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ABSTRACT Correntropy is a similarity function capable of extracting high-order statistical information
from data. It has been used in different kinds of applications as a cost function to overcome traditional
methods in non-Gaussian noise environments. One of the recent applications of correntropy was in the
theory of compressive sensing, which takes advantage of sparsity in a transformed domain to reconstruct
the signal from a few measurements. Recently, an algorithm called `0–MCC was introduced. It applies
the Maximum Correntropy Criterion (MCC) in order to deal with a non-Gaussian noise environment in
a compressive sensing problem. However, because correntropy was only defined for real-valued data, it was
not possible to apply the `0–MCC algorithm in a straightforward way to compressive sensing problems
dealing with complex-valued measurements. This paper presents a generalization of the `0–MCC algorithm
to complex-valued measurements. Simulations show that the proposed algorithm can outperform traditional
minimization algorithms such as Nesterov’s algorithm (NESTA) and the `0–Least Mean Square (`0–LMS)
in the presence of non-Gaussian noise.

INDEX TERMS Complex correntropy, complex-valued data, compressive sensing, `0–approximation.

I. INTRODUCTION
In the last years, a great interest has grown in the scientific
community around an area called compressive sensing (CS),
which takes advantage from the sparsity of signals to recon-
struct signals by using fewer measurements than Nyquist-
Shannon’s sampling theory would predict [1]. Due to this
characteristic, CS has been successfully applied to many
practical problems e.g. seismic prospecting [2], holographic
microwave imaging [3], and health monitoring [4]–[6].

Compressive sensing techniques have been proved able
to reconstruct sparse vectors even under certain amounts
of noise [7]–[10]. Impulsive noise tends to deteriorate
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the performance of traditional algorithms based on the
second-order constraints [1], [11]–[14].

Correntropy is a similarity measure that is capable of
extracting high-order statistical information from data [15].
As a nonlinear similarity measure, correntropy has been
successfully used as an efficient optimization cost function
in signal processing and machine learning, being specially
robust in the presence of non-Gaussian noise and successful
in different applications such as cognitive radio [16]–[19],
adaptive filtering [20]–[22], principal component anal-
ysis (PCA) [23], deep learning [24], [25], and state
estimation [26].

Correntropy was also used in CS analysis in [27] show-
ing a great potential for nonlinear signal processing and
defined a new algorithm called `0–Maximum Correntropy
Criterion (`0–MCC). It puts together an `0 gradient approxi-
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mation strategy, previously used in the `0–LeastMean Square
(`0–LMS) [28] and the Maximum Correntropy Criterion
(MCC). As the complex-valued data are widely employed in
many signal processing applications including compressive
sensing problems [29]–[33] and since correntropy is only
defined for real-valued random variables, it is not pos-
sible to recover a complex-valued sparse vector or deal
with complex-valued measurements using correntropy in a
straightforward way. Recently, the complex correntropy has
been defined [34], [35]. It extends the robustness of corren-
tropy to complex-valued random variables.

This paper introduces a method called `0–MCCC, which
uses Maximum Complex Correntropy Criterion (MCCC) in
order to solve compressive sensing problems in the presence
of non-Gaussian noise. The proposed algorithm is derived
by using Wirtinger Calculus and generalizes both algorithms
`0–MCC and `0–LMS. Results show that the proposed
method could overcome traditional algorithms such as Nes-
terov’s algorithm (NESTA) [11] and `0–LMS in a non-
Gaussian environment. A kernel size dependence analysis is
presented as well as the influence of the number of measure-
ments into the method’s performance.

The organization of the paper is as follows. Section II
explains the compressive sensing problem, while Section III
shows the complex correntropy and highlights important
properties. A brief review of Wirtinger Calculus and the
proposed algorithm `0–MCCC are presented in section IV.
Section V describes the impulsive noise environment used in
the tests. Section VI presents the results to verify the theoreti-
cal assumptions associated with the properties of `0–MCCC,
which provide overall improved performance if compared
with the classical solutions. Finally, Section VII summarizes
the main conclusions and potential future work.

