
Received September 14, 2019, accepted October 9, 2019, date of publication October 16, 2019, date of current version October 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2947846

Compressing by Learning in a Low-Rank
and Sparse Decomposition Form
KAILING GUO ,∗, (Member, IEEE), XIAONA XIE∗, XIANGMIN XU , (Senior Member, IEEE),
AND XIAOFEN XING
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510000, China

Corresponding author: Xiangmin Xu (xmxu@scut.edu.cn)

∗Kailing Guo and Xiaona Xie contributed equally to this work.

This work was supported in part by the National Natural Science Foundation of China under Grant U1801262, Grant U1636218, Grant
61702192, and Grant 61802131, in part by the China Postdoctoral Science Foundation under Grant 2018M630944, in part by the Natural
Science Foundation of Guangdong Province, China, under Grant 2018A030313474, and in part by the Fundamental Research Funds for the
Central Universities, under Grant 2018MS79, Grant 2019PY21, and Grant 2019MS028.

ABSTRACT Low-rankness and sparsity are often used to guide the compression of convolutional neural
networks (CNNs) separately. Since they capture global and local structure of a matrix respectively, we com-
bine these two complementary properties together to pursue better network compression performance. Most
existing low-rank or sparse compression methods compress the networks by approximating pre-trained
models. However, the optimal solutions to pre-trained models may not be optimal to compressed networks
with low-rank or sparse constraints. In this paper, we propose a low-rank and sparse learning framework that
trains the compressed network from scratch. Our compressing process can be described as the following
three stages. (a) In the structure designing stage, we decompose a weight matrix into sum of low-rank
matrix and sparse matrix, and then the low-rank matrix is further factorized into product of two small
matrices. (b) In training stage, we add `1 regularization to the loss function to force the sparse matrix to be
sparse. (c) In the post-processing stage, we remove the unimportant connection of sparse matrix according
to its energy distribution. The pruning process in the post-processing stage reserves most of capacity of
the network and keeps the performance of the network to a great extent. The performance can be further
improved with fine-tuning, along with sparse masked convolution. Experiments on several common datasets
demonstrate our model is superior to other network compression methods based on low-rankness or sparsity.
On CIFAR-10, our method compresses VGGNet-19 to 3.14% and PreActResNet-56 to 29.78% without
accuracy drop. 62.43% of parameters of ResNet-50 are reducedwith 0.55% top-5 accuracy loss on ImageNet.

INDEX TERMS Convolutional neural networks, low-rank, sparse, network compression.

I. INTRODUCTION
Convolution Neural Networks (CNNs) date back to the 1980s
and become popular after the proposition of AlexNet [1]
because of its unprecedented result on ImageNet [2]. Since
then, CNNs have made extraordinary achievements in a lot of
applications, e.g., image classification [3], [4], object detec-
tion [5], [6], and natural language processing [7]–[9], just to
name a few. A noticeable trend in this area is that deeper and
wider network architectures are designed constantly to pursue
better performance.

Although CNNs have outstanding performance on many
tasks, parameter increment brought by deeper and wider

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

network architecture makes it difficult to employ them in
daily life. For example, the number of VGG-19’s parame-
ters [3] reaches 143millions, which hinders its deployment on
embedded devices and mobile phones seriously. The contrac-
tion between network size and real-time application attracts
increasing research attention on compressing and accelerat-
ing CNNs.

Low-rank approximation and pruning are popularly used
for compressing CNNs. Low-rankness captures the global
property of a matrix and is widely used for removing redun-
dancy in high-dimensional data [10]. A low-rank matrix can
be factorized into sequence of small matrices, and thus the
corresponding memory storage and matrix computation can
be reduced. Low-rank approximation is utilized to compress
pre-trained networks under different reconstruction guidance,

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 150823

https://orcid.org/0000-0003-4753-9022
https://orcid.org/0000-0003-4573-5820
https://orcid.org/0000-0002-1348-5305

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

FIGURE 1. Visualization of weight matrix decomposition. These matrix parameters are extract from convolutional layer conv4_2 from compressed
VGGNet-19. For better visualization, we take the first 64 channels of each convolution kernel in the matrix V and S, and the matrix U is entire. We also use
the power function f (x) = x0.25 on all matrices to amplify small parameters near 0, which highlights the sparse structure of the matrix S.

e.g., layer-by-layer [11], in a global perspective [12], and
knowledge transfer [13]. Pruning is an effective compression
strategy that removes unimportant weights to obtain sparse
matrix, and thus reduce storage and avoid unnecessary com-
putation. The pioneering work of Han et al. [14] showed
encouraging compression rate without loss of accuracy by
simply removing weights with small magnitude and com-
bining with fine-tuning. Recently, new pruning criteria from
different aspects, e.g., reconstruction error [15], [16], neuron
importance score propagation (NISP) [17], and discrimina-
tive information [18], are proposed tomeasure the importance
of neurons and to improve the performance of compressed
network. Since low-rank decomposition and pruning actually
lead to new structure of network, compressing network by
heuristically approximating a pre-trained model may not be
optimal choice for the new compressed structure. There is
another trend in model compression that changes approxi-
mation problem into optimization problem with regulariza-
tion or constraint. For example, low-rankness is obtained
from optimizing nuclear norm regularized problem [19] and
pruning is applied after optimizing sparse constraint prob-
lems [20], [21]. These optimization-based methods learn the
compressed structures dynamically through training rather
than approximating pre-trained networks.

