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ABSTRACT With the rapid integration of renewables, optimal economic dispatch in active distribution
systems faces great challenges because of the randomness and volatility of renewable energy. This paper
presents a robust energy management model considering the temporal and spatial correlation of solar
energy in active distribution network. The Pearson autocorrelation and cross-correlation coefficients are
calculated to verify the necessity of temporal and spatial correlation, respectively, based on historical data
in Jiangsu Province, China. Next, correlation constraints are proposed based on the confidence level, which
is nonlinear, and can be linearized due to the discrete feature of polyhedral single-interval uncertainty sets.
Then, a two-stage min-max-min robust energy management model considering the correlation constraints
and the uncertainty of solar energy is proposed. The first stage aims to determine the operating state of
capacity banks and on-load tap changers. The second stage optimizes power dispatch in the worst-case
scenario. The column-and-constraints algorithm is implemented to obtain an optimal dispatch strategy that
minimizes the operating cost under the worst-case scenario. A case study demonstrates the accuracy and
efficiency of the proposed model and presents the influence of temporal and spatial correlation.

INDEX TERMS Robust energy management, active distribution systems, temporal correlation, spatial
correlation, correlation constraints.

NOMENCLATURE
A. ABBREVIATIONS
PV Photovoltaics
DG Diesel generator
CB Capacitor banks
ESS Energy storage system
SVC Static var compensators
OLTC On-load tap changers
IL Interruptible load
BFM Branch flow model
O&M Operation and maintenance
C&CG Column-and-constraints generation
SOCR Second-order cone relaxation

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

B. FUNCTIONS
C Total cost
Cgrid Price for main grid power
CDG Price for diesel generator
CCB,O&M O&M cost of CB
COLTC,O&M O&M cost of OLTC
CESS,O&M O&M cost of ESS
CL,cut Penalty cost for load shedding

C. SETS AND INDICES
i,j,k Index for buses
ij Index for branches
t Index for the time period
m Index for iteration for C&CG algorithm
u(j),v(j) Set of buses whose parent/child is j
ϕDG,ESS,OLTC,IL Set of buses connected with

DG/ESS/OLTC/IL
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D. PARAMETERS
p∗1t, p

+

1t , p
−

1t Predicted nominal, upper/low
deviation power of PV connected
with bus 17 in t

p∗2t, p
+

2t , p
−

2t Predicted nominal, upper/lower
deviation power of PV connected
with bus 32 in t

rij, xij Resistance/reactance of branch ij
Vmin
j , Vmax

j Lower/upper bound of voltage at
bus j

Imax
ij Current capacity limit of branch ij

PPV,prej,t Predicted nominal power of PV
connected to bus j at the time
period t

Pdj,t , Q
d
j,t Active/reactive load for bus j at the

time period t
c1, c2, c3 Fuel cost coefficient of DG
rESS,O&M O&M cost coefficient of ESS
rOLTC,O&M O&M cost coefficient of OLTC
r IL,cut Penalty cost coefficient for load

shedding
SPV/DG/ESS,max
j The maximum inverter capacity for

bus j connected to PV/DG/ESS
RDG,upj , RDG,downj The limit of ramping up/down rate

of DG
QSVC,min
j , QSVC,max

j The minimum/maximum reactive
power of SVC connected to bus j

NCB,max
j The maximum number of CB for

bus j
QCB,step
j The reactive power of per unit CB

BCB,stepj The maximum switching number
of CB

PIL,max
j The maximum IL connected to

bus j
kij0 The initial position of OLTC

connected to branch ij
Mmin
ij , Mmax

ij Lower/upper bound of OLTC
connected to branchij

1kij,t Deviation between two taps of
OLTC

Ebat,max
j Maximum energy storage of ESS

connected to bus j
ηch, ηdis Charge and discharge efficiency

of ESS
Pch,max
j ,Pdis,max

j The maximum charge/discharge
power of ESS connected to bus j at
the time period t

Nt Number of all time periods
1t Time interval
ρ Confidence level
51, 52 The uncertainty budget
�1, �2 The temporal correlation change

budget

1 The spatial correlation change
budget

E. VARIABLES
Pij,t ,Qij,t Active/reactive power from i to j

at the time period t
Iij,t Current from i to j at the time

period t
Vj,t Voltage for bus j at the time

period t
Pchj,t , P

dis
j,t Charge/discharge power for bus

j at the time period t
PPV/DG/ILj,t Active power for PV/DG/IL

connected to bus j at time period t
QSVC/PV/CB/DG/ESS
j,t Reactive power for

SVC/PV/CB/DG/ESS connected
to bus j at time period t

kij The actual value of OLTC
connected to branch ij

Mij,t The actual tap of OLTC
connected to branch ij

NCB
j,t The actual number of CB

connected to bus j
BCBj,t 1 for CB in switching state in t ,

0 otherwise
pm The output power of PV in the

m-th iteration
ym The variable value of the slave

problem in the m-th iteration
ωm The objective value of the slave

problem in the m-th iteration
Ebat
j,t Energy storage for bus j in

time period t
µ+t , µ

−
t , α

+
t , α

−
t , Deviation marker for p+t , /p

−
t

εd+t , εu+t , εd−t , εu−t Deviation marker for temporal
correlation

ηd+t , ηu+t , ηd−t , ηu−t Deviation marker for temporal
correlation

ϑd+t , ϑu+t , ϑd−t , ϑu−t Deviation marker for spatial
correlation

I. INTRODUCTION
With the depletion of nonrenewable energy sources and
increasingly serious global environmental problems [1], pho-
tovoltaic (PV), as an inexhaustible clean energy, has attracted
increasing attention and developed rapidly in recent years [2].
However, optimal economic dispatch in active distribution
systems meets significant challenges due to the random-
ness and volatility characteristics of renewable energy [3].
To ensure stable and economic operation, efficient energy
management in consideration of uncertainty has attracted
significant attention in current research [4].
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Traditional analytical strategies with certainty include
stochastic programming (SP) [5] and chance-constrained pro-
gramming [6]. But the effectiveness of the SP relies on
the precise probability distribution of photovoltaic, which is
difficult to obtain in practice [7]. Chance-constrained pro-
gramming is guaranteed to be satisfied with confidence level
and the optimal solution may be not accurate [8]. Currently,
an important method for solving the energy management
problem with uncertainty is robust optimization (RO) [9],
[10]. Considering the randomness and volatility of renew-
ables, Felipe Valencia et al. [11], [12] developed a scenario-
based robust energy management system. Scenarios were
generated by means of fuzzy interval models. The fuzzy
interval provided a range rather than upper and lower bound-
aries for uncertainty variables. The proposed model can be
effectively solved by the interior-point method. Unlike the
scenario-based RO model, a robust framework for active and
reactive power management in distribution networks using
electric vehicles (EVs) were presented in [13]. The uncertain-
ties variables were modeled using deterministic uncertainty
sets. The authors of [14] proposed a two-stage RO model in
active distribution systems. The uncertainty set was described
by the predictive nominal value and interval derivations.
The two-stage robust model was solved by a column-and-
constraints generation (C&CG) algorithm.