II. COMPRESSIVE SENSING
The theory of compressive sensing is based on the reconstruc-
tion of an S-sparse long-length signal x from a short-length
signal y, which is obtained as linear measurements mapped
by a wide matrix A of dimension M × L, M < L. Math-
ematically, this can be expressed by the underdetermined
linear system y = Ax. However, in compressive sensing, it is
required that the sparsity level S = ‖x‖0 of the signal x be
very small compared to the signal length, therefore S � L.
As the linear system in a compressive sensing problem is
underdetermined, it has no solution or infinite many solu-
tions. By assuming the system has at least one solution, one
can look for the sparsest solution and then find a unique
solution under a certain tolerance. The unique solution can be
found if the matrix A holds the restricted isometry property
(RIP) [9], which is a high probability sufficient condition for
reconstruction of sparse signals.

In most practical applications, the noise has to be taken into
account. Therefore, the linear system that models the com-
pressive sensing problem is slightly modified to b = y+ γ ,
where γ is the additive noise. In addition, if the signal x is not
sparse, a sparsifying bijective transformationT can be applied

so that Tx = x̂ is sparse. Hence the problem can be written
as b = AT−1x̂+ γ . Without loss of generality, someone can
write b = Ax̂+ γ just by redefining the sensing matrix A.

In order to solve the system b = Ax+ γ , [36] highlights
three main approaches in the literature: Greedy, Bayesian
algorithms, and convex optimization based. Greedy algo-
rithms such as the iterative hard-thresholding (IHT) [37] have
a lower computational cost but its performance is highly
affected by noise. Reference [38] proposes incorporate prior
information to the problem in order to deal with this. Bayesian
algorithms such as the sparse Bayesian learning (SBL) [39]
also have high computational complexity but the approxi-
mate message passing (AMP) algorithm [40] avoids a matrix
inversion in order to solve this. This kind of algorithm has
been recently improved in [36] and in [41]. Reference [42]
proposes a unified Bayesian inference framework for gener-
alized linear model (GLM), and [28] solves the sparse sig-
nal reconstruction problem employing a stochastic gradient-
based adaptive filtering framework, which is commonly used
in system identification problems.

Regarding the convex optimization approach, the algo-
rithms usually implement either an approximated solution
of the minimization of ‖x‖0, given some constraints, or an
approximation of ‖x‖0 itself bymeans of relaxation strategies
like basis pursuit [11] and correntropy induced metric [43].
For instance, in a quadratically constrained problem, the com-
pressive sensing problem can be formulated as

minimize
x

‖x‖0

subject to ‖Ax− b‖22 ≤ ε, (1)

where ε is a tolerance factor.
The restricted isometric property measures how close
‖Ax‖2 is to ‖x‖2.We say that thematrixA holds the restricted
isometry property if there exists δS ∈ (0, 1) such that for all
S-sparse signals x the condition below holds

(1− δS )‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1+ δS )‖x‖22. (2)

Some matrices are known to hold the RIP like submatrices
of the following: discrete Fourier transform, discrete cosine
transform and random matrices. Those matrices hold the RIP
with high probability, which prevents the system to be solved
from being ill-posed. In this paper, the sensing matrix A is a
submatrix of a Gaussian random matrix.

III. COMPLEX CORRENTROPY
Since this paper deals with complex-valued data, it is neces-
sary to use the complex correntropy, which is defined in [35]:

V c
σ (Q,B) = E[Kσ (Q,B)], (3)

where Kσ (.) is any positive-definite kernel with size σ ; E[.]
is the expected value operator; QandB are complex random
variables. Some important properties of complex correntropy
are presented next.
Property 1: For symmetric kernels, complex correntropy is

symmetric.
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Property 2: Complex correntropy is positive and bounded.
For the complex Gaussian kernel shown in (4), its estimated
value V̂ c

σ is a non-negative real number and between zero,
the minimum value, and 1/2πσ 2, the value corresponding
when Q = B.