Most existing works study low-rank decomposition and
pruning for network compression separately. Since they
describe global and local property of a matrix respectively,
they are complementary and can be combined together for
better performance. Both [19] and [22] verifies this idea.
However, the work [19] forced a matrix to be both low-rank
and group sparse, and the learned weight matrix can only
be compressed by either low-rank approximation or pruning.
The work [22] decomposed a weight matrix into the sum
of a low-rank matrix and a sparse matrix, and compressed
the network by both strategies. However, the compressed
network in [22] was obtained via approximating a pre-trained
original network and needed iterative fine-tuning.

Since the network is optimized to find the optimal param-
eters of the original architecture in the training stage, com-
pressing a pre-trained model by low-rank decomposition or
pruning in the post-processing stage will unavoidably affect

its performance significantly. To mitigate this limitation,
we propose a low-rank and sparse decomposition (LRSD)
framework that compresses network via learning. Follow-
ing [22], the network architecture is designed by decompos-
ing a weight matrixW into the sum of a low-rank component
L and a sparse component S (see Figure 1 for visualization).
The low-rank matrix L can be factorized into product of two
small matrices U and V according to its rank, resulting in
sequenced convolution with less computation and memory
cost. Sparsity is a straightforward strategy to reduce storage
and the computation corresponding to the sparse elements
can be omitted. During training, an ordinary weight matrix
is replaced by the mixture of U , V , and S. We add `1
regularization in the loss function to guarantee the sparsity
of S. After training, unimportant weight values of S shrink
to zeros and we can remove the unimportant weights to
obtain the final sparse matrix. Since S tends to learn sparse
structure, pruned S is closer to the learned S compared
to methods without `1 regularization. Thus, the proposed
compressed method works well without fine-tuning. Its per-
formance can be further improved with a few epochs of
fine-tuning.

To demonstrate the effect of our proposed method, we con-
duct experiments on several popular image classification
datasets with some representative network structures. On
CIFAR-10, our framework achieves a balance between high
compression rate and high accuracy before retraining. On
CIFAR-100 and ImageNet, a few epochs of fine-tuning are
necessary to retain performance of pruned models. However,
compared to other works, our method always has a better
performance before retraining.

The main contributions of the proposed method are as
follows.
(a) We show that low-rank decomposition and pruning can

be combined to compress networks via training from
scratch and achieve better performance than its counter-
part methods that approximate pre-trained networks.

(b) Compare to methods that setting the sparse rate for
pruning explicitly, our sparse rate is adaptively learned
in the proposed method by optimization with sparsity
regularization.

150824 VOLUME 7, 2019

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

(c) We show that combining low-rank decomposition with
pruning achieves higher compression rate than most
existing pruning methods.

II. RELATED WORK
A. COMPRESSION BY LOW-RANKNESS ONLY
Most low-rank methods compress networks by approximat-
ing pre-trained networks. Usually they replaced a pre-trained
weight matrix/tensor with a low-rank matrix/tensor (fac-
torized into small matrices/tensors) by minimizing weight
reconstruction error [23], [24] or output reconstruction
error [11]–[13], [23]. Denton et al. [24] exploited low-rank
decomposition of weight tensors along different dimensions
via SVD to reconstruct weight tensors. Jaderberg et al. [23]
decomposed the filters into rank 1 filters and investi-
gated the effect of minimizing weight reconstruction error
and linear response reconstruction error. They show that
response reconstruction outperforms weight reconstruction.
Rather than approximating linear filters or linear responses,
Zhang et al. [11] minimized non-linear response error and
achieved more precise approximation. Lin et al. [13] used
low-rank decomposition of a pre-trained network as initial-
ization, and then retrained the low-rank compressed network
by knowledge transfer and distillation. Unlike methods men-
tioned above, Alvarez et al. [19] utilized low-rankness from
another perspective. They obtained low-rank matrix during
training with nuclear norm regularization which encouraged
the singular values of a matrix to approach zero. In the
post-processing stage, they used SVD-based to decompose
constrained matrix and then cut the small singular values to
generate two small matrices. They showed that accounting for
compression during training led to more compact networks.

B. COMPRESSION BY SPARSITY/PRUNING ONLY
Pruning is another intuitive strategy for compressing net-
works. LeCun et al. [25] set the unimportant parameters
of model to zeros according to second derivation, which
required large memory and computation costs due to complex
calculation of the Hessian matrix. Since then, different prun-
ing criteria have been proposed to evaluate the importance
of network parameters. Han et al. [14] used magnitude of
weight values as pruning criterion and showed that it was able
to compress VGG-16 model by 15× with iterative pruning
and retraining. Average Percentage of Zeros (APoZ) [26],
which refers to the statical property of the output feature map,
is utilized to judge the importance of a neuron. ThiNet [16]
propose to prune filters based on statistics information com-
puted from its next layer. Molchanov et al. [27] proposed
a new criterion based on Taylor expansion that approxi-
mated the change in the cost function induced by pruning
network parameters. Yu et al. [17] proposed to compute
the importance of each neuron by propagation according to
the reconstruction of the final response layer. Intrinsically,
they all define the pruning criteria based on certain prop-
erty of pre-trained networks. Discrimination-aware channel
pruning (DCP) [18] adds extra discriminative information in

middle layers with sparse regularization to guide the pruning
of a pre-trained network. In the contrast, Slimming [28] adds
channel sparsity through training the network without relying
on pre-trained networks.

