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ABSTRACT Bistatic or multi-static systems use spatially distributed sources and/or receivers to ensonify
scattering objects over a distance to obtain the acoustic images of individual targets for classification
purposes. The targets need to be localized first and separated from the clutter. To reach targets at a distance,
low frequency sound is often used; targets can in principle be classified based on the frequency and azimuthal
angle response of the echo return, referred to as acoustic color. Practical application of this technology is
limited by the array size and the ability to localize the target and extract the scattering echo. Deconvolution
of conventional beamforming (CBF) has been shown to achieve a narrow beam width and low side lobe
levels equivalent to CBF of an array of much larger aperture. This method is applied to active sonar in this
paper. Analysis of simulated and tank experimental data demonstrated a better separation of targets and a
higher target-to-reverberation ratio than that using CBF.

INDEX TERMS Localization, beamforming, deconvolution, horizontal array.

I. INTRODUCTION
Underwater imaging technology has wide applications in
ocean exploration and other fields, such as pipe and cable
survey, bridge pillar inspection, fish detection, mine classi-
fication, etc. In very shallow (say ≤ 30 m) or shallow water
(≤ 100 m), detection and classification of bottom laid (proud,
partially/completely buried) objects presents a challenging
problem to the mine countermeasures (MCM) community
that requires a novel solution [1]–[4]. Due to the shallow
water depth, sound interactions with the bottom induce com-
plex multipath arrivals and high level reverberation returns.

Optical imaging can be used to observe and discrimi-
nate objects within the water column. It provides superior
resolution but is limited to short ranges depending on the
water condition. Compared with optical imaging, underwa-
ter acoustic imaging covers a much longer range. Classical
MCM sonar systems operate at high frequencies, e.g., tens
to hundreds kilohertz, and use array beamforming to provide
fine resolutions for the acoustic image. The detection range is
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often limited (<50-100m) due to the high propagation loss of
high frequency sound. As a result, it will take days to weeks
to survey a large operation area, which is unacceptable for
many practical situations. Low frequency (e.g., 20 kHz or
less) sonar has been recently proposed to extend the detection
range to hundreds-to-thousands meters. It thus could provide
a high rate for target detection over a large area. (A high
area coverage rate is a critical consideration for operational
MCM.) In addition, low frequency sound penetrates deeper
into sediments, permitting detection of partially and com-
pletely buried munitions.

Acoustic imaging uses an active sound to ensonify scat-
tering objects over a distance. The corresponding scattered
returns are recorded by the receivers in either monostatic,
bistatic or multistatic mode to detect, localize and classify
the objects of interest. Modern active sonar uses narrow
beams to ensonify the target and separate the target from
reverberation and clutter. Given practical constraints on the
array aperture, acoustic returns at low frequencies may not
provide a clear image of the target as the image resolution
decreases with decreasing frequency and increasing range,
different types of targets can still be distinguished based on
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FIGURE 1. (a) Top view of the geometry of a fixed source, targets, and towed HLAs and (b) a fixed array, targets, and a moving
source, (c) is the profile view of the geometry in Fig. 1(b).

the frequency and (azimuthal) angle response of the echo
return, referred to as acoustic color [5]–[12]. To extract the
acoustic color, the target needs to be localized and separated
from the strong reverberation return. This requires a beam-
former that produces a narrow beam width. (The acoustic
color image can then be reconstructed by deconvolving the
channel impulse response from the echo return.) To ensure the
quality of the acoustic color reconstruction, the beamformer
must produce low level sidelobes so that minimum energy
is leaked from the reverberation/clutter to the echo return.
Furthermore, to obtain a wide angular coverage, multiple
sources and/or receivers spatially distributed over the area of
interest (referred to as multi-static sonar) are often needed
particularly for a moving target. For fixed objects, such as
mines, moving source and/or receivers can be used, trading
time for spatial coverage, referred to as bistatic scattering.

Acoustic responses of various objects have been stud-
ied in the literature [1]–[4], [13]–[7] to illustrate the use
of acoustic color. Monostatic [13] and bistatic [14] acous-
tic scattering returns of various objects were measured in
a tank. Similar measurements were carried out in a pond
to investigate the frequency and azimuth responses of a
single target [15] and multiple targets [16] for underwater
unexploded ordnance (UXO) applications. Bistatic detection
and classification of bottom laid, partially and fully buried
objects were carried out in very shallow water (VSW) using
a rack-mounted horizontal line array (HLA) and/or an array
mounted on an autonomous underwater vehicle (AUV) as the
receiver [1]–[4]. The AUV technology provides an oppor-
tunity for extended three-dimensional angular coverage of
the target return due to its mobility for target detection and
classification [17]. Since an AUV mounted or towed array
is limited in its size due to the payload constraint of the
vehicle, synthetic aperture beamforming was used to improve
the direction of arrival (DOA) estimation of the target echo,
and suppress the sidelobes (to avoid masking of the target
and false alarms created by reverberation return). For a rack
mounted system, synthetic aperture beamforming has proven
its usefulness taking advantage of the accurately known
(source/receiver) positions. For the AUV mounted/towed