Gcσ (x − y) =
1

2πσ 2 exp
(
−
(x − y)(x − y)∗

2σ 2

)
, (4)

where x, y are complex-valued scalars and [.]∗ denotes the
complex-conjugate operator.
Property 3: For the Gaussian kernel, the complex cor-

rentropy is a weighted sum of all the even moments of the
random variable Q− B. Furthermore, as the kernel size σ
increases, the correntropy tends to the correlation between Q
and B.
For a complete overview and mathematical proofs of com-

plex correntropy properties, see [35].
One can estimate complex correntropy using the complex

Gaussian kernel as [34]

V̂ c
σ (Q,B) =

1
2πσ 2

1
N

N∑
i=1

exp
(
−
(qi − bi)(qi − bi)∗

2σ 2

)
, (5)

where Q = {qi}Ni=1 and B = {bi}Ni=1 are samples from the
random variables Q and B, respectively. For now on, this
papers makes use of an abuse of notation calling V c

σ (q,b)
instead of V c

σ (Q,B) when referring to the estimation of the
complex correntropy, where b,q ∈ CN×1 are vectors with N
samples of the measured random variables Q and B.

IV. `0-MAXIMUM COMPLEX CORRENTROPY CRITERION
The `0–MCC algorithm was first introduced in [44]. It uses
the MCC to filter outliers in a compressive sensing prob-
lem, but although the good performance in the presence of
impulsive noise, its application is restricted for real-valued
data only. Since many compressive sensing problems deal
with complex-valued data, instead of doing the minimization
showed in (1), let us define a new cost function J inspired
in [44] as

J = min
w

{
−V c

σ (b, y)+ λ‖w‖0
}

= min
w

{
−V c

σ (b,Aw)+ λ‖w‖0
}
, (6)

where V c
σ (b, y) is the complex correntropy between the

desired signal vector b, which is the noisy measurements,
while the estimated output vector y = Aw. Recall that
A ∈ CM×L is the measurement matrix and w ∈ CL is the
estimated sparse vector, and λ is a simple regularization
parameter that weighs the `0–approximation of w.
By minimizing (6), one will maximize the complex cor-

rentropy V c
σ (b, y) by taking into account λ‖w‖0, which will

ensure the sparsest solution [45].
This paper obtains a stochastic gradient solution in order

to minimize (6). This is achieved by calculating the deriva-
tive of V c

σ (b, y) with respect to w∗ combined with the
`0–approximation ∇‖w‖0, which are both detailed in the
follow Sections IV-A and IV-B.

A. MAXIMUM COMPLEX CORRENTROPY CRITERION
In order to deal with outliers in complex-valued measure-
ments, let us use the MCCC to maximize the similar-
ity between the measurements b and the estimated output
y = Aw. Then:

V c
σ (b, y) = V c

σ (b,Aw) =
1

2πσ 2

1
M

M∑
i=1

exp
(
−
eie∗i
2σ 2

)
, (7)

where ei = (bi − yi) = (bi − φiw) is a scalar at the position i
from the error vector e; φi = A(i, .) is a vector with size 1× L
extracted from the i–th row of the sensing matrix A; σ is the
kernel size, a free parameter from the complex correntropy.

It is important to say that, as stated in Property 2, while
depending on complex-valued vectors (b, y), (7) is always a
real-valued function. Then, the Cauchy-Riemann conditions
are violated [46], making (6) not analytical in the complex
domain. Hence, standard differentiation can not be applied
to obtain a gradient function. To address this problem the
Wirtinger Calculus, which is based on the duality between
spaces C and R2, is used [35]. Let f : C→ C be a complex
function defined inC. Such function can also be defined inR2

( i.e., f (x+jy) = f (x, y)). The ConjugateWirtinger derivative
of f at a point c is defined as follows [47]

∂f
∂z∗

(c) =
1
2

(
∂f
∂x

(c)+ j
∂f
∂y

(c)
)
. (8)