C. COMBINING LOW-RANKNESS AND
SPARSITY/PRUNING
In the area of network compression, low-rankness and
sparsity/pruning are developed almost independently. Since
they capture global and local property of network weights,
which are complementary, some recent efforts combine them
together for network compression. The work [19] combined
`2,1 regularization and nuclear norm for learning weight
matrices that were both low-rank and group sparse. They
showed that the joint constraint significantly outperformed
single low-rank constraint. Greedy Bilateral Decomposition
(GreBDec) [22] utilize low-rank and sparse decomposition
for network compression, which is similar to the proposed
method. However, our approach is different from [22] in the
following aspects. Firstly, the low-rank and sparse decompo-
sition framework proposed in [22] compressed a pre-trained
network in the post-processing stage, which needed to mini-
mize the reconstruction error, but ourmethod trains a compact
network from scratch. Secondly, we force the parameters of
S to approach zeros by adding regularization to loss function
rather than pruning them based on magnitude directly.

D. COMPRESSION BY OTHER STRATEGIES
Other compression strategies can be categorized into weight
quantization, knowledge distillation, and compact architec-
ture design. Weight quantization is to map the values of net-
work parameters from the real number field to finite subset,
or to express network parameters in fewer bits. Vector quanti-
zation [29] was employed to reduce parameter redundancy of
pre-trained networks. In the same trend as low-rankness and
pruning, lots of recent quantization methods [30]–[32] pro-
posed to directly learn quantized model parameters instead
of approximating pre-trained networks. Knowledge distil-
lation [33] used a teacher model to guide the training of
compressed model by adding a distillation loss that penal-
ized the difference between the softmax outputs of the two
models. It adds extra guided information, which is beyond the
scope of this paper, while we focus on the network structure.
Recently, some researchers designed compact modules for
compression directly, e.g. depthwise separable convolutions
in MobileNet [34] and group convolution with shuffle in
ShuffleNet [35]. However, they are designed for specific
networks, which are less general for compressing other deep
models.

III. PROPOSED METHOD
In this section, we introduce the framework and compression
process of our proposed method.

A. FRAMEWORK
We design the compressed network architecture by decom-
posing the original weight matrix into the sum of low-rank

VOLUME 7, 2019 150825

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

FIGURE 2. New compressed covolutional module.

and sparse matrices. By further factorizing the low-rank
matrix into product of small matrices, an ordinary convolu-
tion/fully connected layer is replaced by sequenced convolu-
tion/fully connected layers adding a sparse convolution/fully
connected layer. An example for a new 3 × 3 convolutional
module is shown in Figure 2. With a small rank of low-rank
matrix and a high sparse ratio of sparse matrix, the new
convolutional module will have fewer parameters than the
original module. Detailed explanations are given in the fol-
lowing sub-sections.

B. THE LOW-RANK DECOMPOSITION OF MATRIX L
Convolution can be implemented by matrix multiplication
after reshaping the input and weight tensor. In this paper,
we use a matrix W ∈ RK×m to represent the weight of a
convolution or fully connected layer. WhenW represents the
weight of a convolution layer, we have m = Cd2, where C is
the input channels and d is the kernel size.

The weight matrix is decomposed into low-rank matrix L
and sparse matrix S as follows

W = L + S. (1)

Tomodel low-rankness, a commonway is to utilize nuclear
norm [36]. Defining the loss function of CNN is f (W), where
W = {W1,W2, · · · ,Wl} is the set of l layers of weights.
We can reformulate the objective function as

min
Li,Si

f (W)+ λ
l∑
i=1

‖Li‖∗, s.t.Wi = Li + Si, (2)

where ‖·‖∗ represents nuclear norm.
However, optimizing nuclear norm needs to compute SVD

at every iteration for all the layers and SVD is computational
unfriendly for GPU in existing deep learning frameworks.
Therefore, we abandon this constraint method.

Another choice for modeling low-rankness is to factor-
ize the weight matrix beforehand. Suppose the rank of the
low-rank matrix L is r , we can factorize it into product of
small matrices

L = UV , (3)

where U ∈ RK×r and V ∈ Rr×m.

When rank r � min(K ,m), we have Kr + rm � Km.
Thus, replacing W with U and V will lead to less mem-
ory cost. Suppose the input is a vector x ∈ Rm, so the
computation complexity of Wx and U (Vx) are O(Km) and
O(Kr + rm), respectively. Thus, the factorization reduces not
only the storage but also the computation cost when r is small.
Specifically, when r = 1, the storage and computation costs
reach the minimum. By such factorization, a low-rank fully
connected layer can be replaced by two successive small fully
connected layers, and a low-rank convolution layer can be
replaced by a convolution with the same kernel size but less
output channels named V and a 1 × 1 convolution named U
(see Figure 2).
r is a hyper-parameter that affects the architecture of the

network and makes trade-off between the efficiency and per-
formance. We will discuss how to set the value of r detailedly
in Section IV.