array, the performance of synthetic aperture beamforming
for target localization is highly dependent on accurate plat-
form navigation and timing, which is used to determine
the array element positions (as a function of time). Any
position error (between different pings) will seriously affect
the performance of synthetic beamforming [1]–[4]. In this
paper, instead of synthetic aperture beamforming, we pro-
pose deconvolved conventional beamforming (CBF) [18] for
object (mine) localization. Previous work has shown that
deconvolution applied to CBF [18] can yield a fine beam
and low level sidelobes equivalent to CBF of an array with
many (∼10) times larger aperture. In this work, deconvolved
CBF is applied to active sonar. Each ping is used to estimate
the target DOA and target’s range from the array using CBF
and then deconvolution. It is shown that deconvolution pro-
duces a sparse map of targets and clutter. Targets and clutter
are (better) separated in space by applying deconvolution to
multiple pings (than not). Target-to-reverberation ratios using
deconvolved CBF are significantly higher than that using
CBF (∼10 dB for the data analyzed).

Two source-receiver configurations are as shown in Fig. 1
to illustrate potential system concepts. In Fig. 1(a), a low-
frequency source is used to ensonify the VSW seabed
from off-shore. An AUV or unmanned surface vehicle is
used to tow a HLA around the perimeter of the ensonified
area to detect and localize the targets within the area similar
to that discussed in [1]–[4]. In Fig. 1(b) and (c), a fixed
(bottom deployed) HLA is used and a moving source (an
AUV) projects sound at different positions to obtain differ-
ent bistatic angles similar to the geometry used in the tank
experiment discussed below.

This paper is organized as follows. Section II reviews
the field scattered by targets in a waveguide, and details
the method to localize the target using a HLA of receivers.
Section III presents simulation results. Experimental data
collected in a tank experiment are analyzed in Sec. IV to
localize two different targets. Section V gives the conclusion.

[A comment is in order here. Localization in this paper
means estimation of the target’s horizontal position, ignoring
the target depth information. There exist many methods to
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estimate the target depth given a vertical line array, such as
matched field processing [19], back propagation [20], and
time reversal mirror [21], [22]. Depth localization will not be
covered here.]

II. PROBLEM FORMULATION
In a range independent environment, the bistatic pressure at
frequency ω from the source to the target and then to the
receiver can be expressed in terms of normal modes as [23]

p(←r , zr ;ω) = 2πρ(ω)
M∑
n=1

M∑
m=1

e−ikmrst
√
kmrst

φm(zs)φm(zt )

×�(θm, φin; θn, φout )
e−iknrtr
√
knrtr

φn(zt )φn(zr ),

(1)

where ρ(ω) is the source spectral density; zs, zt , and zr denote
the depth of the source, target and receiver respectively; rst
and rtr denote the respective ranges from the source to the
target and from the target to the receiver; km and kn are the
respectivewavenumbers of the normalmodes of the incoming
and outgoing (scattered) signals;φm(z) denotes them-thmode
depth function; and�(θm, φin; θn, φout ) is the couplingmatrix
between the incident and outgoing modes given by

�(θm, φin; θn, φout )

= (1/2k)

[
S+mn−S

+
mn

φ
′

m(zt )φ
′

n(zt )
γmφm(zt )γnφn(zt )

]
, (2)

with the following definition

S±mn=S(θm, φin; θn, φout )± S(θm, π − φin; θn, φout ). (3)

In (2) and (3), γm =
√
k2 − k2m is the vertical wavenum-

ber of the modes, φ
′

m(z) denotes the derivative of the mode
depth function with respect to z, and S(θm, φin; θn, φout ) is
the scattering function of the object (in free space), which
is dependent on the incident azimuthal angle φin and the
outgoing azimuthal angle φout as well as the incident grazing
angle associated with the m-th mode θm, and the outgoing
grazing angle associated with the n-th mode θn. The mode
wavenumber and depth functions and the scattering function
are a function of frequency which was not explicitly denoted
in the above equations.

When the target is at far field, the (incoming and out-
going) dominant modes travel at low grazing angles (e.g.,
< 10◦) with a small angular span 1θ .We assume that
the target’s scattering function can then be approximated
by that at the mean grazing angle, S (θm, φin; θn, φout) '
S
(
θ̄m, φin; θ̄n, φout

)
≡ S(φin, φout ) as proposed in [24].