The aforementioned RO models describe the uncertain
variables by the polyhedral single-interval uncertainty (SIU)
sets based on the interval and budget parameters. The optimal
uncertainty parameter results are located at the boundaries
of SIU sets in some time periods. In practice, some extreme
scenarios are almost impossible, and the SIU sets are overly
conservative. To reduce the conservativeness and enhance the
practicality of RO in actual situations, the authors of [15]
discussed different approaches to construct the uncertainty
sets. An interpartitioned uncertainty set was proposed in
[16] that reduces the conservativeness in contrast to the SIU
sets. In [17], a union of several basic uncertainty sets was
presented based on historical data. The proposed uncertainty
sets flexibly captured a compact region of uncertainty in a
nonparametric fashion. Chengcheng Shao et al. [18] proposed
a two-stage security-constrained unit commitment model,
in which a flexible uncertainty set was applied to describe
the uncertainty of wind power. The authors of [19] proposed
a robust energy and reserve scheduling model, and the uncer-
tainty sets were treated as adjustable polyhedral uncertainty
sets to reduce the conservativeness.

The abovementioned works have made great contributions
to reduce the conservativeness of RO. However, these meth-
ods reduce the conservativeness by narrowing the range of
SIU sets at a mathematical level. They assume the prediction
errors among different PV stations and the various scheduling
periods are independent of each other. In fact, the assumption
of independence may not be guaranteed considering the con-
tinuity of scheduling periods and geographical proximity of
PV stations. There is a certain correlation between the PV
forecast data at the current period and the historical data,

which is called temporal correlation. Meanwhile, there is a
certain correlation between multiple PV stations in the same
area, which is called spatial correlation. However, most of
the existing literature has not considered the temporal and
spatial correlation in RO, and they are practical and necessary
to reduce the conservativeness [20]. The time correlation of
wind power prediction error was pointed out directly in [21]
based on Irish wind power data, and a model considering the
temporal correlation was proposed to reduce the prediction
error. The authors of [22] proposed an active distribution
grid management based on robust AC optimal power flow.
Wind power and PV uncertainty sets were modeled based on
spatial-temporal trajectories, while a convex hull technique
was used to define the uncertainty sets. Dynamic uncertainty
sets were introduced to model the temporal and spatial corre-
lation in [23]. In [24], a multiband uncertainty set with spatial
and temporal correlation constraints was formulated by incor-
porating weight coefficients into the traditional uncertainty
budget. However, accurate information about the number of
bands and corresponding weight coefficients was hard to
obtain, and the study relied on forecast techniques.

To fill the gaps, a robust energy management model con-
sidering the temporal and spatial correlation is proposed to
cope with the optimal dispatch scheme in active distribution
systems. The main contributions include the following:

1) The necessity of temporal and spatial correlation is
verified based on historical data. A novel temporal and
spatial correlation constraints model is proposed based
on the confidence level. Moreover, a novel linearization
approach is proposed that converts the nonlinear the
temporal and spatial correlation constraints into linear
constraints. An uncertainty set considering temporal
and spatial correlation is constructed, which is more
practical.

2) A novel robust energy management model considering
temporal and spatial correlation is proposed in this
paper. The novel robust management model is decom-
posed into a two-stage mixed-integer linear program-
ming (MILP) problem and solved by the C&CG algo-
rithm. The model decreases conservativeness and then
effectively reduces operation cost.

The remainder of this paper is organized as follows: In
Section II, the necessity of temporal and spatial correlation
is verified based on historical data, and an uncertainty set
considering temporal and spatial correlation is introduced.
Section III describes the robust energy management model
in detail. In Section IV, case studies and simulations are
presented. Finally, Section V summarizes the study.

II. FORMULATION OF TEMPORAL AND SPATIAL
CORRELATION CONSTRAINTS
It is assumed that the uncertain parameters at each moment
are independent in traditional SIU sets [4], [14]. In addition,
temporal and spatial correlation are not taken into account,
which does not correspond with the practical situation.

VOLUME 7, 2019 153637



S. Zhou et al.: Robust Energy Management in Active Distribution Systems Considering Temporal and Spatial Correlation

FIGURE 1. Pearson autocorrelation coefficient of output power.

To verify the necessity of temporal and spatial correlation,
the Pearson autocorrelation and cross-correlation coefficients
are calculated based on historical data from Huai’an City of
Jiangsu Province in this section. After that, the temporal and
spatial correlation constraints are formulated.

A. THE NECESSITY OF TEMPORAL CORRELATION
To verify the necessity of temporal correlation, the Pearson
autocorrelation coefficient, which indicates the correlation of
a single sequence at different times, is introduced. The for-
mula for the Pearson autocorrelation coefficient is presented
below.

Cx(τ ) =
avg ((x(t)− x∗) (x(t + τ )− x∗))

avg
(
(x(t)− x∗)2

) (1)

In (1), avg (·) is the average function and x∗ is the average
value of x. τ is the time interval (1 h), which is the same as the
time interval of forecast data in this study.Cx(τ ) demonstrates
the extent to which the historical data affects the current time
data. A larger Cx(τ ) means greater impact.

The Pearson autocorrelation coefficient based on the out-
put power of Jixin PV in Huai’an, Jiangsu Province in 2016 is
calculated according to equation (2). The results are displayed
in Fig. 1.r0 = [a1, a2, · · · , aNt−1], r1 = [a2, a3, · · · , aNt ]

C(r0, r1) =
cov(r0, r1)
σ (r0)σ (r1)

(2)

In (2), at is actual output power of Jixin PV. r0 and r1 are
fragments of the Jixin PV output power sequence. C(r0, r1)
and cov(r0, r1) are the Pearson autocorrelation coefficient and
covariance between r0 and r1, respectively. σ (r0) and σ (r1)
represent the variance of r0 and r1.
The relationship between the Pearson autocorrelation coef-

ficient and the number of days can be fitted to normal distri-
bution N (1, 0.0452) within the given range.
Fig. 1 indicates that the Pearson autocorrelation coefficient

of PV in the region is positive. The probability that the
Pearson autocorrelation coefficient is more than 0.9 in one

FIGURE 2. Pearson cross-correlation coefficient of output power.

year is more than 95%. It is necessary to consider temporal
correlation in the robust energy management model.