C. THE SPARSE STRATEGY OF MATRIX S
Pruning pre-trained model is a common used strategy to
obtain sparse weight matrix [26], [27]. However, there is a
distinct performance gap between the compressed model and
pre-trainedmodel, and fine-tuning is necessary to regain good
performance. The effect of pruning will be less if the sparse
structure is learned at the training stage [20]. We also obtain
the sparse structure via learning. In this way, the number and
location of unimportant parameters are automatically chosen,
and the pruning of unimportant parameters will result in less
accuracy drop or even keep accuracy.

We add regularization to force the matrix to be sparse.
`0 norm counts the number of non-zero elements and is a
straightforward sparsity measure. However, optimizing `0
norm is a NP-hard problem. An alternative strategy is to `1
norm, which is the optimal convex approximation of `0 norm.
Combining with low-rank approximation, the loss function is
reformulated as follows.

min
Li,Si

f (W)+ λ
l∑
i=1

‖Si‖1, s.t.Wi = UiVi + Si, (4)

where λ is trade-off parameter that balance precision and
sparsity.

Stochastic gradient descent (SGD) is popularly used for
optimizing deep learning networks. However, `1 norm is
non-smooth and incompatible with SGD. Here, we use
sub-gradient instead of gradient. `1 norm is the sum of
absolute value of each element, thus we can compute the
sub-derivative of each element independently to obtain the
sub-gradient. The sub-derivative of absolute value function is
given by

∂‖s‖1=


1, if s > 0

[−1, 1] , if s = 0
−1, if s < 0

(5)

When applying SGD, we simply set the sub-derivative to zero
if s is zero.

150826 VOLUME 7, 2019

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

D. PRUNING CRITERION
`1 regularization results more parameters near zero but not
exactly zero. We need to prune the unimportant parameters to
obtain sparse structure. Previous pruning strategy [14] prunes
weights whose magnitude below a threshold across all layers.
As we know, each layer plays a different role in a neural
network. The same weight magnitude may not be the same
important at different layers. Thus, the importance of a neuron
cannot be simply judged by its weight magnitude.

In this paper, we derive a new criterion for pruning. To keep
the performance, a layer should keep similar statical property
after pruning. By reshaping a weight matrix S into a vector s,
we define the energy of a weight matrix S as follows.

E(s) =
∑
i

|si| , (6)

where si denotes the ith element of s. We expect the pruned
matrix maintain most energy of the layer with parameters as
few as possible. Suppose the element number of s is n and the
energy ratio reserved after pruning is α. Pruning is formulated
as the following optimization problem that finds the optimal
subset of index.

min card(I)

s.t. I ⊆ {1, . . . , n},
∑
i∈I

|si| ≥ αE(s), (7)

where card(I) denotes the element number of set I . This
problem can be solved by sorting the entries of |s| from large
to small, and then add the entries one by one until the sum
is larger than αE(s). The index of the last entry used in the
summing process is the objective value, denoted by k . Then,
the weight matrix is pruned by keeping the k largest entries
remain the same and setting the others to zeros.

The work [22] approximates pre-trained network by
low-rank and sparse decomposition for net compression, but
they need to set the sparse rate layer by layer tediously. By uti-
lizing energy ratio as the pruning criterion, the proposed
method determines the sparse rate automatically.

Suppose the sparse rate is β and the input vector is x ∈
Rm, then the computation complexity of sparse convolution
Sx reduces from O(Km) to O(βKm). The total computation
complexity of the proposed module after pruning is O(Kr +
rm+βKm). When r and β are small enough, the computation
complexity is smaller than the original complexity O(Km).

In general, fine-tuning is an effective way to regain the
accuracy of pruned model. When fine-tune the pruned model,
we add a binary sparse mask to the sparse matrix S. That is to
say, we fix the position of zero parameters of sparse matrix
S and only fine-tune the non-zero parameter. For other dense
matrices, all parameters are involved.

IV. EXPERIMENTS
In this section, we evaluate the proposed method on several
datasets. The experimental results show that our method
is superior or comparable to other state-of-the-art meth-
ods, including ThiNet [16], Slimming [28], NISP [17],

DCP [18], DCP-Adapt [18], and GreBdec [22]. In the fol-
lowing, we use ‘‘N_o’’ and ‘‘N_c’’ to represent the parameter
number of original and compressed model respectively, and
thus ‘‘N_c/N_o’’ reflects the compression degree of model.
Our experiments are implemented on PyTorch [37].

A. DATASETS
1) CIFAR
The CIFAR datasets [38] consisit of CIFAR-10 and CIFAR-
100. CIFAR-10 is composed of 60,000 32× 32 color images
in 10 classes. Each class has 6,000 images, 5,000 of which are
in the training set and the rest are in the test set. CIFAR-100 is
just like the CIFAR-10 except it has 100 classes containing
600 images each. For each class, there are 500 training images
and 100 testing images.We adopt the same data augmentation
as Slimming [28]. For training, we pad 4 pixels with zeros
on each side of a image and then randomly crop a 32 ×
32 sample from the padded image. Finally, we horizontally
flip the image randomly with probability 0.5. For testing,
we directly input the original 32 × 32 image to network.
Both training and testing images are normalized with channel
means and standard deviations.

2) ImageNet
There are 1,281,167 training images and 50,000 validation
images from 1,000 classes in ImageNet dataset [2]. We adopt
the default setting of PyTorch for data agmentation. For vali-
dation images, we crop out the central 224× 224 patch.