(Henceforth, the grazing angle dependence of the scatter-
ing function will be suppressed.) Equation (1) can then be
expressed in the form of products of channel transfer func-
tions and scattering function as,

p(←−r , zr ;ω) = 2π
ρ(ω)
k

[
M∑
m=1

e−ikmrst
√
kmrst

φm(zs)φm(zt )

]

FIGURE 2. Flow chart of data processing.

× S(φin, φout )

[
M∑
n=1

e−iknrst
√
knrst

φn(zt )φn(zr )

]

≡
ρ(ω)
k

H (rst , ω)S(φin, φout )H (rtr , ω), (4)

where H (rst , ω) =
M∑
m=1

√
2π
kmrst

φm(zs)φm(zt )e−ikmrst is the

channel transfer function. Equation (4) has been shown to be
valid under many conditions, such as when the object size
L satisfies 1θ < λ/4L, where λ is the wavelength [24].
Equation (1) is referred as the wave-theoretical model of
object scattering and (4), expressed in dB, is referred to as
the sonar equation [24]. Equation (4) will be used to generate
simulated data in this paper. (Cf. Sec. III.)

For either simulated or experimental data, the data on the
HLA are processed as follows. For each ping, the signal
from the source, scattered by the target, and received on the
HLA are matched filtered, beamformed by delay and sum
(or equivalently beamformed in the frequency domain) to
produce time series for each beam. One searches the beam
power time series for peaks as a function of delay time and
azimuthal angle. The result yields a candidate map of targets
and clutter as a function of range and azimuth which can be
transformed into a map in the Cartesian coordinate {x, y}.
Themaps over different pings, as the source or receivermoves
over different positions, are summed to produce the finalmap.
In practice, one may search only beam power with sufficient
delay time to avoid areas with heavy reverberation returns and
beams away from endfire directions to avoid beam splitting
due to vertical multipaths. The processing steps are given
in Fig. 2; the details are discussed below and illustrated by
examples in Sec. III and IV.

Two issues arise for target localization. First, for each ping,
it is noted that themap resolution is on the order of cr1φ

/
2B,

where r is the range of target/clutter to the array and B
is the bandwidth of the signal. The 3 dB beamwidth for a
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FIGURE 3. Beam patterns for a HLA of 16 elements using CBF (a) and deconvolved CBF (b) for frequencies from 4 to 8 kHz
stepped by 500 Hz, and comparison of their 3 dB beamwidths (c). The array is cut for frequency at 8 kHz. For CBF in Fig. 3(a),
lower frequencies have wider beams. For deconvolved CBF in Fig. 3(b), different frequencies have almost same beam width.

uniform array is approximately 0.89λ/L rad at broadside of
the HLA [25], which yields∼ 6.8◦ for an array of 16 element
spaced at half-wavelength, see Fig. 3(a). This implies that
the map resolution is poor in the cross-range direction (e.g.,
83 m at a range of 700 m), consequently that the target
is poorly localized. Second, CBF produces high sidelobes,
which is translated to high reverberation levels since bottom
reverberation comes from a wide area and sidelobes from
one area feed into the level in another area. To improve the
beam resolution and suppress the sidelobes, one needs high
resolution beamforming methods, such as the well-known
minimum variance distortionless response (MVDR) method.
In this paper, we shall use the deconvolution method which
has the advantage that the response is linear (as opposed to the
nonlinear high resolution methods) since linearity is critical
for the estimation of the scattering function. [Deconvolved
CBF has been shown to be more robust than MVDR in [18].]

The deconvolutionmethod starts with the CBF beam power
for a given frequency. Deconvolving the CBF beam power
yields a narrow beam width for a small array (Figures. 3(b)
and 3(c)), equivalent to that of conventional array with a
length order of magnitude longer and produces a sidelobe
level 30 or more dB lower than that of CBF [18]. This
technology is useful for object localization and separation of
target from clutter and will be demonstrated in Sec. III using
simulated data, and in Sec. IV using data collected in a tank.

[The concept and implementation of the method can be
briefly summarized as follows. The CBF beam power can be
expressed as the convolution of the beam pattern, Bp(sinφ−
sinϕ) with the source distribution S(sinϕ), namely,
BCBF (sinφ) =

∫ π
−π

Bp(sinφ − sinϕ)S(sinϕ)d(sinϕ).
Deconvolution is a method to estimate source signal distri-
bution given the CBF beam output and beam pattern [18].
We use the Richardson-Lucy (R-L) algorithm [26], [27],
which is a Bayesian-based iterative method. The deconvolu-
tion is carried in the intensity domain and is well-conditioned
(stable and known to converge) to a unique solution when
all variables in the equation are positive [18]. The solution is
denoted as BdCv(sinϕ). Sonar equation covers all angles (as
opposed to limited view in astronomical image processing),

consequently, there is no ambiguity in reaching the final
solution. The readers are referred to [18] for details.