B. THE NECESSITY OF SPATIAL CORRELATION
To verify the necessity of spatial correlation, the Pearson
cross-correlation coefficient that demonstrates the correlation
of two sequences at the same moment is introduced. The for-
mula for the Pearson cross-correlation coefficient is presented
below.

Cy(τ ) =
avg ((x(t)− x∗) (y(t)− y∗))
avg (x(t)− x∗) avg (y(t)− y∗)

(3)

In (3), x∗ and y∗ are the average values of sequences x, and
y separately. Cy(τ ) demonstrates the correlation of two PV
power outputs at the same moment. The larger Cy(τ ) means
greater correlation.

The Pearson cross-correlation coefficient based on the
Jixin PV and ZhaoHui PV output power in Huai’an, Jiangsu
Province in 2016 is calculated according to equation (4). The
results are depicted as follows.r0 = [a11, a12, · · · , a1Nt ], r1 = [a21, a22, · · · , a2Nt ]

C(r0, r1) =
cov(r0, r1)
σ (r0)σ (r1)

(4)

where a1t and a2t are, respectively, the actual output power
of Jixin PV and ZhaoHui PV.

Fig. 2 indicates the Pearson cross-correlation coefficient
distribution conforms to N(1, 0.1298) within the given range.
The Pearson cross-correlation coefficient of PV in the region
is positive. The possibility that the Pearson cross-correlation
coefficient is more than 0.8 in one year is 90%. Thus, it is
necessary to consider spatial correlation in the robust energy
management model.

C. THE TEMPORAL AND SPATIAL CORRELATION
CONSTRAINTS
After confirming the necessity of the temporal and spatial
correlation, the temporal and spatial correlation constraints
are formed as follows.
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FIGURE 3. Pearson autocorrelation coefficient of prediction derivation.

1) THE TRADITIONAL SIU SET
The traditional SIU set of PV is presented below:

3 =

p
∣∣∣∣∣∣∣∣∣
pt = p∗t + p

+
t µ
+
t − p

−
t µ
−
t

Nt∑
t=1

(µ+t + µ
−
t ) ≤ 5

µ+t + µ
−
t ≤ 1, µ+t , µ

−
t , ∀t

 (5)

Expression (5) demonstrates that the output power of PV
fluctuates within the interval [p∗t − p−t , p

∗
t + p+t ]. 5 is the

uncertainty budget that adjusts the conservativeness level of
the robust energy management model. The robust energy
management model is a deterministic model if5 = 0, mean-
ing that the prediction data is absolutely accurate. 5 = Nt
indicates that all the predictions are uncertain over the entire
horizon and the model is overly conservative.

2) THE TEMPORAL CORRELATION CONSTRAINT
To analyze the temporal correlation constraint further,
the temporal correlation of prediction derivation is introduced
to illustrate the extent to which the prediction derivation of
the last moment influences the present moment. The Pearson
autocorrelation coefficient of the prediction derivation is pre-
sented as follows.

et =
pt − at
pt

, ∀t

s0 = [e1, e2, · · · , eNt−1], s1 = [e2, e3, · · · , eNt ]

C(s0, s1) =
cov(s0, s1)
σ (s0)σ (s1)

(6)

In (6), pt and at are the predicted and actual values of PV
output power. s0 and s1 are fragments of the PV prediction
derivation sequence. C(s0, s1) and cov(s0, s1) are the Pearson
autocorrelation coefficient and covariance between s0 and
s1, respectively. σ (s0) and σ (s1) represent the variance of
s0 and s1. The Pearson autocorrelation coefficient based on
the predictive derivation data of Jixin PV in Jiangsu Province
in 2016 is displayed in Fig. 3.

Fig. 3 indicates that the probability that the Pearson auto-
correlation coefficient for prediction derivation is less than

0.2 is only 10%. Consequently, in order to reduce the size
of the uncertainty set further, we remove the low correla-
tion set in the model by introducing the confidence level.
Taking Jixin PV as an example, the Pearson autocorrelation
coefficient is restricted within the interval (0.2-1) when the
confidence level is 0.9 and the coefficient outside this scope
can be neglected. Based on the above analysis, the temporal
correlation constraint is revealed below.s0 = [e1, e2, · · · , eNt−1], s1 = [e2, e3, · · · , eNt ]

C(s0, s1) ≥ ζ (ρ) , C(s0, s1) =
cov(s0, s1)
σ (s0)σ (s1)

(7)

ζ (ρ) is the lower bound value related to confidence level
ρ, which can be calculated by the fitting function in Fig. 3.
The constraint in (7) is a complex nonlinear function, which is
difficult to solve and needs to be simplified. Through further
analysis, expression (7) can be transformed into a constraint
on µ+t and µ−t because s0 and s1 are fragments of e, and e is
composed of µ+t and µ−t according to equations (8-9).{
e

∣∣∣∣et= pt − p∗tp∗t
=
p+t
p∗t
µ+t −

p−t
p∗t
µ−t =b1µ

+
t −b2µ

−
t , ∀t

}
(8)

b1 =
p+t
p∗t
, b2 =

p−t
p∗t

(9)

In (9), the coefficients b1, and b2 have constant value
in this study because the maximum upper/lower derivation
are assumed to be 20% of the nominal prediction power.
Moreover, the worst-case scenarios occur when the load takes
the upper value and the renewables take the lower value [25].
Therefore, it is reasonable to only consider the s−0 and s−1 in
(7-9) when only the uncertainty of PV is analyzed.

s−0 = b1
[
µ−1 , µ

−

2 , · · · , µ
−

Nt−1

]
;

s−1 = b1
[
µ−2 , µ

−

3 , · · · , µ
−

Nt

]
(10)

Based on the above analysis, the original nonlinear con-
straints describing the temporal constraints in (7) can be
rewritten as follows.

s−0 = b1[µ
−

1 , µ
−

2 , · · · , µ
−

Nt−1
],

s−1 = b1
[
µ−2 , µ

−

3 , · · · , µ
−

Nt

]
C(s−0 , s

−

1 ) ≥ ζ (ρ) , C(s−0 , s
−

1 =
cov(s−0 , s

−

1 )

σ (s−0 )σ (s
−

1 )
(11)

Expression (11) satisfies two theorems depicted in detail
below. For the convenience of description, the temporal
change sign ε−t is defined in (12) and the sum of ε−t is defined
as � over the whole period.{

ε−
∣∣∣∣ε−t = { 0, µ−t = µ

−

t+1
1, µ−t 6= µ

−

t+1

}
(12)

Theorem 1: Keep 5 constant. The smaller C(s−0 , s
−

1 ) is,
the larger � is.