B. COMPARISON ON SMALL DATASETS
For small datesets CIFAR-10 and CIFAR-100, we carry out
compression experiments of VGGNet [28] and PreActRes-
Net [39]. VGGNet is a variation of VGG [3], which reduces
fc layers and replaces the last maximum pooling with an
average pooling and adds BN layers. For VGGNet, we choose
VGGNet-19 and VGGNet-7 to show that LRSD works for
both small and large models. For Pre- ActResNet, we choose
PreActResNet-56 and PreActResNet-164 for comparison.

1) IMPLEMENT DETAILS
We add a batch normalization layer after layer U in the
proposed module (see Figure 2) since we empirically find
that it improves the performance on small datasets. We com-
press all fully connected and 1× 1 convolutional layers only
with sparse constraint. We train all networks from scratch
with SGD by using a mini-batch size 64 for 160 epochs on
CIFAR datasets. The initial learning rate is set to 0.1, and
is divided by 10 at 50% and 75% of the total number of
epochs. The weight decay is 1e-4 and momentum of SGD
is 0.9. The trade-off parameter λ is set to 2e-6 for CIFAR
datasets. Without extra specification, the rank r is set to 1 and
the energy ratio α is set to 0.9. We fine-tune the pruned
model using the same setting as Slimming [28]. All exper-
iments are repeated for five times and the average results are
reported.

VOLUME 7, 2019 150827

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

TABLE 1. Experimental results of VGGNet-19 and PreActResNet-56 on
CIFAR-10.

2) COMPARISON EXPERIMENTS OF LARGE MODELS
We compare LRSD with Slimming [28], and DCP [18], and
DCP-Adapt [18]. To avoid potential difference between Torch
and PyTorch, we adopt the result of Slimming from the
official PyTorch implementation1 instead of the paper [18].
For PreActResNet-56, we run the PyTorch code to obtain the
results. Note that DCP trains the networks with much more
epochs than the other methods. For fair comparison, we run
the experiments of DCP with the same epochs as the other
methods, i.e., 160 epochs, by using its official released code.2

The pruning rate of DCP is set to 0.5 for all the experiments.
Since DCP and DCP-Adapt are very time-consuming, we run
their experiments for three times. We set the pruning rate of
Slimming according to its default settings [28].

In Table 1, we show the compression ratio and
accuracy after pruning and fine-tuning of the compres-
sion methods on CIFAR-10. After pruning, LRSD achieve
significant higher accuracy than the compared methods.
Slimming even can not work without fine-tuning. After fine-
tuning, all the methods can be improved but LRSD is still
the best and surpass the baseline by 0.11% and 0.2% for
VGGNet-19 and PreActResNet-56, respectively. With α =
0.9, our compression rate is a little higher than Slimming
for PreActResNet-56. However, by setting α to 0.7, LRSD
can achieve lower compression rate and the accuracy after
pruning and fine-tuning are still much higher than Slimming.

Table 2 summarizes the experimental results on CIFAR-
100. For VGGNet-19, LRSD achieves better accuracy but its
compression rate is higher than DCP-Adapt by the default
setting. We further set α to a smaller value 0.5 to reduce
the compression rate of LRSD and show that its accuracy is
much better than DCP-Adapt. The accuracy of LRSD with
default setting is lower than Slimming. However, we show
that when the rank is set to a higher value K/10, the accuracy
of LRSD is higher than Slimming with lower compression
rate. Here K/10 means setting the rank to 1/10 of the number
of output channels. For PreActResNet-164, LRSD achieves
the best accuracy with default setting but its compression rate
is higher than DCP. We show that, by setting α to 0.7, LRSD

1https://github.com/Eric-mingjie/network-slimming
2https://github.com/SCUT-AILab/DCP

TABLE 2. Experimental results of VGGNet-19 and PreActResNet-164 on
CIFAR-100.

TABLE 3. Experimental results of VGGNet-7 on CIFAR-10 and CIFAR-100.

outperforms DCP with lower compression rate and higher
accuracy after fine-tuning.

3) COMPRESSION EXPERIMENTS OF SMALLER MODEL
We also use our LRSD algorithm to compress smaller model
VGGNet-7. Experimental results are show in Table 3. LRSD
reduces more than 60% parameters of VGGNet-7 but remains
its performance after fine-tuning on both CIFAR datasets.
Experiments demonstrate that our compression algorithm is
also robust to small model.

C. COMPRESSION ON IMAGENET
To demonstrate that our approach is not only effective
on small datasets, we also implement experiments on
large-scale dataset, ImageNet. We carry out experiments with
ResNet-50 [4].

1) IMPLEMENT DETAILS
We compress the fully connected layer only with sparse
constraint. We train ResNet-50 with the initial learning rate
of 0.1 and the weight decay of 1e-4. The learning rate is
divided by 10 for every 30 epochs for all networks. The
momentum of optimizer SGD is 0.9. The rank is set to 1 and
the trade-off parameter λ is set to 1e-6. All networks are
trained with a minibatch size 256 for 90 epochs. When fine-
tuning, we retrain the pruned model for 20 epochs with a
learning rate of 1e-3, and divide learning rate by 10 for every
10 epochs.