Having separated the targets from clutter, one can improve
the target to reverberation/background ratio by spatial aver-
aging of the localization maps over multiple pings. It is
experimentally known and theoretically expected that differ-
ent bottom areas are ensonified by the source as the source
or receiver moves (due to the changing eigenrays), so will
the clutter (bottom facets) that are ensonified by the source.
This means that the dominant clutter/reverberation appear at
different locations as the source/receiver moves. (See data
presented in Sec. IV.) Focusing on the target, the target echo
level remains relatively the same unless the incident/outgoing
angle changes significantly. Consequently, the targets will
be enhanced by summing the localization map over multiple
pings. This is demonstrated with tank data in Sec. IV.

III. SIMULATIONS
In this section, we study localization of underwater targets
using simulated data. We assume a shallow water waveguide
of a depth of 20 m, with a constant sound speed profile,
overlaying a bottom. Two kinds of bottoms are considered
here, one with a compressional sound speed of 1550 m/s and
an attenuation coefficient of 10 dB/λ, and the other with a
compressional sound speed of 1750 m/s and an attenuation
coefficient of 0.2 dB/λ, both with a density of 1.5 g/cm3.
Because the bottom attenuation affects significantly transmis-
sion loss (TL) and the multi-paths time spread, we study how
the bottom (attenuation) affects the localization performance.
As discussed below, the duration of the direct blast (from
the source to the receiver) determines the area where targets
are not detectable. The echo level is dependent on the TL
from the source to the target and target to the receiver. As
an example, the beam time series based on data received
on a HLA is shown in Fig. 4(a) and 4(b) (in dB) for high
and low bottom attenuation respectively. Details are given
below. One observes that, first, the echo return lasts about
0.01 s in Fig. 4(a) and about 4-5 times longer in Fig. 4(b).
This is because many of the (late) multipath arrivals are
being attenuated by the high bottom attenuation in Fig. 4(a).
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FIGURE 4. Simulated CBF beam time series (in dB) showing the arrival of direct blast (time
∼0.042 s) and echo returns from two targets (time ∼0.38 s) in an environment with (a) high and
(b) low bottom attenuation.

TABLE 1. Simulation parameters.

Second, the direct blast (from the source to the HLA) lasts
about 0.2 s and has a sidelobe level higher than the echo
level. In Fig. 4, the echo returns arrive at ∼0.38 s and are
well separated from the direct blast. The echo returns will be
hard to detect if they arrive with time less than 0.2 s.

The simulations are done for two cases. One for a fixed
source and moving/towed HLA and the other with distributed
sources and a fixed HLA. The simulation parameters are
given in Table 1.

A. CASE I. TOWED HLA
The geometry is shown in Fig. 1(a). A target is located at the
center of the coordinate. The source is located 600 m from
the target. The HLA travels around the target in a circle with
a radius of 700 m.Wemodel the signal using the environment
mentioned above. Both the source and HLA are deployed at
a depth of 6 m. The target is a hard sphere of radius 0.5 m,
deployed at a depth of 10 m. The source transmits a linear
frequency modulated (LFM) signal from 400 Hz to 800 Hz
with a duration 100 ms. The HLA contains 16 hydrophones,
spaced at∼ 1 m. The field scattered by target, received at the
HLA is modeled according to (4). The data on the HLA are
beamformed at 36 positions of the HLA, stepped 10 degrees
counter clockwise from the nearest position to the source.

Data processing used is triangulation of beams from HLA
at different positions as is commonly used for passive sonar.
Here we extend the method to active sonar returns using sim-
ulated signals based on (4). Using CBF for target localization,
the first requirement is that the target must not be masked by

the direct blast; or the target must arrive later than the direct
blast (of duration 0.2 s). For the present case, only HLA at
positions 1 to 11 and 27 to 36 meet this requirement; the
corresponding data are referred to as ping 1-11 and 27-36.
More pings could be included if the source-to-target and/or
target-to-receiver ranges are extended.

