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ABSTRACT Seismology is a data rich and data-driven science. Application of machine learning for
gaining new insights from seismic data is a rapidly evolving sub-field of seismology. The availability of
a large amount of seismic data and computational resources, together with the development of advanced
techniques can foster more robust models and algorithms to process and analyze seismic signals. Known
examples or labeled data sets, are the essential requisite for building supervised models. Seismology has
labeled data, but the reliability of those labels is highly variable, and the lack of high-quality labeled data sets
to serve as ground truth aswell as the lack of standard benchmarks are obstacles tomore rapid progress. In this
paper we present a high-quality, large-scale, and global data set of local earthquake and non-earthquake
signals recorded by seismic instruments. The data set in its current state contains two categories: (1) local
earthquake waveforms (recorded at ‘‘local’’ distances within 350 km of earthquakes) and (2) seismic noise
waveforms that are free of earthquake signals. Together these data comprise∼ 1.2million time series or more
than 19,000 hours of seismic signal recordings. Constructing such a large-scale database with reliable labels
is a challenging task. Here, we present the properties of the data set, describe the data collection, quality
control procedures, and processing steps we undertook to insure accurate labeling, and discuss potential
applications. We hope that the scale and accuracy of STEAD presents new and unparalleled opportunities to
researchers in the seismological community and beyond.

INDEX TERMS Earthquakes, seismic waveform data, machine learning, seismic measurements, artificial
intelligence, benchmark testing.

NOMENCLATURE
Benchmark, data set, earthquake, seismic signal, machine
learning, AI.

I. INTRODUCTION
Earthquakes are sudden movements across faults that release
elastic energy stored in rocks and radiate seismic waves
that travel throughout Earth. Every day there are about fifty
earthquakes worldwide that are strong enough (magnitude
> 2.5) to be felt locally, and every few days an earthquake
occurs that is capable of damaging structures [1]. In addition,
a multitude of smaller earthquakes (magnitude < 2.5) are
happening (Fig. 1) that are too weak to be felt, but that
are readily recorded by modern instruments. These small
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earthquakes provide valuable information about earthquake
processes [2] .

The seismic waves generated by earthquakes are recorded
in the form of seismograms, which are records of ground
motion at a particular place as a function of time. To charac-
terize the vector components of ground motion, earthquakes
are usually recorded by three-component instruments (seis-
mographs) equipped with one vertical and two orthogonal
horizontal sensors (Fig. 2). Several seismic wave arrivals,
called phases, are observable on seismograms. P and S phases
are the two fundamental types of seismic phases observable
on earthquake seismograms. In P or compressional waves,
material moves back and forth in the direction in which the
wave propagates, while in S or shear waves, material moves at
right angles to the propagation direction. P waves travel faster
than S waves, such that the first arriving pulse labeled ‘‘P’’ is
a Pwave that followed a direct path from the earthquake to the
seismic station (Fig. 2). An earthquake begins to rupture at a
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FIGURE 1. Gutenberg-Richter law [3] for b = 1. N is the number of
earthquakes having a magnitude M, a and b are constant. For the typical
case of b = 1, the number of earthquakes increases by a factor of 10 for
each single unit decrease in M.

FIGURE 2. A schematic showing propagation of seismic waves and
recording of the ground motion from them by seismic stations (receivers).
E, N, and Z represent east, north, and vertical components of each
instrument recording ground motions. An annotated earthquake
waveform is presented in the zoomed window above.

hypocenter (or focus), which is defined by a position on the
surface of the earth (epicenter) and a depth below this point.
The hypocenter of an earthquake is found from the arrival
times of seismic waves recorded on seismometers at different
sites.

The size of an earthquake at its source is measured from the
amplitude (or sometimes the duration) of the motion recorded
on seismograms, and is expressed in terms of magnitude.
Magnitude is a logarithmic measure. At the same distance
from the earthquake, the amplitude of the seismic waves
from which the magnitude is determined are 10 times as

large during a magnitude 5 earthquake as during a magnitude
4 earthquake. The total amount of energy released by an
average earthquake, depending on magnitude type, increases
by a factor of approximately 32 for each unit increase in
magnitude.

