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ABSTRACT The estimation performance of the standard diffusion affine projection algorithm may be
degraded when the distributed network nodes are disturbed by impulsive noise. To overcome the limitation,
a diffusion affine projection M-estimate (DAPM) algorithm is proposed for distributed estimation in the
adaptive diffusion networks. This algorithm uses a robust cost function based on M-estimate function
to eliminate the adverse effects of impulsive noise on distributed diffusion network nodes. In order to
further enhance the performance of the DAPM algorithm, namely fast convergence rate and low steady-
state error, a variable step-size diffusion affine projection M-estimate (VSS-DAPM) algorithm is pre-
sented. In addition, the convergence range of the step-size is deduced to ensure the convergence of the
proposed algorithms. Computer simulations show that the proposed DAPM and VSS-DAPM algorithms
have good convergence performance for distributed estimation in the adaptive diffusion networks. More
importantly, the proposed VSS-DAPM algorithm improves convergence rate and the network mean square
deviation (MSD) as compared to the DAPM algorithm in the distributed estimation.

INDEX TERMS Affine projection algorithm, impulsive noise, M-estimate, variable step-size, distributed
estimation.

I. INTRODUCTION
Distributed estimation is an efficient estimation method that
uses a set of connected network nodes to estimate certain
parameters of interest [1]. In the adaptive distributed net-
works, two adaptive networks based on network topology are
an incremental network and a diffusion network, respectively.
In the incremental scenario, a circular path is established over
the network in which the node communicates with neighbor-
ing nodes [2], in the diffusion mode, each node information
is locally processed and then propagated through the network
node in real time [3]. In a distributed diffusion network, nodes
can acquiremore data from neighboring nodes. Therefore, the
traffic in the diffusion network is higher than the incremental
network. Compared to well-studied incremental networks,
diffusion networks are robust, flexible and fully distributed
for node or link failure [4]–[6]. In the past ten years, several
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diffusion adaptive filtering algorithms have been pro-
posed to enhance the distributed estimation in diffusion
networks [7]–[15]. Among them, the diffusion least mean
square (DLMS) algorithm [7] is a commonly used distributed
estimation algorithm because of its small computational
complexity and simple implementation. In [8], a diffusion
least mean fourth (DLMF) algorithm was presented for
distributed estimation in non-Gaussian noise environments,
it shows small steady-state misalignment than DLMS algo-
rithm. In order to enhance the convergence rate of high
colored input signals, the diffusion recursive least square
(DRLS) algorithm [9] and diffusion affine projection (DAP)
algorithm [10] were proposed for distributed estimation
in the adaptive diffusion networks. However, when the
distributed diffusion network nodes are disturbed by
impulsive noise, the performance of these diffusion adap-
tive algorithms may be degraded. To overcome this limi-
tation, several distributed robust diffusion algorithms have
been studied [11]–[15], the diffusion sign-error least mean
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square (DSE-LMS) algorithm was proposed in [11], which
performs the sign operation to the error signals of all net-
work nodes, and the diffusion affine projection sign algo-
rithm (DAPSA) was described in [12], which is derived by
minimizing l1-norm intermediate error vector subject to a
constraint on the filter coefficients. In [13], the diffusion least
logarithmic absolute difference (DLLAD) algorithm was
developed against impulsive noise for distributed estimation
in the adaptive diffusion networks. The DLLAD algorithm
shows faster convergence rate and lower steady-state error
than DSE-LMS algorithm. In addition, the diffusion gen-
eralized maximum correntropy criterion (DGMCC) algo-
rithm [14] was proposed to deal with impulsive noise in
network nodes. Recently, a diffusion robust variable step-size
least mean square (DRVSS-LMS) algorithm [15] was devel-
oped against impulsive noise for distributed estimation in the
adaptive diffusion networks. However, when the distributed
diffusion network nodes have high colored input signals,
these robust diffusion algorithms show low convergence
speed. Therefore, in this paper, a diffusion affine projection
M-estimate (DAPM) algorithm is proposed for distributed
estimation in impulsive noise interference environments. This
algorithm uses a robust cost function based on M-estimate
function in which containing the weighting matrix and is
derived by solving the local minimization problem for dis-
tributed diffusion network. Recently, variable step-size (VSS)
methods [15]–[21] have been widely used in distributed
adaptive networks, which greatly improve the convergence
performance of distributed algorithms. Hence, a vari-
able step-size diffusion affine projection M-estimate
(VSS-DAPM) algorithm is proposed to enhance the
convergence speed and steady-state misalignment of
DAPM algorithm.