To study the resolution of localization, we conduct
the study without noise; the effect of the noise is to
increase the background level without affecting the conclu-
sions unless the signal-to-noise ratio is small or becomes
negative. For the bottom of high attenuation, given that the
echo duration is 0.01 s, the beamformed echo return are
shown in Fig. 5(a) for the first ping. It shows a resolution
wide in cross range and narrow in range as expected, because
CBF produces a wide beam and has high sidelobes. The
beamformed echo returns averaged over pings 1 to 5 are
shown in Fig. 5(b). The beamformed echo returns averaged
over pings 1-11 is shown in Fig. 5(c), and that averaged over
pings 1-11 and 27-36 are shown in Fig. 5(d). It is apparent that
the localization resolution improves with increasing number
of pings. By averaging/summing maps over many (11, or 21)
pings, one finds that the sidelobes are reduced and the main
lobe is narrowed. This is because the final resolution is
determined by the smaller of the along-range and cross-range
resolutions. For the present case, the along range resolution,
given by the product of the sound speed times the echo length
(0.01s), is approximately 15 m, which is much less than
the resolution in cross range determined by the product or
range with the beam width, which is ∼83 m for this array as
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FIGURE 5. Localization map of one target using the first ping (a), pings 1-5 (b), pings 1-11 (c), and pings 1-11 and 27-36 (d),
where each ping is received by the HLA at different scattering angle, stepped every 10 degrees. Localization map of two
targets using pings 1-6 (e), and pings 1-6 and 27-36 (f).

mentioned in Sec. II. The improvement in localization using
multiple pings comes from beam triangulation (assuming no
timing error) yielding a resolution close to 15 m × 15m.
Next, consider the case of two targets, where the second tar-

get is located 200 m east and 200 m north of the first target as
shown in Fig. 5(e) and (f). Figures 5(e) and (f) shows a local-
ization map of two targets with 6 and 16 pings respectively.
Similar to the case of one target, the side lobes are suppressed
with increasing numbers of pings. One observes that, first, the
sidelobes of the localization are different for different targets
depending on the bearings of the HLA relative to the targets,
and second, if there exist (high) clutter in the neighborhood
of the target (within a few degrees), the target and clutter may
not be distinguishable due to existence of high sidelobes.

For the case of low bottom attenuation, the echo pulse
length is 4-5 times longer, which is translated into a local-
ization area 3-4 time larger. In this case, the final resolution
in localization is 60 m × 60 m or larger.

B. CASE 2. FIXED HLA
The source-receiver geometry is shown in Fig. 1(b). A HLA
containing 16 hydrophones, spaced at ∼ 1 m, is deployed at
6 m below the surface at (x∼20 m, y∼110 m). The source is,
in this case, moving. For this simulation, we shall consider
one source located at (x = 0, y = 160.3 m). There are two
targets (hard spheres of radius∼0.5m) located at (x= 51m, y
= 402.9 m), and (x=−46.2 m, y= 402.9 m), separated from
the HLA by a range of approximately 300 m. See Fig. 6 for
their locations.

The source transmits a linear frequency modulated (LFM)
signal from 400 Hz to 800 Hz with a duration 100 ms.We cal-
culate the pressure field from the source to each target and
the HLA using (4), and summed up the pressure fields over

targets. We then add white noise. This is the received data.
The received pressure field are inverse Fourier transformed
to obtain the time series for each receiver. The time series
are beamformed (e.g., by delay and sum) to obtain the beam
times series which are plotted in dB in Fig. 4(a) for the
high attenuation bottom and Fig. 4(b) for the low attenuation
bottom. The beam time series are divided into overlapping
blocks with 75% overlap, each of 256 samples (duration
25.6 ms) to estimate the beam energy (of each block) as a
function of the beam angle and time, often referred to as
the bearing-time record (BTR). The BTR is next transformed
into a beam energy versus angle and range expressed in the
Cartesian coordinate, referred to as localizationmap as shown
in Fig. 6(a) for the high attenuation bottom and Fig. 6(c) for
the low attenuation bottom. The noise level is adjusted so that
the echo to noise/reverberation ratio (as seen in Figs. 6(a)
and 6(c)) is about 10 dB. As is well known, the direct blast
creates an area of ellipse shape around the source and receiver
where targets within this area are difficult to detect. This area
is about the same for the bottom with high attenuation, Fig.
6(a) or low attenuation, Fig. 6(c). One observes in Fig. 6(a)
and 6(c) that the source creates a strong beam along the north-
west direction. There also exists a strong beam along the
south-west direction, which is the back lobe of the source
beam due to left-right ambiguity of the HLA. The two targets
are localized but with a poor resolution due to the wide beam
width of CBF, similar to that shown in Fig. 5(a).