Earthquakes are not the only sources that generate seismic
waves. Many other sources such as explosions, landslides,
oceanic waves, planes, helicopters, trains, wind, thunder-
storms, traffic, and people, generate ground motions that are
recorded by thousands of seismic instruments that are contin-
uously operated by seismic monitoring networks around the
world. Hence, there is an enormous amount of seismic data
generated every day, and much of that ground motion is due
to sources other than earthquakes, which we refer to as ‘‘non-
earthquake’’ signals.

Seismology is a data-rich and data-driven science, and the
rate of data acquisition is accelerating as seismic sensors
get steadily less costly. The massive and rapidly growing
amount of data highlights the need for more effective tools
for the efficient processing and extraction of as much useful
information as possible to enable scientist to realize the full
potential to gain new insights into earthquake processes from
them. Seismologists use only a portion of the recorded data to
understand the physics of earthquakes and learn about Earth’s
deep interior, where direct observations are impossible. Most
seismic data sets have not been fully analyzed and important
discoveries can result from reanalysis of data sets using new
data analysis tools.

Machine learning (ML) techniques have been shown to
be powerful tools for processing (e.g. [4]–[6]) and exploring
(e.g. [7], [8]) seismic data. The success of these ML-based
methods in achieving state-of-the-art performance is mainly
due to availability of large-scale and accurately labeled train-
ing data sets. Although, hundreds of terabytes of archived
seismic waveform data and tens of millions of human picked
parameters are available, a large and high-quality-labeled
benchmark data set for seismic waveforms does not yet exist.
This is attributable to several technical issues regarding reli-
able synchronization of metadata and waveform data and a
lack of comprehensive and efficient quality control mecha-
nisms.

Preparing a training set is one of the most time-consuming
steps in making supervised models. Both the quantity
and the quality of the training set are crucial to the
performance of a model. Without a standard benchmark
(e.g. ImageNet [9]), it is difficult to compare the perfor-
mance of different approaches and to identify, adopt, and
improve on best practices [10]. As an example, for the mul-
tiple deep-learning-based phase picking models that have
been developed recently, each used a different data set
for training and demonstration of its performance. In the
absence of a standard benchmark, authors set their own
criteria for evaluating performance. This inhibits progress
because it makes it difficult to determine the relative perfor-
mance, as well as the advantages and weaknesses, of each
method.
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FIGURE 3. Location, size, and depth distributions of recorded earthquakes.

Here we introduce STEAD, the first high-quality large-
scale global data set of earthquake and non-earthquake sig-
nals recorded by seismic instruments. Benchmark data sets
such as STEAD can accelerate progress in applying machine
learning to problems in seismology. It facilitates training,
validation, and performance comparisons, and the adoption
of best practices. Moreover, this data set could have appli-
cations beyond seismology. The database is publicly avail-
able through https://github.com/smousavi05/STEAD. In the
following sections, we first present the properties of the
database. Then we discuss pre- and post-processing during
the construction of the data set. In the last section we address
some potential applications of the data set.

II. PROPERTIES OF THE DATA SET
STEAD includes two main classes of earthquake and non-
earthquake signals recorded by seismic instruments. At this
stage the earthquake class contains only one category of
local-earthquakes with about 1,050,000 three-component
seismograms (each 1 minute long) associated with
∼ 450,000 earthquakes (Fig. 3) that occurred between
January 1984 and August 2018. The earthquakes in the data
set were recorded by 2,613 receivers (seismometers) (Fig. 4)
worldwide located at local distances (within 350 km of the
earthquakes). The non-earthquake class currently contains
only one category of seismic noise including∼100,000 sam-
ples. Locations of instruments recording noise waveforms
are presented in Fig. 5. Most of the seismograms have been
recorded since 2000 (Fig. 6) in the United States and Europe
where denser station coverage is available.