The rest of the paper is organized as follows: In Section II,
the introduction of preparatory work. In Section III, we pro-
pose the DAPM algorithm and VSS-DAPM algorithm.
In Section IV, the convergence range of the step-size is
derived. In Section V, computer simulations verify conver-
gence performance of the proposed algorithms. Conclusions
are obtained in Section VI. Throughout this paper, the nota-
tions from Table 1 are used.

II. PRELIMINARIES
A. THE STANDARD DAP ALGORITHM
Consider a distributed diffusion network composed of
N nodes and the data {dk (n), xk (n)} at node k collected
by the various nodes are related to unknown parameter
vector w0 that satisfies follow the linear model

dk (n) = xTk (n)w
0
+ ηk (n) (1)

where xk (n) = [xk (n), xk (n− 1), . . . , xk (n−M + 1)]T is
the input signal vector at node k , ηk (n) denotes the addi-
tive noise at node k , and dk (n) denotes the local desired
signal.

TABLE 1. Mathematical notation.

The adaptive filter output signal yk (n) at node k is com-
puted as

yk (n) = xTk (n)wk (n) (2)

wherewk (n) is the estimated vector of the adaptive filter with
respect to w0.
Then, the error signal ek (n) at node k is given by

ek (n) = dk (n)− yk (n)

= xTk (n)
(
w0
− wk (n)

)
+ ηk (n) (3)

The weight vector update equation for the diffusion affine
projection (DAP) algorithm [22] is summarized, as follows:

ψk (n+ 1)=wk (n)+µkXk (n)
(
XT
k (n)Xk (n)

)−1
ek (n) (4)

wk (n+ 1) =
∑
m∈Nk

cm,kψm(n+ 1) (5)

where ek (n) = dk (n)−XT
k (n)wk (n) represents the error vector

of node k ,

dk (n) = [dk (n), dk (n− 1), . . . , dk (n− P+ 1)]T (6)

and

Xk (n) = [xk (n), xk (n− 1), . . . , xk (n− P+ 1)] (7)

is the input signal matrix at node k , P is affine projection
order. µk is the local step-size parameter, Nk is the set of
neighbor nodes that are connected to node k , and cm,k ≥ 0
denotes the weighted coefficient.
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B. ADDITIVE NOISE MODEL
The additive noise ηk (n) of node k is contaminated Gaussian
noise [15], [23], which is modeled as follows:

ηk (n) = θk (n)+ ωk (n) = θk (n)+ b(n)νk (n) (8)

where θk (n) and νk (n) are both independent and identically
distributed zero-mean Gaussian sequences with variances
σ 2
θk

and σ 2
νk
(σ 2
νk
� σ 2

θk
), respectively. The impulsive noise

ωk (n) is usually generated as a Bernoulli-Gaussian process,
i.e., ωk (n) = b(n)νk (n) [24], where b(n) is a Bernoulli
process with the probability density function described by
P (b(n) = 1) = pk , P (b(n) = 0) = 1− pk .

Therefore, the corresponding probability density function
(pdf) of the contaminated Gaussian noise is given by [23]

fηk (x) =
1− pk
√
2πσθk

exp

(
−x2

2σ 2
θk

)
+

pk
√
2πσsk

exp

(
−x2

2σ 2
sk

)
(9)

where σ 2
ηk
= pkσ 2

sk + (1 − pk )σ 2
θk
,σ 2
sk = σ 2

θk
+ σ 2

νk
and

pk denotes the probability of the occurrence of the impulsive
noise.