The work [47] presents more details on the Wirtinger Cal-
culus properties. Briefly, in order to compute the Conjugate
Wirtinger derivative of a given function f , which is expressed
in terms of z and z∗, one should apply the usual differentiation
rules after considering z as a constant. For example, consid-
ering f as f (z) = zz∗ implies that

∂f
∂z
= z∗ and

∂f
∂z∗
= z. (9)

Then, using this concept to achieve the derivative from (7):

∂V c
σ (b, y)
∂w∗

=
1

2πσ 2

1
M

M∑
i=1

exp
(
−
eie∗i
2σ 2

)
(−1)
2σ 2

∂(eie∗i )

∂w∗
,

(10)

where

eie∗i = (bi − φiw)(bi − φiw)∗

= (bi − φiw)(b∗i − φ
∗
i w
∗)

= bib∗i − biφ
∗
i w
∗
− b∗i φiw

+φiwφ∗i w
∗. (11)

Then, using Wirtinger Calculus, one could say that

∂(eie∗i )

∂w∗
= 0− (biφ∗i )

T
− 0+ (φiwφ∗i )

T , (12)

which could be rewritten as

∂(eie∗i )

∂w∗
= −biφHi + (φiw)φHi = −eiφ

H
i , (13)
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where [.]H = ([.]T )∗ is the Hermitian operator. Thus,
using (13) in (10), one could obtain

∂V c
σ

∂w∗
=

1
4πσ 4

1
M

M∑
i=1

exp
(
−
eie∗i
2σ 2

)
ei φHi . (14)

B. `0–APPROXIMATION
This paper uses the same `0–approximation gradient from
the paper [44], which defines the `0–MCC algorithm, but
updates the strategy for complex-valued data. Let wk be the
k–th element of the sparse vector w, which can be rewritten
as wk = wrek + jw

im
k , where j is the imaginary unit. One can

say that

∇‖wk‖0 ≈ Zβ (wk ) = zβ (wrek )+ jzβ (w
im
k ), (15)

where

zβ (w) =


β2w+ β, −

1
β
≤ w < 0;

β2w− β, 0 < w ≤
1
β
.

(16)

The zβ (w) is called zero attraction term and β is a free
parameter that controls the attraction region for small coef-
ficients within the interval [− 1

β
, 1
β
]. The product β2 w ± β

controls how close from zero the non-zero elements can get,
in other words, the algorithm precision.

C. `0–MCCC ALGORITHM
This paper introduces the `0–MCCC algorithm, which
is capable of solving compressive sensing problems for
complex-valued signals using the MCCC as the restriction.
To achieve that, the goal is to solve (6). Since the derivative of
V c
σ with respect tow is shown in (14), one could use stochastic

gradient solution to reconstruct complex-valued signals with
the following update rule:

wi+1 = wi + η exp
(
−
eie∗i
2σ 2

)
eiφHi , (17)

and then apply the ∇‖w‖0 obtained in (15)

wi+1 = wi+1 + ηλZβ (wi+1), (18)

The algorithm 1 summarizes the procedure.
As in the real-valued case [44], the number of data may be

insufficient to ensure the convergence. Thus, line 3 from the
algorithm makes φi = φi+M and bi+M = bi.

Complex correntropy generalizes the real-valued corren-
tropy [35] used to define the `0–MCC algorithm. Also,
as property 3 highlights, by making the kernel size σ →∞,
complex correntropy tends to correlation. Then, one can say
that the `0-MCCC algorithm generalizes both `0–MCC and
`0–LMS to work with complex-valued data.

V. NOISE SIMULATION
In order to evaluate the performance of the proposed algo-
rithm in a noisy environment, this paper uses the Lévy alpha-
stable distribution, also called stable distribution, to simulate
either impulsive or Gaussian noise.