We provide seismic data as individual NumPy arrays con-
taining three waveforms (each waveform has 6000 samples

FIGURE 4. Locations of seismic instruments recording earthquakes
shown by navy blue triangles.

FIGURE 5. Distribution of stations recording seismic noise shown by navy
blue triangles.

associated with 60 seconds of ground motion recorded in
east-west, north-south, and vertical directions respectively).
35 attributes (labels) for each earthquake and 8 attributes
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FIGURE 6. Number of earthquake seismograms as a function of time.

FIGURE 7. Example of noise data. a) time-series ground motions for
east-west, north-south, and vertical directions respectively. b) header
information (labels) associated with the seismogram.

for each noise seismogram are associated with each NumPy
array. Noise attributes are mainly limited to the information
about the recording instrument (e.g. network code, code, type,
and location of the reciever) (Fig. 7). For the earthquake
data (Fig. 8), in addition to the station information, we also
provide information about the earthquake (e.g. origin time,
epicentral location, depth, magnitude, magnitude type, focal
mechanism, arrival times of P and S phases, estimated errors,
etc), and recorded signal (e.g. measurement of the signal-to-
noise ratio for each component, the end of signal’s dominant
energy (coda-end), and epicentral distance).

The unit of each attribute is included in the attribute’s
name. The epicenters of earthquakes (source_latitude
and source_longitude) are given in units of latitude and
longitude in the WGS84 reference frame. The depths
(source_depth_km) where the earthquakes begin to rupture,
are given in km. Based on the seismic network providing the
metadata, this depth may be relative to the WGS84 geoid,
mean sea-level, or the average elevation of the seismic
stations that provided arrival-time data for the earthquake
location.

FIGURE 8. A sample earthquake seismogram. a) time-series ground
motions for east-west, north-south, and vertical directions respectively.
b) header information (labels) associated with the seismogram. The unit
of each label is given in the label name.

Earthquake hypocenters and origin times (source_
origin_time), when an earthquake began to rupture, have
been estimated by seismic networks using earthquake
location methods based on observed phase arrival times
at multiple stations. The distances between earthquakes
(source_distance_km and source_distance_deg) and the
recording stations are calculated and provided in two formats
of degree (the angle subtended at the center of the earth by the
great circle arc between the two points) and kilometers. The
distribution of the source_distance_km are given in Fig. 9.
Most of the seismograms were recorded within 110 km of the
earthquakes. Earthquakes are mainly shallower than 50 km
(Fig. 10).
Magnitude is approximately related to the released seismic

energy and provides an estimate of the relative size or strength
of an earthquake. There are different methods (scales) for
measuring the magnitude. The data set contains seismograms
associated with a wide range of earthquake sizes frommagni-
tude −0.5 to magnitude 7.9 (Fig. 11), but small earthquakes
(magnitudes < 2.5) comprise the majority of the data set.
Magnitudes have been reported in 23 different magnitude
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FIGURE 9. Distribution of epicentral distances for earthquake data.

FIGURE 10. Distribution of earthquake depths.

FIGURE 11. Distribution of earthquake magnitudes.

scales where local (ml) and duration (md) magnitudes are the
majority(Fig. 12). This is because of the distance range of
the data where these two magnitude scales are the most com-
mon scales. Unfortunately, the uncertainties for magnitude
estimations have not been reported and only in ∼ 24 % of
the cases, the name of institute that calculated the magnitude
(source_magnitude_author) were reported and have been
provided.

source_id is a unique identification number provided by
monitoring network that can be used to retrieve the wave-
forms and metadata (or additional information such as shake
maps, etc) from established earthquake data centers.

More than 6200 waveforms contain information about
the earthquake focal mechanisms (Fig. 13). These include
one or two nodal plane solutions for events at different loca-
tions and with different mechanisms.