C. M-ESTIMATE FUNCTION
TheM-estimate function ρ [ek (n)] is widely used to deal with
impulsive noise [23], [25]–[27], as follows:

ρ [ek (n)] =

{
e2k (n)/2, if |ek (n)| < ξk (n)
ξ2k (n)/2, otherwise

(10)

then,

ϕ [ek (n)] =
∂ρ [ek (n)]
∂ek (n)

=

{
ek (n), if |ek (n)| < ξk (n)
0, otherwise

(11)

where the threshold parameter ξk (n) is set to eliminate out-
liers, which is usually adjusted as [26]

ξk (n)=kξk σ̂ek (n) = 2.576σ̂ek (n) (12)

where σ̂ 2
ek (n + 1) = λσ̂ 2

ek (n) + Q (1− λ)med
(
Aek (n)

)
,

λ is the forgetting factor which is close to one and
Q = 1.483 (1+ 5/(Nw − 1)) is the finite sample correc-
tion factor. med(·) represents the median operation, and
Aek (n) =

{
e2k (n), e

2
k (n− 1), . . . , e2k (n− Nw + 1)

}
, and

Nw is the length of the estimation window.

III. PROPOSED ALGORITHMS
A. THE PROPOSED DAPM ALGORITHM
The estimation performance of the standard DAP algorithm
may be degraded when the distributed network nodes are
disturbed by impulsive noise. To overcome the limitation,
a robust cost function over distributed diffusion networks
based on the M-estimate function is defined as

J lock [wk ] = sgn
(
ρ

[(
dk (n)− XT

k (n)wk

)T])
3k (n)

×ρ
[
dk (n)− XT

k (n)wk

]
+

∑
m∈Nk/{k}

bm,k
∥∥wk − ψm(n)

∥∥2 (13)

where ρ[·] represents the M-estimate function, sgn(·) is the
sign function and3k (n) =

(
XT
k (n)Xk (n)

)−1. Nk/ {k} denotes
the set of all nodes connected to node k (excluding node k),
bm,k ≥ 0 is a weighted coefficient, ψm(n) represents the
intermediate estimate of node m with respect to w0. Hence,
at node k , the gradient of the cost function in (13) is calculated
as

∇J lock (wk (n)) =
∂J lock (wk (n))
∂wk (n)

= −Xk (n)3k (n)ϕ [ek (n)]

+2
∑

m∈Nk/{k}

bm,k
(
wk (n)− ψm(n)

)
(14)

Using the steepest-descent method at node k , we obtain the
following recursion equation

wk (n+ 1) = wk (n)− µk∇J lock (wk (n))

= wk (n)+ µkXk (n)3k (n)ϕ [ek (n)]

+2µk
∑

m∈Nk/{k}

bm,k
(
ψm(n)− wk (n)

)
(15)

According to the adapt-then-combine scheme [28], hence,
we can compute it in two steps by generating an intermediate
estimate ψk (n+ 1), as follows:

ψk (n+ 1) = wk (n)+ µkXk (n)3k (n)ϕ [ek (n)] (16)

wk (n+ 1) = ψk (n+1)+2µk
∑

m∈Nk/{k}

bm,k
(
ψm(n)−wk (n)

)
(17)

Since each node in the distributed diffusion network will run
the recursion of equations (16)-(17), hence, we can replace
ψm(n) in (17) by ψm(n + 1). In addition, ψk (n + 1) is the
updated estimate of wk (n) in (16) at node k , it is reasonable
to replacewk (n) in (17) byψk (n+1) [7], [29], [30]. By using
these substitutions in (17), we get

wk (n+ 1) = ψk (n+ 1)+ 2µk
∑

m∈Nk/{k}

bm,k
(
ψm(n+ 1)

−ψk (n+ 1)
)

=

∑
m∈Nk

cm,kψm(n+ 1) (18)

where cm,k = 2µkbm,k (m 6= k), ck,k = 1−2µk
∑

m∈Nk/{k}
bm,k .

