA differences of both mean
IF and the SD IF.

Table 4 summarizes the results for the standard deviation
of the error for both respiratory cycles and the instanta-
neous frequency. In Table 4 the results for the statistical tests
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FIGURE 6. Bland-Altman of the computed periods, mean instantaneous frequency and standard deviation of the instantaneous
frequency.

TABLE 3. Mean ± SD of the differences of Fig. 6a. Median and percentile
[2.5% ; 97.5%] of the differences of Fig. 6b and Fig. 6c.

TABLE 4. Mean ± SD of cycle SDE, Median and interquartile range [2.5% ;
97.5%] of the IF SDE.

comparing the mean SDE and the length for each piece for
both methods can also be seen, the results for these tests
present non-significant differences between length and SDE.
On the other hand, the results comparing cycle SDEwith PPV
do present significant differences.

IV. DISCUSSIONS
Regarding the accuracy of the cycle detection for both meth-
ods shown in Table 1 a global sensitivity of 77.21 % and a
global PPV of 80.69 % can be appreciated. The results for the
mean and standard deviation for both SEN and PPV taking
into account each piece individually are slightly better than
the global ones. SEN and PPV did not yield high results, but
it must be taken in consideration that the driver did not have
any restriction regarding the movements inside the cockpit of
the simulator, thus producing abrupt shifts in the baseline of
the optical method making each piece slightly different even
within the same subject. After the normalisation, although
most of the errors attributed to movements are corrected,
as the cycle detection for each piece has been performed using
a percentile 65 of the piece, the errors that remain in the signal
have a very negative impact on the cycle detection which
decreases the whole accuracy for the global values.

Another important factor to take into account to discuss
the SEN and PPV results is the high variability between
pieces for the same subject, which have a clear impact in
the error. This behaviour can be clearly appreciated when
taking into account the significance results between PPV
and cycle SDE for each piece, which shows a p < 0.05.
This result can be explained as: when the PPV decreases
the cycle SDE increases and vice-versa due to detection of
true positives (TP) and false positives (FP) in each piece. If a
piece contains less TP and more FP, the piece will have less
PPV and an increased cycle SDE than a piece with the same
length that has more TP and less FP. This type of behaviour is
potentiated by the freedom of movement given to the subjects
and the errors on the detection due to these movements.

Taking into account the results in Table 2, a high correlation
between the RC series from the reference system and the one
from the proposed method can be appreciated, although this
result is high, the correlation alone does not give information
of how close the agreement is between both RC series. To get
further into the agreement between the respiratory cycles
obtained with the proposed method and the ones obtained
with the reference system, the SDE, MAE and MAPE results
should be taken into consideration.

As for the MAE results, these values indicate a relative low
error between respiratory cycles obtained with the proposed
method and the reference system. Moreover, if the error is
compared to the mean duration of a period; the MAE result is
roughly a 10 % of the median length of a cycle, thus relative
low mean and SD values can be found. The MAPE results
on the other hand are consistent with the MAE results as a
weighted mean of 8.49 % with a weighted standard devia-
tion of 2.99 % can be observed. To interpret these results,
the constraints of the tests must be taken into account as the
subject had no movement restrictions whatsoever during the
test, hence these results can be interpreted as good results if
the contour variables like the movement of the subject are
taken into account.

In order to compare both methods taking into account the
movements of the subject, and the reliability of the cycle
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detection in these constraints, the Instantaneous Frequency
of both signals has been computed. Using the IF instead
of the cycle detection allows for the comparison of both
methods without the need to use piece-related information,
for example the percentile 60, to extract the IF.

Given the Bland-Altman results in Fig. 6, the plot
from Fig. 6a presents a high agreement between methods
with mean and standard deviation for the differences of:
10.13 ms ± 576.56 ms with no apparent bias error. For
Figures 6b and 6c, although by visual inspection no bias can
be appreciated and although the 0 value is contained inside
the 95 % reference interval, it can not be assured that there is
no bias present in the BA plot; as the samples do not present
a normal distribution. Fig. 6b presents a low median value for
the differences which can be interpreted as a good agreement
between the proposed method and the reference system. For
the results in Fig. 6c a low median can also be appreciated.