Algorithm 1 `0–MCCC

Initialization:
Choose step size η, Gaussian kernel width σ , regularization
parameter λ, and zero attraction parameter β. Initial iteration
counter i = 0 and sparse vector w0 = 0. Set error tolerance ε
and maximum iteration number C.
Computation:
1: procedure `0–MCC:
2: while (i < C) do
3: % extract the input vector and corresponding out-

put vector from sensing matrix A and the noisy measure-
ments b:

4: r = mod(i,M )+ 1; φi = A(r, .); di = br
5: % computing the output
6: yi = φiwi
7: % computing the error
8: ei = di − yi
9: % updating w using MCCC gradient step
10: wi+1 = wi + η exp

(
−
eie∗i
2σ 2

)
eiφHi

11: % updating w using the zero attraction strategy
12: k = 1; w̄ = wi+1;
13: for (k≤L) do
14: w̄k = Zβ (w̄k )
15: k = k + 1
16: end for
17: wi+1 = wi+1 + ηλw̄
18: if ‖wi+1 − wi‖

2
2 < ε then

19: break
20: end if
21: % update iteration number
22: i = i+ 1
23: end while
24: end procedure

The stable distribution is characterized by four parameters:
the index of stability (0 < α ≤ 2), the skewness parameter
(−1 ≤ β ≤ 1), the scale parameter (σ ≥ 0), and a shift
parameter (µ ∈ R) [48]. A common way to introduce stable
random variables is to define their characteristic function,
which is given by

E[exp(jθX )]

= exp
{
− σα|θ |α

(
1− jβ sign(θ ) tan

πα

2

)
+ jµθ

}
, (19)

if α 6= 1, and

E[exp(jθX )]

= exp
{
− σ |θ |

(
1−

2jβ
π

sign(θ ) ln|θ |
)
+ jµθ

}
, (20)

if α = 1. The sign function is defined as

sign(θ ) =

−1 θ < 1,
0 θ = 0,
1 θ > 1.

(21)
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TABLE 1. Average SER in dB of 103 computer simulations for each one of
the three algorithms and three different noise scenarios.

This paper works with symmetric alpha-stable distribution,
then β and µ are set to 0 in all simulations. The index of
stability α is responsible for controlling the impulsive of the
density function i.e. the smaller the value of α, the heavier
the distribution tail will be. Particularly for β,µ = 0, and
α = 2, the stable distribution is equivalent to a Gaussian
distribution [48].

TheGeneralized Signal-to-Noise Ratio in dB (GSNR) [49],
defined as

GSNR = 10 log10
PS
σα
, (22)

is used to determine the scale parameter σ , where PS is the
power of the noiseless signal, and α is the index of stability.
For given values of GSNR and α, we can determine the scale
parameter σ using (22).

VI. RESULTS AND DISCUSSION
In this section, we evaluate the performance of the proposed
method `0–MCCC and compare it with NESTA and `0–LMS.
The Signal-to-Error Ratio in dB (SER) is used throughout
this section to evaluate the reconstructed sparse vector when
compared with the original sparse vector. It is calculated as

SER = 10 log10
‖x‖22
‖e‖22

, (23)

where ‖.‖ is the `2–norm operator, x is the noise-free original
sparse vector, and e = x−w is the error between the original
sparse vector and the reconstructed vector w.
First, three scenarios are considered in the comparisons:

noiseless, Gaussian noise, and impulsive noise. The sta-
ble distribution, as described by Section V, was used to
simulate both the Gaussian and the impulsive noise distri-
butions. Table 1 shows the average from 103 SER values
for each scenario and the corresponding algorithm. All the
simulations were set up by using the same configuration:
M = 512 measurements, a randomized sparse vector x with
size L = 1024 and S = 32 non-zero elements. We tested
NESTA with a learning rate µ = 0.001, and `0–LMS and `0-
MCCC algorithms with the following parameters: learning
rate µ = 0.0005, λ = 0.07, β = 0.85. In addition, we used
the `0–MCCC algorithm with a kernel size set to σ = 1.83,
tolerance ε = 10−6, and a maximum number of iterations
C = 2 .105.
In the noiseless scenario, all algorithms are able to recon-