Using (16) and (18), a diffusion affine projection
M-estimate (DAPM) algorithm for distributed diffusion net-
work is obtained asψk (n+ 1)=wk (n)+µkXk (n)

(
XT
k (n)Xk (n)

)−1
ϕ [ek (n)]

wk (n+ 1)=
∑
m∈Nk

cm,kψm(n+1)

(19)

B. THE PROPOSED VSS-DAPM ALGORITHM
To further enhance the convergence performance of
DAPM algorithm, which has both fast convergence rate
and low steady-state error. Hence, we use the variable
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TABLE 2. Proposed VSS-DAPM algorithm.

step-size µk (n) instead of the fixed step-size µk in (19) and
rewrite this equation asψk (n+ 1)=wk (n)+µk (n)Xk (n)

(
XT
k (n)Xk (n)

)−1
ϕ [ek (n)]

wk (n+ 1)=
∑
m∈Nk

cm,kψm(n+1)

(20)

Inspired by the variable step-size method and adopting
the diffusion cooperation strategy, the proposed VSS-DAPM
algorithm uses the variable step-size method as follows:χk (n+ 1) = τµk (n)+ γ ϕ2 [ek (n)]

µk (n+ 1) =
∑
m∈Nk

cm,kχm(n+ 1) (21)

where the parameters 0 < τ < 1 and γ > 0 control
the dynamic behavior of the step-size. χk (n + 1) denotes an
intermediate estimate relative to µk (n) at node k .
In order to avoid the instability of the step-size parameter,

a constraint on χk (n+ 1) is used

χk (n+ 1) =


µmax, if χk (n+ 1) > µmax

µmin, if χk (n+ 1) < µmin

χk (n+ 1), otherwise

(22)

where 0 < µmin < µmax, and the proposed VSS-DAPM
algorithm is summarized in Table 2.

IV. THE STABILITY ANALYSIS OF ALGORITHM
For the stability of DAPM algorithm, the selection of the
local step-size µk is very important. It not only relates to
the convergence rate of the proposed algorithm, but also
determines the steady-state misalignment. Hence, the range
of local step-size µk of the algorithm that guarantees stability
is derived in this section.
Assumption 1: The input signal vector xk (n) are zero-mean

and spatially and temporally independent [22].
Assumption 2: The noise process θk (n) and νk (n) are both

zero-mean, white, Gaussian, and spatially and temporally
independent of xk (n) [22].
Assumption 3: The weight error vector w̃k (n) is indepen-

dent of input signal vector xk (n) [31], [32].
Assumption 4: The step-sizes in all nodes are the same

(µ = µk ) [22].
The update equation of (20) can be reconstructed

to represent the whole distributed diffusion network
as

w(n+ 1) = Gw(n)+GDX(n)3(n)ϕ [e(n)] (23)

wherew(n) = col [w1(n),w2(n), . . . ,wN (n)],G = CT
⊗IM ,

C is a N × N weighting matrix, where {C}m,k = cm,k and
D = diag [µ1IM , µ2IM , . . . , µN IM ]. X(n) is NM × NP the
block diagonal matrix which is defined as

X(n) = diag [X1(n),X2(n), . . . ,XN (n)] (24)

and 3(n) =
(
XT (n)X(n)

)−1, e(n) is NP × 1 the error vector
is calculated as

e(n) = d(n)− XT (n)w(n) (25)

where

d(n) = col [d1(n),d2(n), . . . ,dN (n)] (26)

is the NP× 1 vector and can be given by

d(n) = XT (n)w(0)
+ η(n) (27)

where w(0)
= 0w0, 0 = col [IM , IM , . . . , IM ] is a NM ×M

matrix, and

η(n) = col
[
η1(n), η2(n), . . . , ηN (n)

]
(28)

where

ηk (n) = [ηk (n), ηk (n− 1), . . . , ηk (n− P+ 1)]T (29)

By defining the weight error vector as w̃(n) = w(0)−w(n),
the weight error vector update equation in (23) is obtained
as

w̃(n+ 1) = Gw̃(n)−GDX(n)3(n)ϕ [e(n)] (30)

where Gw(0) = w(0), e(n) = XT (n)w̃(n)+ η(n).
Taking expectation of (30), we get

E
{
w̃(n+ 1)

}
= GE

{
w̃(n)

}
−GDH(n) (31)

where H(n) = E {X(n)3(n)ϕ [e(n)]}.
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For analysis convenience, redefine H(n)