Taking into account the Reading results for the Depth
method on [21], the Reading test is the one that presents
more errors due to the nature of the movements while reading
hence comparable to the involuntary movements that are
produced while driving. If the results for this two last BA
plots are compared with the Reading results on [21], it can
be appreciated an increased error (differences) in both mean
and sd than the results in the original study. This can be
explained as in the original study the only variable was the
subject reading out loud a text in an static posture, while in
this study the subject had total freedom of movement within
the limits and capabilities of the simulator.

Relative to the cycle SDE, relative low values can be
appreciated in the results: mean of 0.62 s, and with an SD
of 0.32 s. These results indicate a high agreement between
the computed cycles of the reference system and the ones
obtained from the proposed method. As for the SDE of the
IF signal low values can also be appreciated, if the 95 %
reference interval for the IF SDE is compared with the inter
quantile range (IQR) obtained for the SDE Reading test on
[21], it can be appreciated that the results are similar as
the IQR from the Reading test is contained in the 95 %
reference interval. These results can be compared as the
Reading test from [21] is the test with less constraints of the
study, moreover, as for the nature of the breathing involved,
this test contains errors due to involuntary movements and
due to the unique variations of the respiratory signal. These
movements and unique respiratory patterns are also reflected
in the current study as the subject was not asked to perform
any specific action while performing the test, hence the error
from the current test can be compared to the one from the
Reading test in [21].

Regarding the statistical tests, both the ANOVA and the
Kruskal-Wallis tests for the length vs the cycle SDE and
length vs the IF SDE respectively, show non-significant dif-
ferences. This can be interpreted as there is no relationship
between the length of the piece and the error that is produced
in either the respiratory cycle series or the instantaneous
frequency series. These results have special relevance as it

confirms that the use of variable-length pieces has no impact
on the error between the proposed method and the reference
system. Moreover, these results confirm that it is viable to
use variable-length pieces in real-life systems to compare two
alternative methods that measure respiratory rhythm. For the
ANOVA between the PPV and the cycle SDE, significant
differences can be found, which shows a relationship between
the PPV and the cycle SDE. This can be explained as if the
error between the reference system and the proposed method
for the RC series increases, less cycle TP will be found hence
a decrease in the PPV. If the SDE decreases more cycle TP
can be found in both the reference system and the proposed
method, hence the PPV will increase.

There were several limitations to this study, being the first
the number of subjects that participated on the study. Only
17 of the 20 subjects could be used. On the three subjects that
were discarded, the point-cloud feed was corrupted beyond
recovery due to the distance between the camera and the
subject being less than the minimum distance required by the
camera.

The second limitation of this study was that although all
the tests were performed in a simulator with no constraints
to the subjects, the tests were not performed under real vibra-
tion or real light changing conditions. For these reasons it can-
not be assured that the algorithmwould perform identically in
vibration or light changing conditions, as they will certainly
have a negative impact in the respiratory signal extraction.

The last limitation of this study was the lack of an algo-
rithm to automatically assess the quality of the signal. Having
this algorithm would have provided an objective tool to either
automatically select the length of each piece, or to provide
a better guidance to select the pieces by visual inspection.
Because in this study the pieces were obtained by visual
inspection, some errors were introduced and some outliers
had to be removed from the results. Once the aforementioned
algorithm is in place there will be no need to remove any
outlier. As a future work, this signal quality algorithm will
be developed and added to the current method.

V. CONCLUSION
A new hybrid non-contact IR-Depth method to acquire res-
piratory signals has been presented. The proposed algorithm
consists on detecting the movements of the subject by the
means of optical flow algorithms on an IR image, and com-
puting the most suitable ROI that it can later be used by the
Depth camera to acquire the respiratory signal. The algorithm
has been validated using a thorax plethysmography system
as a reference system. The results showed a high correlation
between the acquired respiratory cycles from the proposed
method and the reference system, with relatively low error
results and good sensitivity in the cycle detection. Regarding
the IF results, no bias can be appreciated with low IF SDE
indicating a good agreement between the proposed method
and the reference system. The statistical results for the tests
involving the cycle SDE and the IF SDE versus the length of
the pieces show no correlation between each other, validating
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the hypothesis that the respiratory signal can be chunked in
an opportunistic manner based on the quality of the signal,
without having any impact on its analysis and characterisa-
tion. In general, the proposed algorithm was able to detect
the respiratory signal for the purpose ofmeasuring respiratory
rhythm (for both the cycles and IF), in real-time and real-life
situations with high performance if compared to the reference
system.
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