2) COMPARISON WITH OTHER METHODS
The comparison results of ResNet-50 on ImageNet are
showed in Table 4. For GreBdec, we reimplement it in

150828 VOLUME 7, 2019

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

TABLE 4. Experimental results of ResNet-50 on ImageNet.

PyTorch. Since the proposed method combines two strategies
low-rank and pruning, we compare it with methods that also
adopt low-rank or pruning strategies. The bottleneck blocks
in ResNet-50 introduce a lot of 1 × 1 convolutional layers,
which have 9.36 million parameters in 1 × 1 convolutional
layer of ResNet-50 and account for 36.62% of the parame-
ters. To study the effect of compressing 1 × 1 convolutional
layers in bottleneck blocks, we conduct experiments of LRSD
with and without compressing 1 × 1 convolutional layers in
bottleneck blocks, denoted by LRSD and LRSD-conv1×1,
respectively. From Table 4, we can see that LRSD compress
about half of the parameters with lowest error increment.
The compression rate of DCP is much better than LRSD.
However, by taking 1 × 1 convolutional layers in bottleneck
modules into account, LRSD-conv1×1 outperforms DCP
both in compression rate and classification errors.

D. PARAMETER ANALYSIS
In this section, we analyze the influence of parameters
{λ, r, α} on LRSD. Here we conduct experiments on
CIFAR-10. The implementation details are the same as in
Sub-Section IV-B.

1) HYPER-PARAMETER λ
We vary λ while fixing the other parameters. We adjust λ
within a large range to find a candidate interval for the optimal
λ, and then choose the optimal λ in this candidate interval.
Figure 3 shows the compression rate, accuracy before prun-
ing, and accuracy after pruning respectively versus logarithm
of λ. The compression rate goes down as λ goes high. The
accuracy before and after pruning are stable when λ is small
and drop down quickly when λ is larger than 1e-5. Since
the accuracy before and after pruning are relatively higher
than the others at λ = 1e-6, we further evaluate 8 points
(6e-7, 7e-7, 8e-7, 9e-7, 2e-6, 3e-6, 4e-6, 5e-6) around
1e-6. We enlarge the sub-figures for clear visualization. The
accuracy after pruning achieves maximum at λ = 2e-6. Thus,
we set λ to 2e-6 for our experiments onCIFAR-10. Note that it
is a trade-off between compression rate and accuracy. In prac-
tice, we can sacrifice some accuracy to pursue compression
rate by setting λ to a larger value.

2) HYPER-PARAMETER r
Table 5 shows the experimental results of VGGNet-19 on
CIFAR-10 with different rank r . ‘‘r = K/n’’ means setting

FIGURE 3. Experimental results of VGGNet-19 on CIFAR-10 with varying λ.

TABLE 5. Experimental results of VGGNet-19 on different rank r on
CIFAR-10.

the rank to 1/n of the output channels K of the convolutional
layer. When r gets smaller, the accuracy before and after
pruning are stable, but the number of parameters is signif-
icantly reduced. This is due to the sparse matrix S helping
keep the ability of model. Therefore, we can always set r to
an extremely small value for network compression.

3) HYPER-PARAMETER α
Figure 4 shows the compression rate, accuracy after pruning,
and accuracy after fine-tuning respectively versus energy
ratio. Note that the points at α = 1 in Figure 4(b) denote

VOLUME 7, 2019 150829

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

FIGURE 4. Experimental results on different energy ratio α on CIFAR-10.

accuracy before pruning. Even with a very large energy ratio
α = 0.99, the parameters of VGGNet-19 can be pruned to
7.98% without accuracy drop. This suggests that adding `1
norm to the loss function is very effective to learn sparse
matrices. With shortcut, the residual block is more compact
than the VGG block, which makes it harder to compress
residual networks. However, LRSD can still cut about 24%
of the parameters with very high energy ratio α = 0.99.
When α is larger than 0.8, the accuracy drop is negligible with
25× compression of VGGNet-19 and 2.6 × compression of
PreActResNet-56. When α is less than 0.7, the accuracy of
both networks drop sharply. However, the accuracy can be
retained by fine-tuning. Evenwith a low energy ratio α = 0.1,
the accuracy of VGGNet-19 and PreResNet-56 are still larger
than 80% after fine-tuning.

E. COMPRESSION EFFECTS ON DIFFERENT LAYERS
Here we analyze the compression effects of LRSD on dif-
ferent layers. Figure 5 shows the ratio of parameter number
of low-rank component and sparse component to parameter
number of original weight for different layers of VGGNet-
19 on CIFAR-10, respectively. The experiment settings are
the same as IV-B. ‘‘Ca_b’’ denotes the bth layer of the ath

block. For all convolutional layers, the parameter ratio of
low-rank component to original weight #L/#W is low since
we set the rank to only 1. Since we only compress the fc

FIGURE 5. Compression rate of VGGNet-19 on CIFAR-10. To clearly show
the parameter ratio of matrix L and S to W , we do not calculate the
parameters of bn and bias in this figure. If take them into account,
the total compression parameter ratio should be 5.11%.

TABLE 6. Ablation experimental results of VGGNet-19 on CIFAR-10.

layer with sparse constraint, the ratio #L/#W for fc layer is
zero. The ratio of sparse component to original weight varies
in different layers. This shows that the energy distribution of
sparse matrix is adaptively learned and thus pruning accord-
ing to energy ratio leads to different sparse rate. The sparse
rate of the bottom convolutional layers are much larger than
the top convolutional layers. This is because the bottom layers
extract basic feature representation of images and are more
important than the top layers for the final performance.