struct the sparse vector. In fact, accuracy is one of the
strengths of NESTA [11], which is the method that achieves
the highest SER level in the noiseless environment, as can
be seen in Table 1. Because `0–LMS and `0–MCCC use the
same strategy to approximate the `0 gradient, they achieve

similar SER levels that are numerically limited by the relation
β2 w± β that composes (16).
The Gaussian noise is generated using a stable distribution

with parameters GSNR = 20 dB and α = 2. As Table 1
shows, NESTA performance drops significantly when com-
pared with the other two algorithms. The attractor used by
the `0 gradient strategy from the `0–LMS and `0–MCCC
algorithms tends to reduce the effect from the noise. In this
scenario, the proposed `0–MCCC algorithm has equivalent
performance of the literature `0–LMS.
To evaluate the performance of the algorithms to impul-

sive noise, the parameter α from the stable distribution
was changed from 2 to 1.5, while keeping the GSNR level
in 20 dB. Using this parameter configuration, we added
outliers to the measurements and reconstructed the original
signal using each one of the three algorithms. A typical result
with impulsive noise is shown in Fig. 1. The top row shows an
example with NESTA, the middle row with the `0–LMS, and
the bottom row with the `0–MCCC. The left-hand column
of Fig. 1 corresponds to the real part of the signals and
the right-hand column to the imaginary part. As expected,
the presence of outliers deteriorated the performance of the
two algorithms based on second-order constraints, NESTA
and the `0–LMS algorithms. In contrast, the method based
on complex correntropy was able to better approximate the
original complex-valued vector and achieved a higher SER.
The average SER of 103 simulations for each algorithm is
summarized in Table 1.

In order to evaluate the robustness of the `0–MCCC algo-
rithm to impulsive noise, we ran 103 Monte Carlo trials
with GSNR in the interval [10, 30] dB and fixed α = 1.5.
The results plotted in Fig. 2 correspond to a signal length
L = 1024, two different sparsity levels S = {16, 32}, and a
number of measurements M = 512. As we can see from
Fig. 2, the `0–MCCC algorithm is the one that achieves
the highest SER levels. As expected, independently of the
algorithm tested, by increasing the number of non-zero
elements S in the sparse vector, the reconstruction error
increases.

An important parameter in the compressive sensing prob-
lem is the number of measurements taken. Simulations were
made varying the number of measurements M from 64 to
512 in an alpha-stable environment using GSNR = 25 dB and
α = 1.5. Fig. 3 shows the average SER of 103 simulations for
each algorithm and sparsity levels S = {16, 32}. As we can
see from Fig. 3, NESTA shows relatively good performance
with a small number of measurements, but as the number of
measurements taken increases, its performance in the pres-
ence of impulsive noise degrades fast. On the other hand, both
the `0–LMS and the `0–MCCC algorithms show, in general,
higher SER levels as the number of measurements increases.
However, since the `0–MCCC algorithm uses the correntropy
as a cost function, it can extract more information from data
than `0–LMS, achieving the higher SER levels.
Fig. 4 shows the performance of the `0–MCCC algo-

rithm as a function of both α and GSNR parameters
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FIGURE 1. Typical reconstruction results for a sparse signal with sparsity S = 32, length L = 1024 and M = 512 measurements contaminated with
outliers (α = 1.5, GNSR = 20 dB). (a-b) NESTA achieved an SER of 7.74 dB; (c-d) `0–LMS achieved an SER of 9.73 dB; and (e-f) `0–MCCC achieved
an SER of 27.70 dB. The `0–MCCC is able to reject the outliers achieving a better performance than `0–LMS and NESTA, which are based on
second-order constraints.

from the alpha-stable distribution. The figure shows that
the `0–MCCC performance decreases, as the noise power
increases.