VOLUME 7, 2019 153639



S. Zhou et al.: Robust Energy Management in Active Distribution Systems Considering Temporal and Spatial Correlation

Proof 1: σ (s−1 ) and σ (s
−

1 ) are constant when5 is fixed.
C(s−0 , s

−

1 ) is determined by cov(s10, s
−

1 ) and the formula is
presented in the following:

cov(s−0 , s
−

1 ) =

b21
Nt−1∑
t=1

(
µ−t − s

∗−

0

) (
µ−t+1 − s

∗−

1

)
Nt − 2

(13)

In (13), s∗−0 and s∗−1 are, respectively, the average values
of s−0 and s−0 which belong to (0,1). When µ−t 6= µ−t+1,
that is ε−t = 1, we have (µ−t − s∗−0 )(µ−t+1 − s∗−1 ) < 0.
Consequently, the smaller C(s+−0 , s+

−

1 ) is, the larger � is
when 5 is constant.
Theorem 2: C(s+−0 , s+

−

1 ) only depends on5 and�, which
are irrelevant to the specific composition form of s+−0 and
s+−1 .

Proof 2: (µ−t , µ
−

t+1) contains four composition forms
that are (0,0), (0,1), (1,0) and (1,1). The number of the four
forms are defined as ki. Thus, equation (11) can be rewritten
as follows:

cov(s−0 , s
−

1 ) =
b21

Nt − 2

{
k1s
∗−

0 s∗−1 − k2s
∗−

0

(
1− s∗−1

)
− k3

(
1−s∗−0

)
s∗−1 + k4

(
1−s∗−0

) (
1−s∗−1

)}
(14)

Obviously, µ−1 = µ−Nt when 5 is even and µ−1 6= µ−Nt
when 5 is odd. The sum of k2 and k3 is �. The relationship
between ki, 5, and � is depicted in Table 1, which reveals
that ki is constant when � and 5 are given. C(s+−0 , s+

−

1 ) is
easy to calculate by equation (14), which is irrelevant to the
specific form of s+−0 and s+−1 .

Theorem 1 describes a negative correlation between
C(s+−0 , s+

−

1 ) and �. Consequently, the lower bound of the
temporal correlation can be constrained by limiting the max-
imum of � calculated according to [26].
Theorem 2 reveals that the Pearson autocorrelation coeffi-

cients of all scenarios with the given � and 5 are identical.
Therefore, all scenarios existing in expression (5) can be
depicted utilizing � and 5.
From the analysis above, nonlinear temporal correlation

constraints can be transformed into linear constraints related
to � and 5. The linear constraints are displayed as follows.

31=



p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pt = p∗t + p
+
t µ
+
t − p

−
t µ
−
t

Nt∑
t=1

(µ+t + µ
−
t ) ≤ 5

µ+t + µ
−
t ≤ 1,∀t

µ+t − µ
+

t+1 ≤ ε
d+
t ,−µ+t + µ

+

t+1 ≤ ε
u+
t

µ−t − µ
−

t+1 ≤ ε
d−
t ,−µ−t + µ

−

t+1 ≤ ε
u−
t

Nt∑
t=1

(εd+t + ε
u+
t + ε

d−
t + ε

u−
t ) ≤ �

µ+t , µ
−
t , ε

d+
t , εu+t , εd−t , εu−t ∈ {0, 1}



(15)

εd+t , εu+t , εd−t , and εu−t are introduced for convenience
of description. The temporal correlation constraints in (15)

TABLE 1. The relationship between ki and 5, �.

are essentially linear constraints related to µ+t and µ−t . The
uncertainty set considering the temporal constraint in (15)
effectively reduces the conservative degree.

Moreover, the temporal constraint is an autocorrelation
constraint in essence that is irrelevant to the number of PVs.
Consequently, the temporal constraint model is applicable for
multiple PVs in real active distribution systems.

3) THE SPATIAL CORRELATION CONSTRAINT
Similar to the Pearson autocorrelation coefficient, the Pear-
son cross-correlation coefficient based on the prediction
derivation of Jixin PV and ZhaoHui PV in Huai’an, Jiangsu
Province, in 2016 is displayed as follows.

Fig. 4 shows that the Pearson cross-correlation coefficient
of prediction derivation is limited to between (0.3-1) when the
confidence level is 0.9, and the coefficient can be neglected
beyond that scope. The Pearson cross-correlation coefficient
of the prediction derivation is described as follows:

32=


p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1t=p∗1t+β
+
t p
+

1t−β
−
t p
−

1t ,

p2t=p∗2t+α
+
t p
+

2t−α
−
t p
−

2t

e1t=
p1t − a1t
p1t

, e2t=
p2t−a2t
p2t

s0= [e11, e21, · · · , eNt1],
s1= [e21, e22, · · · , e2Nt ]

C(s0, s1)≥ζ (ρ),

C(s0, s1)=
cov(s0, s1)
σ (s0)σ (s1)


(16)

Expression (16) is nonlinear, which is hard to solve. Simi-
lar to temporal correlation constraints, the spatial constraints
in (16) can be transformed into the constraints on β−t and
α−t utilizing the processing method in (7-11). The spatial
constraints are rewritten as follows.

g−0 = b3
[
β−1 , β

−

2 , · · · , β
−

Nt

]
,

g−1 = b4
[
α−1 , α

−

2 , · · · , α
−

Nt

]
b3 =

p−1t
p∗1t
, b4 =

p−2t
p∗2t
,

C(g−0 , g
−

1 ) ≥ ζ (ρ), C(g−0 , g
−

1 ) =
cov(g−0 , g

−

1 )

σ (g−0 )σ (g
−

1 )

(17)

Obviously, the constraints in (17) are analogous to the
constraints (6-11). Therefore, the spatial change sign ϑ− is
defined below resembling the temporal change sign ε−t .{

ϑ−
∣∣∣∣ϑ−t = { 0, β−t = α

−
t

1, β−t 6= α
−
t

}
(18)
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FIGURE 4. Pearson cross-correlation coefficient of the prediction
derivation.

The sum of ϑ−t is defined as1 over the whole time period.
Similarly, the spatial correlation constraint in (17) can be
converted into a linear constraint containing 1 and 5 on
the basis of the two theorems described above. The linear
constraints are depicted as follows.

33 =



p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1t = p∗1t + β
+
t p
+

1t − β
−
t p
−

1t ,

p2t = p∗2t + α
+
t p
+

2t − α
−
t p
−

2t
Nt∑
i=1

(β+t + β
−
t ) ≤ 51,

Nt∑
i=1

(α+t + α
−
t ) ≤ 52

β+t + β
−
t ≤ 1, α+t + α

−
t ≤ 1, ∀t

β+t − α
+
t ≤ ϑ

d+
t , −β+t + α

+
t ≤ ϑ

u+
t

β−t − α
−
t ≤ ϑ

d−
t , −β−t + α

−
t ≤ ϑ

u−
t

Nt∑
t=1

(ϑd+t + ϑ
u+
t + ϑ

d−
t + ϑ

u−
t ) ≤ 1

β+t , β
−
t , α

+
t , α

−
t , ϑ

d+
t ,

ϑu+t , ϑd−t , ϑu−t ∈ {0, 1}


(19)

ϑd+t , ϑd+t , ϑd−t , and ϑd−t are introduced for convenience
of describing the linear constraints related to β+t , β

−
t and α+t ,

α−t . Compared to the traditional SIU set, the uncertainty set
considering the spatial correlation constraints decreases the
conservativeness.