To process the data using deconvolved CBF, each block
of data is Fourier transformed into the frequency domain.
The R-L algorithm is applied to the beam power as a func-
tion of angle for each frequency. The dCv beam power is
next summed over all frequencies (in the signal band) to
obtain the BTR for the deconvolved CBF. The dCv BTR are

VOLUME 7, 2019 180645



T. Zhang et al.: Bistatic Localization of Objects in VSW

FIGURE 6. Localization result using simulated data. The receiver is located at (x∼20 m, y∼110 m)
and the source is at (x=0, y =160.3 m). Beam energy as a function of angle and range, displayed in
terms of the Cartesian coordinate, using CBF (a) and deconvolved CBF (b) for high attenuation
bottom, and CBF (c) and deconvolved CBF (d) for low attenuation bottom.

transformed into a beam energy versus angle and range map
in Cartesian coordinate. The dCv localization map is shown
in Fig. 6(b) for the high attenuation bottom and 6(d) for the
low attenuation bottom. One observes in this case, the two
targets are well localized, with just one ping of data, due to the
pencil-like beam of dCv. For the low attenuation bottom,
the targets occupy a bigger area (less well localized) due to
the many more multipath arrivals (longer echo duration) as
mentioned above. There seems to be more (discrete) side-
lobes in Fig. 6(d) than in Fig. 6(b) around the targets. This
is likely due to that the multipath arrivals are coherent while
the R-L algorithm assumes incoherent arrivals.

Note that the above simulations included the direct blast,
echo returns and noise (or smooth reverberation) but no clut-
ter returns (or discrete strong scattering returns from bot-
tom facets). It is noted that clutter returns are dependent on
the specifics of the bottom topology, and (very) difficult to
simulate since the bottom topology is generally not known.
On the other hand, clutter plays an important role in target
localization. In real data analysis, clutter can often confuse
the targets and presents a serious problem. We will illustrate
how to solve this problem (separating echo from clutter) using
the experimental results in Sec. IV.

It is also noted that while the above simulations were
conducted at low frequencies, the results can be extended
to high frequencies by scaling spatial dimension relative to
wavelength without losing generality. [We use low frequency
signals since the normal mode are well supported at low
frequencies.] The purpose of the above simulation is to illus-
trate the signal processing. For a specific problem, one can
conduct simulation using a propagation of one’s choice to
obtain detailed predictions.

IV. EXPERIMENTAL DATA ANALYSIS
In this section, target localization is demonstrated for two
targets using experimental data collected in a tank with an
estimated reflection coefficient of 0.25. The tank is 50m long,
15 m wide and 10 m deep. Due to the shallow depth, it was
observed that themultipaths were not easily separated in time.
The experimental layout for the sources, two targets and the
HLA is shown in Fig. 7(a). Figure 7(b) shows the photos of
individual equipment (not to the scale). A water-filled metal
spherical shell with a diameter of 50 cm is located at one
side of the tank at (x = 5.2 m, y = 40.29 m), and a plastic
sphere with a diameter 25 cm is placed at the opposite side
(see Fig. 7(a)) (x = −4.62 m, y = 40.29 m). Both of them
are submerged at 5 m depth. There was also an unintended
target at (x = 0, y = 40.29 m) at the surface which turns
out to produce high echo returns as discussed below. (The
target strength (TS) of the water-filled metal spherical shell
with a diameter of 50 cm is estimated to be approximately
−26dB, and the TS of the cluster of plastic spheres of a
diameter of 25cm is estimated to be close to −30dB based
on experimental measurements. The unintended target in the
middle has a TS similar to that of the metal shell.) The HLA
has 16 hydrophones, spaced at 0.1 m, and is mounted at a
rigid bar, 3 meters below the water surface located at (x =
1.25-2.75 m, y = 10.91 m). A source is placed at 8 positions
at (x = 0, y = 16.29-37.29 m), equally-spaced along the y-
axis, to obtain measurements at different incident angles to
the targets. The source is also located at 3 m depth. It is
noted that it is difficult to tow a HLA in a tank environment,
thus we move the source and keep the HLA at a fixed posi-
tion. The sound speed in the tank is measured at 1476 m/s.
A 4-8 KHz LFM chirp signal with 0.01 s duration is
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TABLE 2. Experimental parameters.

FIGURE 7. (a) Experimental layout of eight source positions, two target
positions and the HLA position. (b) Photos of two targets (top row), and
source and receiving HLA (bottom row) not scaled to actual sizes.

transmitted from the source and the data are collected on the
HLA. The signal response with no presence of target is mea-
sured as the background field. The experimental parameters
are given in Table 2.

Examples of the data and processing results are shown here
for data transmitted by the source at the closest position to
the HLA, located at (x = 0, y = 16.3 m). First, the raw
data are pulse compressed by match filtering the received
data for each ping with the transmitted LFM chirp. The
signal energy of the matched filtered time series is shown
in Fig. 8(a) as a function of (delay) time for each channel,
and the corresponding spectrum is shown in Fig. 8(b). The
received signal spectrum is not flat within the frequency band
due to the transducer response. The target echo returns are not
easily identified in Fig. 8(a).