The kernel size plays an important role in the `0–MCCC
algorithm. It is a free parameter of the correntropy func-
tion that controls the convergence rate, robustness, and

VOLUME 7, 2019 151657
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FIGURE 2. Average SER of 103 simulations showing the algorithms’
performance in reconstructing complex-valued sparse vectors over
multiple values of GSNR and fixed α = 1.5. S is the number of non-zero
elements of the sparse vector. Note that the higher the GSNR, the lower
the noise power.

FIGURE 3. Average SER of 103 simulations showing the algorithms’
performance over multiple numbers of measurements M and fixed
parameters GSNR = 25 dB and α = 1.5.

steady-state performance. Fig. 5 shows the SER values of the
`0–MCCC algorithm to different values of GSNR and kernel
size σ . As can be noticed, the performance is strictly related
to the kernel size selection even at the same GSNR level.
As discussed in Section IV, for large kernel sizes, `0–MCCC
generalizes the `0–LMS algorithm. So, it is worth to mention
that, choosing a larger kernel size i.e. σ = 6 makes the SER
level of the `0–MCCC be around 15dB at GSNR 20dB for
example, which is similar to the `0–LMS results from Fig. 2.
By properly setting the kernel size, the `0–MCCC method
can achieve higher SER levels than `0–LMS and NESTA in
an impulsive noise environment.

The `0–MCCC performance as a function of the param-
eters λ and β is indicated int the plot of Fig. 6. The plot

FIGURE 4. Average SER of 102 simulations for the `0-MCCC algorithm as a
function of the noise power GSNR and index of stability α.

FIGURE 5. Average of 102 simulations for the `0-MCCC with α = 1.5 as a
function of the noise power GSNR and kernel size σ .

FIGURE 6. `0–MCCC performance varying the parameters λ, which weighs
the `0 approximation importance, and β, which controls how strong is the
zero attraction factor. The plot is the average from 102 Monte Carlo trials.

corresponds to the average of 102 simulations. The goal
is to reconstruct an L = 1024 sparse vector with S = 32
non-zero elements using M = 512 measurements, which are
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contaminated with an alpha-stable noise of GSNR = 20 dB
and α = 1.5. The parameter β in (16) controls the attraction
region of the `0 approximation, and the parameter λ controls
the `0 approximation importance as stated in (17). As can be
seen in the Fig. 6, there is a small region of λ and β values
which makes the `0–MCCC achieve a high SER level, which
indicates how sensitive the algorithm is to these parameters.

In summary, the proposed method `0–MCCC has the same
free parameters as the `0–MCC: gradient step size µ; the
regularization parameter λ; the zero attraction parameter β;
and the kernel size σ . As shown in this section, by proper
tuning the free parameters, the `0–MCCC is able to success-
fully reconstruct complex-valued sparse vectors and impul-
sive noise, achieving better performance than NESTA and
`0–LMS algorithms. Although the `0–MCCC computational
cost is equivalent to the real-valued version `0–MCC and
`0–LMS, they are bigger than NESTA. Then, a trade-
off between computational time and performance under
impulsive noise is added to the problem. This must be
taken into account specially when a larger sparse vector is
required.

VII. CONCLUSION
This paper investigates the use of the complex correntropy
function to generalize both the `0–LMS and the
`0–MCC algorithms to deal with non-Gaussian noise and
complex-valued data in compressive sensing problems. This
new method is derived by using Wirtinger Calculus and
denoted by `0–MCCC. In particular, the performance of the
`0–MCCC depends from the selection of the free parameters:
the kernel width σ , the regularization parameter λ, and
the zero attractor region β, which all of them should be
selected according to the application. Simulations explore
this dependence and show a comparison of our new pro-
posed algorithm with the previous methods NESTA and
`0–LMS. As in the paper by Yicong He et al. (2019) on
real-valued data and impulsive noise, our algorithm based
on the complex correntropy constraint outperformed the
algorithms based on second-order constraints. Future work
aims in investigating alternatives to increase the algorithm
performance for reducing both the computational cost and the
number of measurements required for reconstruct the sparse
vector.
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