Moreover, the processing method for spatial correlation
can extend to multiple PVs. In multiple PV distribution sys-
tems, we take one PV as a reference. Then, we construct
the spatial correlation constraints between the other PVs and
the reference PV based on the above processing method.
Consequently, the spatial correlation model is also applicable
for multiple PVs.

III. THE ROBUST ENERGY MANAGEMENT MODEL
The robust energy management model aims to minimize the
total operating cost in the worst scenario considering the
uncertainty of PV and load.

A. THE UNCERTAINTY SET CONSIDERING TEMPORAL
AND SPATIAL CORRELATION
The uncertainties cannot be ignored with increasing PV inte-
grated in active distribution systems. Therefore, the optimal
energy management model for active distribution systems
is a robust energy management model. Based on the above
analysis in Section 2, the uncertainty set of PV considering
temporal and spatial correlation is composed of (5), (15), and
(19). To avoid repetition, the uncertainty set is no longer listed
here.

B. THE OBJECTIVE FUNCTION
The total operating cost includes costs from main-grid elec-
tricity, diesel generator (DG) fuel, operation and maintenance
(O&M), capacitor banks (CB), on-load tap changers (OLTC),
energy storage systems (ESS) and the cost of load shedding.

minC = Cgrid
+ CDG

+ CCB,O& M
+ COLTC,O& M

+CESS,O& M
+ CL,cut (20)

CDG
=

∑
j∈ϕDG

Nt∑
t=1

(c1 · (PDGj,t )
2
+ c2 · PDGj,t + c3)1t

(21)

CL,cut
=

∑
j∈ϕIL

Nt∑
t=1

r IL,cut · PILj,t ·1t (22)

COLTC,O& M
=

∑
j∈ϕOLTC

Nt∑
t=1

rOLTC,O& MBCBj,t (23)

CESS,O& M
=

∑
j∈ϕOLTC

Nt∑
t=1

rESS,O& M(Pchj,t + P
dis
j,t )1t (24)

Equation (20) represents the total daily operating costs for
an active distribution system. Equations (21-24) represent the
specific component costs in (20).

C. THE CONSTRAINTS
The constraints in the robust energy management model
consist of disflow and operating constraints for all kinds of
controllable resources.

1) DISFLOW CONSTRAINTS

∑
i∈u(j)

[
Pij,t − rij

∣∣Iij,t ∣∣2] = ∑
k∈v(j)

Pjk,t + Pj,t∑
i∈u(j)

[
Qij,t − xij

∣∣Iij,t ∣∣2] = ∑
k∈v(j)

Qjk,t + Qj,t

Pj,t = Pdj,t + P
ch
j,t − P

dis
j,t − P

PV
j,t − P

DG
j,t − P

IL
j,t

Qj,t = Qd
j,t − Q

SVC
j,t − Q

PV
j,t − Q

CB
j,t − Q

DG
j,t − Q

ESS
j,t∣∣Vj,t ∣∣2 · k2ij,t = ∣∣Vi,t ∣∣2 − 2(rijPij,t + xijQij,t )

+
[
(rij)2 + (xij)2

] ∣∣Iij,t ∣∣2∣∣Iij,t ∣∣2 = (Pij,t )2 + (Qij,t )2∣∣Vj,t ∣∣2

(25)
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The disflow equation based on the branch flow model
(BFM) is nonlinear and difficult to solve. For convenience of
calculation, the equivalent transformation (Iij,t = I2ij,t ,Vj,t =
V 2
j,t ), second-order cone relaxation (SOCR) and piecewise

linearization are applied to the disflow equation [27]. Mean-
while, the accuracy of SOCR was investigated in [28], [29].
To avoid repetition, these transformation methods are not
depicted in this paper.

2) OPERATION CONSTRAINTS
The adjustable resources in the active distribution network
can be divided into three categories: 1) only participate in
active power scheduling, such as interruptible load (IL);
2) only participate in reactive power scheduling, such as
CB and static var compensators (SVC); 3) provide both
active power and reactive power, such as DG and ESS that
deliver a certain amount of reactive power while delivering
active power to the distribution network. These constraints
are described as follows.

• Power flow constraint{
Vmin
j ≤ Vj,t ≤ Vmax

j

0 ≤ Iij,t ≤ Imax
ij

(26)

• PV operation constraint
The active and reactive PV power is limited by the
maximum inverter capacity [30] and the constraints are
depicted as follows:P

PV
j,t = PPV,prej,t(
PPVj,t

)2
+

(
QPV
j,t

)2
≤

(
SPV,max
j

)2 (27)

• IL operation constraint

0 ≤ PILj,t ≤ P
IL,max
j (28)

• DG operation constraint
Due to the limit of inverter capacity, the active and
reactive DG power constraint is revealed as follows.

(PDGj,t )
2
+ (QDG

j,t )
2
≤ (SDG,max

j )2 (29)

The ramping rate constraint is presented below.{
PDGj,t+1 − P

DG
j,t ≤ R

DG,up
j

PDGj,t − P
DG
j,t+1 ≤ R

DG,down
j

(30)

• SVC operation constraint

QSVC,min
j ≤ QSVC

j,t ≤ Q
SVC,max
j (31)

• CB operation constraint
The reactive CB power is constrained by the number
of CB and the maximum switching number during the

scheduling horizon.

QCB
j,t = NCB

j,t Q
CB,step
j,t

NCB
j,t ≤ N

CB,max
j

BCBj,t ∈ {0, 1}
Nt−1∑
t=1

BCBj,t = BCB,max

BCBj,t Q
CB,step
j,t ≤

∣∣∣QCB
j,t+1 − Q

CB
j,t

∣∣∣
≤ BCBj,t N

CB,max
j QCB,step

j,t

(32)

• OLTC operation constraint{
kij,t = kij0 +Mij,t1kij,t
Mmin
ij ≤ Mij,t ≤ Mmax

ij
(33)

The OLTC is assumed to have 11 taps with the range of
±5% in this paper.