F. ABLATION STUDY
As we can see in Figure 5, the sparse components account
for most parameters of the compressed network. However,
it does not mean the low-rank components are ineffective.
Here we conduct ablation experiments on CIFAR-10 with
VGGNet-19 to show the effects of low-rank component

150830 VOLUME 7, 2019

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

and sparse component more clearly. We use LRSD (L) and
LRSD (S) to denote only using low-rank component and only
using sparse component, respectively. We set the rank for
LRSD (L) the same as LRSD, i.e., r = 1. Similarly, we set
the trade-off parameter λ to 1e-6 for LRSD (S). We prune a
sparse matrix of LRSD (S) such that its parameter number is
the same as the parameter number of the sum of low-rank and
sparse components in the corresponding layer in LRSD. Since
LRSD compress the fully connected layer only with sparse
component, the fully connected layer in LRSD (L) is without
compression. Thus, LRSD (L) has slightly larger number of
parameters. The results are shown in Table 6. We can see that,
the combination method LRSD outperforms single low-rank
or sparse component in all the cases.

V. CONCLUSION
In this paper, we integrate the low-rank decomposition and
sparsity pruning into a unified framework, which captures
global and local structure of a weight matrix. Comprehen-
sive experiments demonstrate that LRSD outperforms other
low-rankness or sparsity-based compression methods on both
small and large scale datasets. We show that it is a good
strategy to combine low-rankness and sparsity and train the
compressed network from scratch. We will further combine
LRSD with other extra information like discriminative infor-
mation and knowledge distillation to further improve the
performance of LRSD in the future.

ACKNOWLEDGMENT
(Kailing Guo and Xiaona Xie contributed equally to this
work.)

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., Lake Tahoe, NV, USA, Dec. 2012, pp. 1097–1105.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248–255.

[3] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.,
San Diego, CA, USA, May 2015, pp. 1–14.

[4] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 779–788.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for
dense object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis., Venice,
Italy, Oct. 2017, pp. 2999–3007.

[7] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, and G. Chen, ‘‘Deep speech
2: End-to-end speech recognition in English and Mandarin,’’ in Proc. Int.
Conf. Mach. Learn., New York, NY, USA, Jun. 2016, pp. 173–182.

[8] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Martinez,
J. Gonzalez-Rodriguez, and P. Moreno, ‘‘Automatic language identifica-
tion using deep neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Florence, Italy, May 2014, pp. 5337–5341.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Dis-
tributed representations of words and phrases and their compositionality,’’
in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, Dec. 2013,
pp. 3111–3119.

[10] K. Guo, L. Liu, X. Xu, D. Xu, and D. Tao, ‘‘GoDec+: Fast and
robust low-rank matrix decomposition based on maximum correntropy,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2323–2336,
Jun. 2018.

[11] X. Zhang, J. Zou, K. He, and J. Sun, ‘‘Accelerating very deep convolutional
networks for classification and detection,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 10, pp. 1943–1955, Oct. 2016.

[12] S. Lin, R. Ji, X. Guo, and X. Li, ‘‘Towards convolutional neural networks
compression via global error reconstruction,’’ inProc. Int. Joint Conf. Artif.
Intell., New York, NY, USA, Jul. 2016, pp. 1753–1759.

[13] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, ‘‘Holistic CNN compression via
low-rank decomposition with knowledge transfer,’’ IEEE Trans. Pattern
Anal. Mach. Intell., to be published.

[14] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., Montréal, QC, Canada, Dec. 2015, pp. 1135–1143.

[15] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very deep
neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy,
Oct. 2017, pp. 1398–1406.

[16] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Venice, Italy, Oct. 2017, pp. 5068–5076.

[17] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron impor-
tance score propagation,’’ in Proc. IEEEConf. Comput. Vis. Pattern Recog-
nit., Salt Lake City, UT, USA, Jun. 2018, pp. 9194–9203.

[18] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and
J. Zhu, ‘‘Discrimination-aware channel pruning for deep neural networks,’’
in Proc. Adv. Neural Inf. Process. Syst., Montréal, QC, Canada, Dec. 2018,
pp. 875–886.

[19] J. M. Alvarez and M. Salzmann, ‘‘Compression-aware training of deep
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA, USA,
Dec. 2017, pp. 856–867.

[20] M. A. Carreira-Perpinan and Y. Idelbayev, ‘‘‘Learning-compression,’ algo-
rithms for neural net pruning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 8532–8541.

[21] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
‘‘A systematic DNN weight pruning framework using alternating direc-
tion method of multipliers,’’ in Proc. Eur. Conf. Comput. Vis., Munich,
Germany, Sep. 2018, pp. 184–199.

[22] X. Yu, T. Liu, X. Wang, and D. Tao, ‘‘On compressing deep models by low
rank and sparse decomposition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Honolulu, HI, USA, Jul. 2017, pp. 7370–7379.

[23] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolutional
neural networks with low rank expansions,’’ inProc. Brit. Mach. Vis. Conf.,
Nottingham, U.K., Sep. 2014, pp. 1–13.