FIGURE 12. Distribution of magnitude scales for earthquake data. ml is
the local magnitude, mb, body wave magnitude, and md is the duration
magnitude. etc include mw, ms, mwr, mb_lg, mn, mpv, mlg, mwc, mc, mg,
mh, mlr, mww, mpva, mbr, mblg, mwb, mlv, h, m, and mdl scales.

The category of each seismogram (trace_category) and its
name (trace_name) are given in the attributes as well. The
trace_name is a unique name containing station, network,
recording time, and category code (‘‘EV’’ for earthquake and
‘‘NO’’ for noise data).

The sample points where P and S phases arrive
(p_arrival_sample and s_arrival_sample) are provided while
status (p_status and s_status) shows how these arrival times
have been determined. There are three types of arrival statuses
in the data set (Fig. 14). ‘‘Manual’’ picks are arrival times
that are hand-picked by human analysts, ‘‘automatic’’ picks
are those measured by automatic algorithms by monitoring
networks, and ‘‘autopicker’’ are arrival times determined
using our AI-based model in this study. About 70 % of the
picks are manually picked arrival times that we expect to have
high accuracy. For the ‘‘autopicker’’ picks we use only arrival
times with high confidence (high probabilities given by the
deep-learning model [4]). As a measure of uncertainties in
arrival time picks, a weight (a number between 0 and 1) is
provided for most cases. Moreover, we have cross-checked
the quality of the ‘‘manual’’ and ‘‘automatic’’ picks using the
deep-learning method as discussed in the next section.

The back azimuth angle (back_azimuth_deg) is the direc-
tion that seismic waves arrive at the receiver. It is measured
clockwise from the local direction of north at the receiver to
the great circle arc connecting the receiver and epicenter. The
data set contains earthquake signals arriving at receiver from
all backazimuths (Fig. 15). P_travel times (p_travel_sec) are
given in seconds and are calculated based on the arrival
time of the P-wave at a receiver and the earthquake origin
time. The coda_end_sample is the sample point where the
dominance of scattered energy from an earthquake signal
ends and the noise takes over. The network_code is the
code for the seismic monitoring network to which the instru-
ment belongs. This code can be use for retrieving either
the waveform or metadata directly from the monitoring net-
work. The instruments used for making the data set belong
to 144 seismic networks operated at local, regional, and
global scales by different national and international agencies.
Here, we used data recorded by only 7 types of instruments.
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FIGURE 13. Geographical distribution of focal mechanisms shown by beach balls.

FIGURE 14. Proportions of the status of P-arrival and S-arrival picks.
Manual picks are arrival times that were hand-picked by experienced
human analysts. Automatic picks are those made by automatic
algorithms reported by seismic networks, while autopicker are arrival
times that we picked using our AI-based model.

Of these, 99.5% are either high-gain broad band or extremely
short period (Fig. 16). All seismograms (earthquake and non-
earthquake) are three-component, resampled to 100 HZ, and
have the same 60 second (6000 samples) duration where the
time of first sample is given by trace_start_time in UTC.
trace_start_time is randomly selected to be between 5 and
10 seconds prior to the P-arrival time. For more details see
the following section.

The focal mechanism refers to the direction of slip in an
earthquake and the orientation of the fault on which it occurs.
These focal mechanisms are computed using a method that
attempts to find the best fit to the direction of P-wave first
motions observed at each receiver. There is an ambiguity in
distinguishing the fault plane, on which slip occurred, from
the orthogonal, mathematically equivalent, auxiliary plane.
Hence, the parameters for two nodal planes are provided for
those earthquakes that the focal mechanism solutions have
been calculated and available through data centers. Each
nodal plane is given by 3 values (strike, dip, and rake). Fault

FIGURE 15. Distribution of the back-azimuths at which earthquake
signals arrive from at seismic statins.