• ESS operation constraint
Similar to PV, the active and reactive power of ESS is
restricted by inverter capacity connected to ESS.{

(Pchj,t )
2
+ (QESS

j,t )2 ≤ (SESS,max
j )2

(Pdisj,t )
2
+ (QESS

j,t )2 ≤ (SESS,max
j )2

(34)

To extend life, the ESS battery level should remain within
20%∼90% of the maximum capacity [31].

Ebat
j,t = Ebat

j,t+1 − P
ch
j,tη

ch1T + Pdisj,t 1T/η
dis

Ebat
j,Nt = Ebat

j,1 − P
ch
j,Ntη

ch1T + Pdisj,Nt1T/η
dis

Ebat,max
j × 20% ≤ Ebat

j,t ≤ E
bat,max
j × 90%

(35)

0 ≤ Pchj,t ≤ P
ch,max
j , 0 ≤ Pdisj,t ≤ P

dis,max
j (36)

D. THE MIN-MAX-MIN MODEL
The model presented in (20-36) is a deterministic problem.
Nevertheless, some variables, such as the switching positions
of OLTC and CB, must adapt to all the scenarios considering
the uncertainty of renewable energy. Others can be adjusted
with regard to the actual values of the uncertainty set. There-
fore, the deterministic model is transformed into a two-stage,
‘‘min-max-min’’ robust optimization model in the active dis-
tribution system, which can separate the 0-1 variables and
continuous variables effectively..

The objective function in (37), as shown at the bottom
of the next page, indicates that the outer min model deter-
mines the number of CB and the tap of OLTC over the horizon
time, which is feasible in any scenario from the uncertainty
set. Based on the operating state in the first stage, the inner
‘‘max-min’’ model seeks the worst-case scenario and opti-
mizes the operating cost.

IV. SOLUTION METHOD
For the convenience of description, the ‘‘min-max-min’’
model is rewritten in matrix form as follows.

min
x={x1,x2}

{
cTx+max

p∈P
min

y∈9{x,p}
dTy

}
(38a)
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s.t. lx ≤ x1 ≤ ux, x2 ∈ {0, 1} (38b)

lcx ≤ Ax ≤ ucx (38c)

9 {x, p} = {ly ≤ y ≤ uy (38d)

lc ≤ By ≤ uc (38e)

lc = lcons + Ex+ Fp (38f)

uc = ucons +Gx+Hp (38g)

y ∈ �cone} (38h)

where represents the vector of all operation state variables
in the first stage, and x1, and x2 represent the vectors of
integer and binary variables, respectively. y, and p represent
the vectors of all continuous and uncertainty variables in
the second stage, respectively. In addition, 9{x,p} stands
for the feasible set under the given x, p. Constraint (38b)
presents the lower and upper bound for all variables in the first
stage. Constraint (38c) represents linear constraints related
to all operating state variables in the first stage. Constraint
(38d) denotes the lower and upper bound for all variables
in the second stage. Moreover, the linear constraint related
to variables in the second stage is presented in (38e). Con-
straint (38f) indicates that lc consists of three components:
the constant value lcons, the expression related to x and the
expression related to p. Similarly, constraint (38g) is defined
as (38f). In addition, constraint (38h) represents the second-
order conic constraint described in (25).

The ‘‘min-max-min’’ robust energy management model
above is difficult to solve. At present, the Benders decompo-
sition [32] and C&CG algorithm [14], [33] are usually used
to solve the model. In this paper, the C&CG algorithm is
employed to solve the model because of faster solving speed
and fewer iterations compared to Benders decomposition.

A. C&CG ALGORITHM
To cope with the problem, the triple-level ‘‘min-max-min’’
model is transformed into a two-stage model consisting of the
master and slave problems. The master and slave problems
are, respectively, consistent with the first and second stages
as described above.

1) SLAVE PROBLEM
The slave problem is a ‘‘max-min’’ problem that can be
transformed into a single ‘‘max’’ problem based on the big-M
and dual algorithms. The slave problem is depicted below.

max
p∈P

min
y∈9{x,p}

dTy (39a)

s.t. ly ≤ y ≤ uy (39b)

lc ≤ Ay ≤ uc (39c)

lc = lcons + Ex+ Fp (39d)

uc = ucons +Gx+Hp (39e)

y ∈ �cone (39f)

In (39), lcons, ucons, Ex, and Gx are constant values when
the master problem result x is given. F and H are constant
matrices related to p.
• Dual algorithm
The dual algorithm is introduced to convert the ‘‘max-
min’’ model into a single ‘‘max’’ model. The dual algo-
rithm considering the second-order conic constraint is
revealed as follows:

max (lc)T scl − (uc)T scu + (ly)T syl − (uy)T syu (40a)

s.t. AT (scl − scu)+ syl − syu + syn = d (40b)

scl , scu, s
y
l , s

y
u ≥ 0 (40c)

syn ∈ �cone (40d)

scl , s
c
u, s

y
l , and s

y
u are, respectively, dual variables of lc, uc, ly,

and uu. The expression s
y
nε�cone corresponds with the primal

variables in the second-order conic constraint, meaning that
syn have the same format if the variables exist in the y column
vector. Otherwise, syn should be equal to 0[34].
• Big_M algorithm
The objective function in (40a) contains continuous and

binary variables simultaneously, such as lcscl and u
cscu, which

are nonlinear. These bilinear variables can be linearized based
on the big_M algorithm.

(lc)T scl = {(F(p
∗

1t + p
+

1tµ
+
t − p

−

1tµ
−
t ))

T
+

(F(p∗2t + p
+

2tα
+
t − p

−

2tα
−
t ))

T
}scl + (lcons + Ex)T scl

(uc)T scu = {(H(p∗1t + p
+

1tµ
+
t − p

−

1tµ
−
t ))

T
+

(H(p∗2t + p
+

2tα
+
t − p

−

2tα
−
t ))

T
}scu + (ucons +Gx)T scu

(41)

The auxiliary variables are defined as follows:
γ+t = (µ+t )

T scl , γ−t = (µ−t )
T scl

σ+t = (µ+t )
T scu, σ−t = (µ−t )

T scu
$+t = (α+t )

T scl , $−t = (α−t )
T scl

β+t = (α+t )
T scu, β−t = (α−t )

T scu

(42)

Therefore, the slave problemmodel is rewritten as follows.
Constraints (43-44) represent the objective function of the
slave problem and the dual constraint. Constraints (45-48)
indicate the range of auxiliary variables. Constraint (49) rep-
resents the uncertainty budget constraint. Constraints (50-51)

min
{NCB

j ,BCBj ,Mij,kij}∈x
{COLTC

+ CCB
+max

p∈P
min Pij,Qij,Vij,PDGj ,QDG

j
PPVj ,QPV

j ,Pchj ,P
dis
j ,E

bat
j

∈y
Cgrid

+ CDG
+ CESS,O& M

+ CL,cut
}

s.t. (5), (15), (19), (25) to (36) (37)
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represent the temporal correlation constraints. Constraint (52)
stands for the spatial correlation constraint. Constraint (53)
defines all binary variables.

max (lcons + Ex+ Fp∗1t + Fp∗2t)
T scl + (ly)T syl

− (ucons +Gx+Hp∗1t +Hp∗2t)
T scu − (uy)T syu

+

Nt∑
t=1

(γ+t p
+

1t − γ
−
t p
−

1t )−
Nt∑
t=1

(σ+t p
+

1t − σ
−
t p
−

1t )

+

Nt∑
t=1

($+t p
+

2t −$
−
t p
−

2t )−
Nt∑
t=1

(β+t p
+

2t − β
−
t p
−

2t )

(43)

s.t.