Next the time series is beamformed to obtain the beam time
series as a function of steering angle and delay time for each
ping. One can use the delay and sum method, or perform the
beamforming in the frequency domain and inverse Fourier
transform the data to the time domain. The latter is used here
for higher fidelity. The sample energy of the beamformed
time series is shown in Fig. 9(a). The solid curves lines are
scattering returns from the side walls of the tank. Besides
these two relatively strong returns, one also observes other
high level reverberations. The right side panel focuses on
where the target echoes are expected (at time∼0.044 s) based
on the known target locations. One observes the echoes but
they are not well separated in beam angle. The returns at

∼0.053 s are reflections from the wall at the other end of the
tank.

The beam time series are divided into 50% overlapping
segments each 0.0013 s long. The energy of each segment is
summed and displayed as a function of time in Fig. 10(a).
This has the effect of smoothing the reverberation returns
without significantly affecting echo returns. The beam energy
versus angle and time is transformed into angle and distance
and displayed in terms of the Cartesian coordinate (x, y),
as shown in Fig. 10(b). One observes the elliptic structure
of the direct blast from the source to the receiver and rever-
beration from the bottom near the source and receivers. The
echo returns from the targets are more clearly seen in this
beam energy time display (the rectangle in Fig. 10(a) and
circles in Fig. 10(b)), but the returns from the targets are not
separated in angle due to the poor resolution of the HLA using
CBF. The targets are not well localized in Fig. 10(b).

In order to improve the localization result with a higher
resolution, we apply deconvolution to the CBF beam outputs.
The beam data in each segment is zero padded and Fourier
transformed into the frequency domain to obtain finer fre-
quency bins. Deconvolution is applied to the beam energy (as
a function of beam angle) for each frequency components.
The deconvolved CBF (dCv) outputs are summed over fre-
quency for each segment and then displayed as a function
of time and angle. We used the Rechardson-Lucy algorithm
with 200 iterations [28]. The dCv beam energy versus angle
and time is shown in Fig. 11(a) based on data from the
source at position 1, which is next transformed into beam
energy versus angle and range, displayed in terms of the
Cartesian coordinate, the localization map, in Fig. 11(b). One
observes that: (1) the echo and reverberation returns are more
discretely distributed in Fig. 11 compared with Fig. 10, (2)
the returns from the two targets are (well) separated in the
beam domain, (3) there is strong reverberation return along
the bearing of the source, and (4) Fig. 11(b) displays a lower
level of background noise plus reverberation relative to the
direct blast signal than Fig. 10(b). Figure 11 appears more
‘‘speckled’’ compared with Fig. 10. This is expected for
narrow beam sonar which is able to resolve individual returns
better.

To compare clutter returns for sources at different posi-
tions, we show in Fig. 11(d) the dCv beam energy versus
angle and time, and in Fig. 11(e) the dCv localization map
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FIGURE 8. (a) Signal energy received on the HLA as a function of delay time. Echo returns from
the scatterers are not easily identified. (b) Signal spectrum for individual channels.

FIGURE 9. Beam time sample energy as a function of steering angle and delay time based on the
beam time series; angle measured from the broadside of the HLA (left). The curved lines show the
scattering returns from the tank walls. Zoomed-in display focusing on the target echoes is shown on
the right. The deconvolution is done in terms of sine of the bearing angle as described in the text.

FIGURE 10. (a) Beam energy time series, while the beam energy is averaged over short time
windows of Fig. 7. (b) Beam energy as a function of angle and range, displayed in terms of the
Cartesian coordinate. The receiver is located at (x∼2 m, y∼11 m) and the source is at (x=0,
y=16.3 m). The red circles denote the actual positions of the two targets.

in Cartesian coordinate based on data from the source at
position 4 (x = 0, y = 25.3 m). One observes that the
reverberation maps (the location of the dominant reverber-
ation) are different for sources at different positions (com-
pare Fig. 11(b) with 11(e)). The reason is that sources at
different positions are known to ensonify different bottom

areas relative to the receiver. Consequently, the dominant
reverberation/clutter will show up at different locations for
different source positions as seen in Fig. 11(b) and 1(c). The
target echo level changes slowly (due to different TL) as
the source moves, unless the sound incidence angle at the
target changes substantially. One observes that the targets are
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FIGURE 11. (a) and (d) The beam energy as a function of time using deconvolved CBF with 200 iterations. (b) and (e) Targets
localization in Cartesian coordinate (x, y) using deconvolved CBF. (c) and (f) The normalized beam energy along the x axis at y
= 40.29 m based on data in (b) and (e) respectively. (a), (b) and (c) are for source at position 1, and (d), (e) and (f) are for
source at position 4. The red circles denote the actual positions of the two targets.