FIGURE 16. Types of seismic instruments used in building the data set.
The first letter specifies the general sampling rate and the response band
of the instrument where B are broad band, H represnts high broad band,
E are extremely short period, and S are short period instruments.
The second letter specifies the family to which the sensor belongs where
H and L represent high gain and low gain seismometers respectively.

strike is the direction of a line created by the intersection of
a fault plane and a horizontal surface, 0◦ to 360◦, relative to
North. Strike is always defined such that a fault dips to the
right side of the trace when moving along the trace in the
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strike direction. Fault dip is the angle between the fault and
a horizontal plane, 0◦ to 90◦. Rake is the direction a hanging
wall block moves during rupture, as measured on the plane of
the fault. A rake of 90◦ means that the hanging wall moves
up-dip (thrust), 0◦ means it moves in the strike direction (left-
lateral),−90◦means it moves in down-dip direction (normal),
and 180◦ means it moves opposite to the strike direction
(right-lateral).

III. CONSTRUCTION OF STEAD
A. METADATA
Themetadata used in the construction of STEADmainly con-
sist of the information about the recording stations, recorded
earthquakes, and hand-picked parameters, such as arrival
times of P and S waves at each station. The metadata was
acquired from multiple resources including: 1) the Interna-
tional Seismological Center [11], 2) the National Earthquake
Information Center [12], 3) the Northern California Seis-
mic Network [13], 4) the Southern California Seismic Net-
work [14], 5) the Pacific Northwest Seismic Network [15],
6) the New Madrid Seismic Network [16], 7) the Incorpo-
rated Research Institutions for Seismology (IRIS) [17], 8) the
Advanced National Seismic System Composite Catalog [18],
9) the Global Seismograph Network (GSN) [19] and 10)
the broader literature (e.g. [20], [21]). In total, we processed
more than 120 million data entries from these resources to
extract and re-organize the metadata associated with local
waveforms. For the lower magnitude ranges where fewer
manual picks were available, we used theoretical arrival
times. This information was combined with the earthquake
and station information to build a comprehensive relational
database. The final database includes more than 4 million
phase arrival times of earthquake waveforms recorded by
3-component stations at local stations from around the world
between January 1984 and August 2018.

B. EARTHQUAKE WAVEFORMS
We used the database of metadata to request the associ-
ated waveforms from continuous time-series archived at the
IRIS data management center [22], [23]. To ensure that
each waveform only includes one earthquake signal (with
known parameters) and to prevent inclusion of unknown
(non-cataloged) earthquake signals, we used a short, fixed
window (1 minute) around the phase arrival times at different
stations to request data. Each window contains both P and S
waves and begins from 5 to 10 seconds prior to the P arrival
and ends at least 5 second after the S arrival. Only 1.5 million
waveforms associated with the earthquakes in our database
were available on the IRIS archive. We then detrended and
removed the mean from all the waveforms, and resampled
them at 100 Hz.

In the post-processing step, we checked the quality of
existing labels using auxiliary algorithms, added new labels
such as P-wave travel time, the end of earthquake sig-
nal (coda_end_sample) and computed a measure of the

FIGURE 17. Distribution of signal-to-noise ratio (averaged over all
components) for earthquake seismograms.

signal-to-noise ratio (snr). We estimated the end of earth-
quake signal based on the time series envelope, and measured
the snr separately for each component as:

snr = 10 log10
‖S‖22
‖N‖22

, (1)

where S and N are 95th percentile of amplitudes in a short
window after S and prior to the P arrival time respectively.
The distribution of the signal-to-noise ratio for earthquake
seismograms is presented in Fig. 17.Most of the seismograms
have snr between 10 and 40 decibels. The snr can be used to
distinguish data with one or two faulty channels (where some
of the components are mainly noise but earthquake signal can
still be observed on a remaining component) or to select high-
quality waveforms for tasks that are sensitive to the waveform
quality.