AT (scl − scu)+ syl − syu + syn = d
scl , s

c
u, s

y
l , s

y
u ≥ 0

syn ∈ �cone

(44)


−Mµ+t ≤γ

+
t ≤Mµ

+
t ,−Mµ

−
t ≤γ

−
t ≤Mµ

−
t , ∀t

−scl−M (1−µ+t )≤γ
+
t ≤−s

c
l+M (1−µ+t ), ∀t

scl−M (1−µ−t )≤γ
−
t ≤s

c
l+M (1−µ−t ), ∀t

(45)
−Mµ+t ≤σ

+
t ≤Mµ

+
t ,−Mµ

−
t ≤σ

−
t ≤Mµ

−
t , ∀t

−scu−M (1−µ+t )≤σ
+
t ≤−s

c
u+M (1−µ+t ), ∀t

scu−M (1−µ−t )≤σ
−
t ≤s

c
u+M (1−µ−t ), ∀t

(46)
−Mα+t ≤$

+
t ≤Mα

+
t ,−Mα

−
t ≤$

−
t ≤Mα

−
t , ∀t

−scl−M (1−α+t )≤$
+
t ≤−s

c
l+M (1−α+t ), ∀t

scl−M (1−α−t )≤$
−
t ≤s

c
l+M (1−α−t ), ∀t

(47)
−Mα+t ≤β

+
t ≤Mα

+
t ,−Mα

−
t ≤β

−
t ≤Mα

−
t , ∀t

−scu−M (1−α+t )≤β
+
t ≤−s

c
u+M (1−α+t ), ∀t

scu−M (1−α−t )≤β
−
t ≤s

c
u+M (1−α−t ), ∀t

(48)
Nt∑
i=1

(µ+t + µ
−
t ) ≤ 51,

Nt∑
i=1

(α+t + α
−
t ) ≤ 52 (49)

µ+t − µ
+

t+1 ≤ ε
d+
t ,−µ+t + µ

+

t+1 ≤ ε
u+
t

µ−t − µ
−

t+1 ≤ ε
d−
t ,−µ−t + µ

−

t+1 ≤ ε
u−
t

Nt∑
t=1

(εd+t + ε
u+
t + ε

d−
t + ε

u−
t ) ≤ �1

(50)


α+t − α

+

t+1 ≤ η
d+
t ,−α+t + α

+

t+1 ≤ η
u+
t

α−t − α
−

t+1 ≤ η
d−
t ,−α−t + α

−

t+1 ≤ η
u−
t

Nt∑
t=1

(ηd+t + η
u+
t + η

d−
t + η

u−
t ) ≤ �2

(51)


µ+t − α

+
t ≤ ϑ

d+
t ,−µ+t + α

+
t ≤ ϑ

u+
t

µ−t − α
−
t ≤ ϑ

d−
t ,−µ−t + α

−
t ≤ ϑ

u−
t

Nt∑
t=1

(ϑd+t + ϑ
u+
t + ϑ

d−
t + ϑ

u−
t ) ≤ 1

(52)


µ+t + µ

−
t ≤ 1, α+t + α

−
t ≤ 1, ∀t

µ+t , µ
−
t , ε

d+
t , εd−t , εu+t , εu−t , α+t , α

−
t , η

d+
t , ηd−t ,

ηu+t , ηu−t , ϑd+t , ϑd−t , ϑu+t , ϑu−t ∈ {0, 1}
(53)

2) MASTER PROBLEM
Assuming that the k-th optimal results (pk, yk) of the slave
problem are acquired, the master problem is depicted below.

min
{x1,x2 }∈x,φ

cTx+ φ (54a)

s.t .lx ≤ x1 ≤ ux, x2 ∈ {0, 1} (54b)

lcx ≤ Ax ≤ ucx (54c)

φ ≥ dTyk (54d)

ly ≤ yk ≤ uy (54e)

lc ≤ Byk ≤ uc (54f)

yk ∈ �cone (54g)

The master problem obtains the optimal results x under the
given finite scenarios where pk and yk are known.

B. SOLVING PROCEDURE
The solving procedure of the two-stage robust energy man-
agement model is summarized below:

Initialization: Set a feasible result (x0) to the master prob-
lem. The iteration number m = 1. Set the lower and upper
bound LB = −∞, UB = +∞. Then, set the convergent
tolerance ε.
Step 1: Solve the slave problem in (43-53) at x0 and

obtain the slave problem results (pm, ym) and the objective
ωm.
Step 2: Solve the master problem at (pm, ym, ωm) and

obtain the master problem results (xm) and the objective ϕm.
Meanwhile, the lower bound of the objective function is
corrected LB = cT xm + ϕm.
Step 3: Solve the slave problem at (xm) and obtain the slave

problem results (pm+1, ym+1, ωm+1). Meanwhile, the upper
bound of the objective function is corrected UB = cT xm +
ωm+1.
Step 4: If −ε < UB− LB < ε, the optimization stops and

obtains the optimal result. Otherwise, go back to Step 2 and
m = m+ 1.

V. CASE STUDIES
A. BASIC PARAMETERS
The simulation is verified based on the modified IEEE33 pre-
sented in Fig. 5. The basic parameters of various controllable
resources are listed in Table 2. The prediction data for PV and
load are indicated in Fig. 6, and the electricity price refers
to [9].

The proposed model is solved in MATLAB R2017a
and CPLEX12.8. All numerical simulations are per-
formed on an Intel(R) Core(TM) i7-5500 2.40 GHz,
8G RAM.
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TABLE 2. Basic parameters.

FIGURE 5. The modified IEEE33 distribution system.

FIGURE 6. The prediction data of load and PV power.

B. ANALYSIS OF THE OPTIMAL RESULTS
To verify the proposed model and solution method, the worst-
case scenarios when the5,�,1 are considered, respectively,
are presented in Fig. 7.