[24] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., Montréal, QC, Canada, Dec. 2014,
pp. 1269–1277.

[25] Y. LeCun, J. S. Denker, and S. A. Solla, ‘‘Optimal brain damage,’’ in Proc.
Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.

[26] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trimming:
A data-driven neuron pruning approach towards efficient deep archi-
tectures,’’ 2016, arXiv:1607.03250. [Online]. Available: https://arxiv.org/
abs/1607.03250

[27] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning convolu-
tional neural networks for resource efficient inference,’’ in Proc. Int. Conf.
Learn. Represent., Toulon, France, Apr. 2017, pp. 1–17.

[28] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis., Venice, Italy, Oct. 2017, pp. 2736–2744.

[29] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 4820–4828.

[30] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Bina-
rized neural networks: Training deep neural networks with weights and
activations constrained to +1 or −1,’’ 2016, arXiv:1602.02830. [Online].
Available: https://arxiv.org/abs/1602.02830

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, Oct. 2016,
pp. 525–542.

VOLUME 7, 2019 150831

K. Guo et al.: Compressing by Learning in a Low-Rank and Sparse Decomposition Form

[32] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,’’ 2016, arXiv:1606.06160. [Online]. Available: https://arxiv.org/
abs/1606.06160

[33] G. E. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge
in a neural network,’’ 2015, arXiv:1503.02531. [Online]. Available:
https://arxiv.org/abs/1503.02531

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applicationas,’’ 2017, arXiv:1704.04861.
[Online] Avaiable: https://arxiv.org/abs/1704.04861

[35] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018,
pp. 6848–6856.

[36] M. Fazel, ‘‘Matrix rank minimization with applications,’’ Ph.D disserta-
tion, Dept. Electr. Eng., Stanford Univ., Stanford, CA, USA, 2002.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. Adv. Neural Inf. Process. Syst., W. Autodiff, Ed., Long
Beach, CA, USA, Dec. 2017, pp. 1–4.

[38] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009,
vol. 1, no. 4.

[39] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ inProc. Eur. Conf. Comput. Vis., Amsterdam, The Netherlands,
Oct. 2016, pp. 630–645.

KAILING GUO received the B.S. and Ph.D.
degrees from the School of Electronic and Infor-
mation Engineering, South China University of
Technology, Guangzhou, China, in 2011 and 2017,
respectively. From January 2015 to January 2017,
he was a Visiting Ph.D. Student with the Center for
Quantum Computation and Intelligent Systems,
Faculty of Engineering and Information Technol-
ogy, University of Technology, Sydney. He is cur-
rently an Assistant Professor with the School of

Electronics and Information and a Postdoctoral Fellow with the School of
Computer Science and Engineering, South China University of Technology.
His current research interests include computer vision and machine learning.

XIAONA XIE was born in Shantou, Guangdong,
China, in 1997. She received the B.E. degree in
information engineering from the South China
University of Technology, China, in 2019. She
is currently pursuing the M.E. degree with the
South China University of Technology in Septem-
ber 2019. From 2015 to 2019, she won three schol-
arships, including national scholarship, school
scholarship and enterprise scholarship. In 2018,
she was awarded Honorable Mention in Interdis-

ciplinary contest in Modeling as a member of the team. Her undergraduate
design thesis was rated as an excellent graduation thesis by the university.
Her research interest includes neural network compression.

XIANGMIN XU (M’13–SM’19) received the
Ph.D. degree from the South China University of
Technology, Guangzhou, China. He is currently
a Full Professor with the School of Electronic
and Information Engineering, South ChinaUniver-
sity of Technology. His current research interests
include image/video processing, human com-
puter interaction, computer vision, and machine
learning.

XIAOFEN XING received the B.S., M.S., and
Ph.D. degrees from the South China University
of Technology, China, in 2001, 2004, and 2013,
respectively. She has been an Associate Profes-
sor with the School of Electronic and Information
Engineering, South China University of Technol-
ogy, since 2007. Her current research interests
include image/video processing, human computer
interaction, and video surveillance.

150832 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	COMPRESSION BY LOW-RANKNESS ONLY
	COMPRESSION BY SPARSITY/PRUNING ONLY
	COMBINING LOW-RANKNESS AND SPARSITY/PRUNING
	COMPRESSION BY OTHER STRATEGIES

	PROPOSED METHOD
	FRAMEWORK
	THE LOW-RANK DECOMPOSITION OF MATRIX L
	THE SPARSE STRATEGY OF MATRIX S
	PRUNING CRITERION

	EXPERIMENTS
	DATASETS
	CIFAR
	ImageNet

	COMPARISON ON SMALL DATASETS
	IMPLEMENT DETAILS
	COMPARISON EXPERIMENTS OF LARGE MODELS
	COMPRESSION EXPERIMENTS OF SMALLER MODEL

	COMPRESSION ON IMAGENET
	IMPLEMENT DETAILS
	COMPARISON WITH OTHER METHODS

	PARAMETER ANALYSIS
	HYPER-PARAMETER
	HYPER-PARAMETER r
	HYPER-PARAMETER

	COMPRESSION EFFECTS ON DIFFERENT LAYERS
	ABLATION STUDY

	CONCLUSION
	REFERENCES
	Biographies
	KAILING GUO
	XIAONA XIE
	XIANGMIN XU
	XIAOFEN XING