C. ERRORS
Four types of errors can be included in the waveform data.
1) earthquake characterization errors: these include errors
in location, depth, origin time, and magnitude estimates of
the earthquakes and can be due to errors in the arrival time
picking, inaccurate velocity models, non-robust algorithms,
number of recording stations etc. These errors can also affect
the calculated epicenter distance, back azimuth, and P travel
time. 2) errors in arrival time picks: these are either due to
inaccurate theoretical arrival time estimates or human errors
in the manual picks. 3) some time series do not contain the
expected earthquake signals: this can be due to either inaccu-
rate theoretical arrival time estimation during the preparation
of the database or to timing errors between phase catalogs and
archived data. 4) some time-series containing multiple uncat-
alogued earthquakes in addition to the expected earthquakes:
this is due to either non-robustness or lack of sensitivity of
current detection algorithms used by seismic networks, and
leads to an incompleteness in current earthquake catalogs.
From our point of view, this would lead to labeling errors
to the data set by labeling the waveforms of uncatalogued
earthquakes as noise or vice versa.
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Unfortunately, the uncertainties in location, depth, and
origin time estimates are not uniformly reported for all
events by our resources and it is difficult to estimate
them; however, we provide five parameters (source_gap
_deg, source_error_sec, source_horizontal_uncertainty_km,
source_origin_uncertainty_sec, source_depth_uncertainty
_km) Fig. 18, for earthquakes for which this information
were available. This can be used to assess the quality
of reported parameters. source_gap_deg Fig. 18c, is the
largest azimuthal gap between azimuthally adjacent stations
(in degrees). In general, the smaller this number, the more
reliable is the calculated horizontal position of the earth-
quake. Earthquake locations in which the azimuthal gap
exceeds 180 degrees typically have large location and depth
uncertainties. source_horizontal_uncertainty_km Fig. 18d,
defined as the length of the largest projection of the
three principal errors on a horizontal plane. The horizon-
tal uncertainty varies from about 100 m horizontally for
the best located events to 10s of kilometers for global
events. source_depth_uncertainty_km, defined as the largest
projection of the three principal errors on a vertical line.
source_error_sec, is the RMS of the travel time residuals of
the arrivals used for the origin computation.

The source depth is the least-constrained parameter in
the earthquake location, and the error bars are generally
larger than the variation due to different depth determination
methods. Sometimes when depth is poorly constrained by
available seismic data, the location programwill set the depth
at a fixed value. For example, 33 km is often used as a default
depth for earthquakes determined to be shallow, but whose
depth is not satisfactorily determined by the data, whereas
default depths of 5 or 10 km are often used in mid-continental
areas and on mid-ocean ridges since earthquakes in these
areas are usually shallower than 33 km.

Estimated uncertainties for most of the arrival time picks
are given in terms of weights. To replace the theoretical
arrival timeswithmore accurate picks and to double check the
quality of manual and automatic picks, we used PhaseNet [4],
a deep-leaning based phase picker. To identify traces with
no earthquake or with more than one earthquake, we used
CRED [6], a deep-learning-based model that detect earth-
quakes signals based on their time-frequency characteristics.
With the help of these algorithms, we found during pos-
tprocessing that many of the traces that should have lacked
earthquake signals, contained uncatalogued-earthquake sig-
nals, or suffered from inaccurate arrival time picks. Exam-
ples of problematic data with incorrect labels identified by
post-processing are shown in Fig. 19. This processing to
remove problematic waveforms reduced the size of the orig-
inal waveform data set by ∼ 8 %. To estimate the remaining
errors, we visually inspected 116,000 waveforms, randomly
selected from the data set after the post-processing. Based on
that sample, the remaining waveform data with error types
of 2, 3, and 4 combined, make up less than 1% of the data set. FIGURE 18. Uncertainties in the earthquake characterization.
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FIGURE 19. Examples of problematic seismograms detected by AI-based
models during post-processing. a) is a seismogram that does not contain
any earthquake signal. b) and c) are seismograms that in addition to the
expected earthquake (with annotated picks) contain signals from
uncataloged earthquakes. d) is an example of seismogram where the
manual P-arrival pick is incorrect. P and S arrival times are marked by
vertical blue and red lines respectively.