Fig. 7(a) presents the optimal result of the tradi-
tional robust model [14], in which the uncertainty vari-
ables are described by a traditional SIU set. According
to Fig. 7(a), we know that the PV output power takes
the lower limits when the nominal value is relatively
high in the worst-case scenario. This may lead to addi-
tional electricity purchasing and increase the operation cost
because the PV is less available and the load is relatively
high.

Fig. 7(b) shows that the PV output power cannot fluctuate
randomly considering the temporal correlation. Due to the
limits of fluctuations, the worst-case scenario occurs in con-
secutive time periods in accordance with weather features.
Therefore, the operation cost is lower than the traditional
robust model.

Fig. 7(c-d) reveals the optimal results of two PV stations
considering temporal and spatial correlation simultaneously.
It implies that the worst-case scenario for two PV stations has

FIGURE 7. The optimal results of the case study.

an obvious correlation because PV output power is mainly
determined by climate factors that are less differentiating in
the same region.

Meanwhile, the charge and discharge power of ESS in the
worst-case scenario when 5 = 4, � = 2, and 1 = 2 is
displayed in Fig. 8.

From Fig. 8, we observe that the ESS absorbs the active
power (7:00-15:00) when PV output increases and the load is
relatively low. Then, the stored power discharges in peak load.
Consequently, the ESS contributes to reducing the operation
cost by shifting the peak load to the valley load. Similarly, the
IL can release the load pressure when the load is relatively
high.
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FIGURE 8. Charge and discharge power of ESS.

FIGURE 9. Active power of IL.

TABLE 3. The relationship between the pearson correlation coefficient
and 5, �, and 1.

C. COMPARISON OF THE OPTIMIZATION RESULTS
AMONG DIFFERENT MODELS
To more effectively analyze the influence of temporal and
spatial correlation, the conservative variables 5, � and 1
related to the Pearson autocorrelation and cross-correlation
coefficients are introduced. The relationships between the
Pearson correlation coefficient and5,�, and1 are presented
in Table 3.

Table 3 indicates that there is positive correlation between
the Pearson autocorrelation coefficient and 5 with the
given �. The same relationship between the Pearson cross-
correlation coefficient and 5 is revealed above. To more
clearly compare the performance difference between the tra-
ditional robust model and the proposed model in this paper,
the operation costs of different models are presented in
Table 4.

As indicated in Table 4, both the total cost of the traditional
robust model and the proposed model are higher than that
of deterministic model since the robust model is more con-
servative. Nevertheless, the proposed model exhibits better
performance in the worst-case scenario compared to the tradi-
tional robust model with the given5. With increasing values

TABLE 4. Operation costs of different models.

TABLE 5. Operation costs under different 1 and �.

of 5, the operation cost increases because PV output power
takes lower value during more time periods. The comparison
highlights that the optimal dispatch scheme of the proposed
model is more effective and economical than other models
when facing uncertain conditions.

To reveal the influence of 1 and �, the objective values
under different 1 and � are depicted in Table 5.

Table 5 compares the total operation cost of the proposed
model under different 1 and �. The results show the total
operating cost increases with increasing value of � when
1 is fixed. Similarly, the daily operating cost increases
as 1 increases when � is fixed. This result implies that
there is a negative correlation between the conservativeness
and �, 1.

D. SENSITIVITY ANALYSIS OF 5, �, AND 1

To analyze the influence of these conservative variables fur-
ther, sensitivity analysis under different 5, �, and 1 are
shown in the following.

1) ANALYSIS OF THE UNCERTAINTY BUDGET 5
Taking the PV station integrated into node 17 in the modified
IEEE33 system as an example, with a given�, the worst-case
scenario under different 5 is displayed.
The optimal results between the traditional robust model

and the proposed model under different 5 are compared
in Fig. 10. Fig. 10 (a-d), respectively, illustrate the worst-
scenario when 5 = 2, 3, 4, and 5, and � = 2. Obvi-
ously, with increasing 5 value, PV output power takes the
lower bound value during more time periods. The com-
parison demonstrates that the certainty budget enhances
the conservative degree and further increases operation
cost.
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FIGURE 10. Analysis of the worst-case scenarios under different 5.

FIGURE 11. Analysis of the worst-case scenarios under different �.

2) ANALYSIS OF THE TEMPORAL CORRELATION BUDGET �
To reflect the performance difference under different �, the
optimal results under different � when 5 = 5 are depicted
in Fig. 11.

Fig. 11 presents the optimal results when 5 = 5, � = 2,
and 4, respectively. It is apparent that the worst-case scenario
in the traditional robust model occurs at the 9:00, and 11:00-
14:00 time periods. Nevertheless, considering the temporal
correlation, the worst-case scenario occurs at 10:00-14:00
because the output power of PV is determined by climate fac-
tors, which do not change randomly. Consequently, the opti-
mal results in the proposed model appear in consecutive time
periods due to weather characteristics which are more in line
with the actual situation.

3) ANALYSIS OF THE SPATIAL CORRELATION BUDGET 1
To illustrate the influence of the spatial correlation budget1,
two PV stations integrated into 17 and 32 nodes, respectively,
are taken into consideration. It is assumed that5 is 4, and �
is 2 in this part. The optimal results under different 1 are
described as follows.

Fig. 12 compares the optimal results under different 1
between the traditional and the proposed robust models.
The worst-case scenario considering the spatial correlation
occurs during similar time periods since the weather is less

FIGURE 12. Analysis of the worst-case scenarios under different 1.

differentiating in the same region. Both the traditional
and proposed models present the same optimization results
in Fig. 12 (b). That is because PV output power is mainly
concentrated during the 9:00-14:00 time period. Therefore,
it is not necessary to adjust the optimal results with the given
parameters 5 = 4, � = 2, and 1 = 4. The analysis above
indicates the proposed model considering spatial correlation
effectively narrows the uncertainty set and decreases the con-
servativeness.

VI. CONCLUSION
The paper proposes a robust energy management model for
active distribution systems simultaneously considering tem-
poral and spatial constraints based on historical data. The
uncertainty budget5, the temporal correlation budget � and
the spatial correlation budget 1 are introduced as control
parameters that influence the conservative degree in the pro-
posed model. The conclusions are presented as follows:

1) The uncertainty set considering the temporal and spa-
tial correlation proposed model narrows the range and
reduces the conservativeness degree of the uncertainty
set effectively compared to the traditional SIU set.

2) The worst-case scenario occurs during consecutive
time periods in the proposed model compared to ran-
dom fluctuation in the traditional SIU set, which is
more consistent with the realistic situation.

3) The proposed model has an economic advantage under
the worst-case scenario compared to the traditional
robust model.

The proposed model effectively reduces the conservative-
ness considering the temporal and spatial correlation of PV
but fails to consider the correlation between renewable energy
and load. Research on the correlation between renewable
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energy and load is necessary, and we will leave this topic to
the next paper.
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