FIGURE 12. Targets localization in Cartesian coordinate (x, y) using CBF (a) and (d) and deconvolved CBF (b) and (e). (a)-(c)
summing over pings from 1-4 source positions. (d)-(f) summing over pings from 5-8 source positions. (c) and (f) normalized
beam energy along x axis cut at y = 40.29 m.

seen in Fig. 11(e) but not easily identifiable in Fig. 11(b).
Figures 11(c) and 11(f) shows the relative beam energy along
the x-axis at y = 40.29 m.

The beam map (x, y) plots are created from data from the
source at 8 different locations using one ping for each case.
It is anticipated that reverberation/clutters from difference
sources will be different, and hence by summing/averaging
the map from different sources, reverberation/clutter may

be suppressed. Figure 12(a) and 12(b) show the beam map
(x, y) plot averaged over the first four sources at locations
(x = 0, y = 16.29-25.29 m). One observes that, compared
with the map of one ping, Fig. 11(b), the reverberation near
the targets are suppressed and the two targets are well local-
ized in Fig. 12(b). Figure 12(c) compared the intensity at the
line y = 40.29 m using CBF and dCv. One finds a peak-
to-background (or target to reverberation/noise) ratio on the
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order of ∼4 dB for CBF and ∼15 dB for dCv for the two
targets at x = 5.2 m and −4.6 m. (The background level
is measured in the neighborhood of the target, in areas not
contaminated by other targets.) Similarly, we average the
beam (x, y) maps over 4 sources located at (x= 0, y= 28.29-
37.29 m) located further away from the HLA. The results are
shown in Fig. 12(d) and 12(e) using CBF and dCv respec-
tively. The area of direct blast and bottom reverberation is
larger in Fig. 12(d) and (e) than in Fig. 12(a) and 12(b) due to
the fact that the source ensonifies a bigger bottom area in the
forward propagation direction. Nonetheless, the two targets
are clearly localized in Fig. 12(e). Figure 12(c) and (f) shows
a peak-to-background (target-to-reverberation/noise) ratio on
the order of∼5 dB for CBF and∼20 dB for dCv.When rever-
berations appear at different locations as the source moves,
the average reverberation level (over an area outside of the
target) tends to decrease by averaging over different sources.

In Fig. 12(b) and 12(e), one observes a strong echo return
from an object at (x ∼ 0 m and y ∼ 40 m) with a slightly
stronger scattering strength than that of the two targets (see
Fig. 12(c) and 12(f)). The is the unintended target mentioned
above, and is found to be a tile laying on the water surface
(under the instrument rack) with cones protruding into the
water to a depth of∼ 0.2-0.3 m. The results show that surface
target can also be well localized using the proposed method.

The above experimental localization (map) results can per-
haps be understood by comparing them with the simulation
results presented in Sec. III. While the simulations were
done using low frequency 400-800 Hz signals and data were
collected using high frequency 4-8 kHz signals, they can be
compared by scaling the source, target, receiver configuration
by the ratio of frequencies, i.e., 10; the source, target and
source geometry in the simulations in Sec. III was purposely
set up by this rule for the purpose of comparing them with
experimental results. [We use low frequency signals in Sec.
III since the normal mode calculation has been well verified
at low frequencies.] Indeed, one finds the experimental local-
ization result using CBF, Fig. 10(b), is similar to that obtained
with simulated data, Fig. 6(a) except for a scale factor of 10.
Obviously, the experimental result, Fig. 10(b), contains many
clutter returns and an additional unintended target, which are
absent in the simulation results Fig. 6(a). Also the echo levels
in the data are somewhat lower than in the simulation. These
two factors make it more difficult to identify/localize the
target in the data than in the simulation. Likewise, the exper-
imental results using deconvolved CBF, Fig. 11(b) is quite
similar to the simulation result presented in Fig. 6(b), except
for the clutter returns. The clutter returns are more discrete
and this helps to localize the target and enhance the target to
reverberation/background ratio as demonstrated above.

V. SUMMARY AND CONCLUSION
This paper investigates the ability of a bistatic active system
consisting of a fixed source and moving HLA, and vice
versa, to localize the targets within the viewing area. Targets
can be localized by beamforming on the active returns and

triangulation of multiple beams from a towed HLA assum-
ing no timing error, but localization becomes difficult using
conventional beamforming when there exist high level rever-
beration/clutter returns as the echo and reverberation are not
well separated in the beam domain when the array does not
have sufficient beam resolution as is for an AUV towed array.
We solve this problem using deconvolved CBF as it achieves
high beam resolution and low sidelobe level equivalent to
that of a much (10 times) larger HLA, thus avoiding the
use of synthetic beamforming (which yields no more than
approximately twice the aperture of the original HLA) and the
uncertainties associated with array element localization [18].
Localization of targets is further improved by summing the
target map over many pings as the source or the HLA travels
over different places to provide a large azimuthal angle cover-
age. Localization of two targets are demonstrated by the tank
experimental data using the proposed method.
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