D. NOISE WAVEFORMS
We randomly selected one-minute noise waveforms from
the time periods between the cataloged earthquakes. After
performing the same pre-processing (detrending, band-pass

filtering, and resampling), we performed post-processing
consisting of de-signaling followed by double checking using
the generalized earthquake detector, CRED [6] to ensure that
the noise traces do not contain earthquake signal (even hidden
within the background noise). The de-signaling algorithm
used here is a combination of the methods introduced in [24]
and [25] that identifies the anomalous spectral features asso-
ciated with earthquake signals (based on statistical consider-
ations) in a continuous wavelet domain.

IV. STEAD APPLICATIONS
Developing more robust models for processing seismic sig-
nals and characterizing earthquakes is a direct applica-
tion of STEAD. Previous studies showed that deep-learning
approaches can outperform traditional algorithms in these
tasks. Existence of a large-scale data set with highly accurate
labels like STEAD can facilitate development of more robust
deep-learning models.

Denoising, detection, phase picking, and classifica-
tion/discrimination are common processes performed on
seismic signals. Denoising refers to suppressing the noise
level and is traditionally done using simple band-pass filter-
ing [26]. Earthquake signals generally have simpler wave-
forms compared to signals such as speech or audio; however,
denoising of seismic signals can be more challenging due
to the existence of strong coherent, non-stationary, and non-
Gaussian noise [27]. Seismic denoising is particularly impor-
tant because it can improve the snr and as a result improve
subsequent processing such as detection [28] and phase pick-
ing. Examples of applications of machine learning methods
for denoising seismic signals include both supervised [29]
and unsupervised [30]–[33] methods. Recorded seismic noise
and earthquake signals characterized by their snr and the
beginning/end of the signals make the data set well-suited
for building denoising models. Moreover, the data set can
be used for developing decomposition models for separating
overlapping signals (either two earthquakes, or earthquake
and non-earthquake signals), which is another common and
closely related problem in observational seismology.

Earthquake detection is one of the first data processing
steps and remains a challenging problem in earthquake seis-
mology. A good detection algorithm should: have few false
positives (does not detect non-earthquake signals as earth-
quakes), few false negatives (does not miss small or weak
earthquake signals), generalize well (is not limited to a spe-
cific shape, range, or setting of earthquakes), be insensitive
to background noise, and be efficient for processing large
data volumes. Characteristic-function-based (e.g. [34]) and
similarity-search based (e.g. [35]–[37]) are the two main
categories of algorithms commonly used for detection. In the
characteristic-function based method a simple transforma-
tion is typically used to construct a function (e.g. STA/LTA)
that highlights abrupt changes in the continuous data and
makes it easier to distinguish earthquake signals. The advan-
tages are that these methods are fast and generalize well-
meaning that they can detect non-repeated earthquakes with
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non-similar waveforms. This generalization tends to also
be the weakness of these methods because they inherently
can not make a distinction between an earthquake signal
and a non-earthquake pulse. Moreover, they are sensitive to
background noise. On the other hand the similarity-search
based methods look for repeated events with strictly similar
waveforms. So they are more robust and generally result in
much lower false positive rates; however, they are limited to
repeated events and this can come with much higher compu-
tational cost. Neural networks have been used for earthquake
signal detection (e.g. [5], [6], [38]–[43]). These methods
can combine the advantages of characteristic-function and
similarity-search based methods. In this approach a machine
is trained to learn general characteristics of an earthquake
signal by being exposed to many examples of earthquake and
non-earthquake signals. Once the machine learns this general
model, its application is fast since the detection is done in
just one round. Previous studies showed that supervised learn-
ing can be a powerful tool for earthquake signal detection,
however, there is still ample room for improvement and the
development of more general and robust models. The global
distribution of data, wide magnitude range, high accuracy
of labels, and the end of earthquake signal as well as its
beginning, positions STEAD to serve as an ideal data set for
building more robust and comprehensive detection models.

Once an earthquake signal is detected, the arrival times
of P and S waves need to be picked to locate the source.
In addition to low false positive and false negative rates, pick
accuracy is a crucial factor for obtaining reliable locations.
Only 1 millisecond of error in determining P-wave arrivals
can lead to ∼ 7 m errors in estimated location [44]. While
traditional algorithms for phase picking have a statistical
basis [45]–[49], machine learning approaches use a variety of
techniques (e.g. [4], [50]–[55]) to identify and pick different
phases. The scale and reliability of picks in STEAD can
foster buildingmore accurate phase pickers. The random time
lag between the beginning of each earthquake seismogram
and first arrival reduces the data preparation process for this
purpose.

Classification/discrimination of seismic signals is another
problem in observational seismology where STEAD could
be useful through transfer learning. Some examples
include classification of volcanic signals (e.g. [56]–[59]),
the discrimination of explosions from natural earthquakes
(e.g. [60]–[64]), discrimination of quarry blasts from
microearthquakes (e.g. [65], [66]), discrimination of seismic
signals from earthquake and tectonic tremor (e.g. [67]),
and discrimination of local from teleseismic earthquakes
(e.g. [68]).

Direct earthquake characterization is yet another line
of research where STEAD can be useful. Rapid estima-
tion of the back-azimuth (e.g. [69]–[71]), magnitude, dis-
tance, and depth have applications for earthquake early
warning systems. This is where the limited data used in
previous efforts at applying machine learning techniques
(e.g. [72], [73]) may have been problematic. A large,

accurately labeled data set like STEAD could help overcome
these limitations. Moreover, STEAD also has potential to
be used to directly determine the earthquake locations using
machine learning approaches (e.g. [74]–[76]), a challenging
problem that has not yet been fully solved. This data set
might be used for building ground-motion prediction models.
These models are one of the most important elements used
for seismic hazard assessments [77], [78]. Ground-motion
prediction models are used to estimate the strong motion
given a hypothetical earthquake source. Linear regression
analysis is commonly used for developing ground-motion
prediction equations [79], [80]. However, ML has shown to
be a powerful tool for developing such models [81]–[84].

In addition to these, similarity of seismic signals to
other time series data such as audio (see [85]–[88]) sug-
gests a potential for using STEAD beyond seismological
applications. Denoising, detection, and classification are
common problems for audio and acoustic signals as well
(e.g. [89]–[91]). Despite some differences, the existence of
millions of human-picked labels, and extra information such
as known locations of sources and receivers are unique char-
acteristics of STEAD that do not exist in most equivalent
audio data sets.

V. CONCLUSION
Understanding the properties of earthquakes and subsurface
processes they express must come through the analysis of
recorded signals by near surface sensors. The complex, non-
stationary nature of these signals requires powerful and sensi-
tive processing tools to exploit them fully. Machine learning
(ML) techniques are powerful tools that can learn the rela-
tionships and discover patterns directly from the data. The
efficient extraction of as much useful information as possible
from the recorded signals and the potential of gaining new
insight is a challenge and the focus of an active field of
research.

Here we introduce STEAD as the first high-quality
large-scale global labeled data set of earthquake and non-
earthquake signals recorded by seismic instruments. Bench-
mark data sets such as STEAD can accelerate progress in
applying machine learning to problems in the seismology.
It facilitates validation and comparison of competing meth-
ods, which promotes adoption of best practices, and acceler-
ates research progress.

Future directions will concentrate on expanding the data
set to regional (400 to 2000 km distance) and teleseismic
(> 2000 km distance) earthquake seismograms, and include
other non-earthquake categories such as seismic waves
generated by explosions, volcanoes, landslides, oceanic
waves, planes, helicopters, trains, wind, thunderstorms, and
traffic.

We hope the high-precision monitoring techniques and
models that will be developed with the help of this data
set, can ultimately improve our understanding of earth-
quake processes by sharpening our ability to characterize
seismicity.
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