H(n) , col [H1(n),H2(n), . . . ,HN (n)] (32)

where Hk (n) = E {Xk (n)3k (n)ϕ [ek (n)]}.
According to (8) and using assumption 1, we get

Hk (n) = E {Xk (n)3k (n)ϕ [ek (n)]}

= PE
{
xk (n)

(
xTk (n)xk (n)

)−1
ϕ [ek (n)]

}
= pk PE

{
xk (n)

(
xTk (n)xk (n)

)−1
ϕ
[
ek,s(n)

]}
︸ ︷︷ ︸

¬

+ (1−pk )PE
{
xk (n)

(
xTk (n)xk (n)

)−1
ϕ
[
ek,θ (n)

]}
︸ ︷︷ ︸

­

(33)

where ek,s(n) = xTk (n)w̃k (n) + θk (n) + νk (n) represents the
error vector with impulsive noise at node k , and ek,θ (n) =
xTk (n)w̃k (n)+θk (n) is the error vector without impulsive noise
at node k .

A. CALCULATING THE FIRST ITEM
To evaluate the first expression and use Price’s theorem [33],
[34], we can remove time index n in the expression to get

∂
[
E
{
xk (xTk xk )

−1ϕ[ek,s]
}]
m

∂
[
E
{
xk (xTk xk )

−1ek,s
}]
m

=
1√

2πE
{
e2k,s

} ∫ ∞
−∞

ϕ′[ek,s] exp

 −e2k,s

2E
{
e2k,s

}
 dek,s

, 0(e2k,s) (34)

where ϕ′[ek,s] = ∂ϕ[ek,s]/∂ek,s, [·]m represents the m-th
element in the vector.

By integral operation of (34) and using assumptions 1-3,
we get

E
{
xk (xTk xk )

−1ϕ[ek,s]
}
= 0(e2k,s)E

{
xk (xTk xk )

−1ek,s
}

=
0(e2k,s)

M
E
{
w̃k
}

(35)

Hence, the first expression is obtained as

¬ = PE
{
xk (n)

(
xTk (n)xk (n)

)−1
ϕ
[
ek,s(n)

]}
=

P
M
0
(
e2k,s(n)

)
E
{
w̃k (n)

}
(36)

B. CALCULATING THE SECOND ITEM
Using the samemethod as the first expression in (34), the sec-
ond expression is obtained as

­ = PE
{
xk (n)

(
xTk (n)xk (n)

)−1
ϕ
[
ek,θ (n)

]}
=

P
M
0
(
e2k,θ (n)

)
E
{
w̃k (n)

}
(37)

According to (36) and (37), we can get

Hk (n) =
P
M
0
(
e2k (n)

)
E
{
w̃k (n)

}
(38)

where 0
(
e2k (n)

)
= pk0

(
e2k,s(n)

)
+ (1− pk )0

(
e2k,θ (n)

)
.

Then, we calculate H(n),

H(n) = A(n)E
{
w̃(n)

}
(39)

where

A(n)

=
P
M

diag
{
0
(
e21(n)

)
IM , 0

(
e22(n)

)
IM , . . . , 0

(
e2N (n)

)
IM
}

(40)

Therefore, the following recursion for the expectation of
weight error vector is obtained as

E
{
w̃(n+ 1)

}
= GE

{
w̃(n)

}
−GDA(n)E

{
w̃(n)

}
= G [IMN − DA(n)]E

{
w̃(n)

}
(41)

Using assumption 4 in (41), the mean is stable if and only
if the eigenvalues of matrix satisfy the following condition:

|λmax (G [IMN − µA(n)])| ≤ |λmax (IMN − µA(n))| < 1

⇒ 0 < µ <
2

λmax (A(n))
(42)

V. COMPUTER SIMULATIONS
Simulation examples are presented for a diffusion network
with N = 20 nodes, in which the topology of the net-
work is shown in Fig. 1, we use the Metropolis rule [28]
for combination weights cm,k in the adapt-then-combine dif-
fusion strategy. The unknown parameter vector is w0

=

rand(M , 1)/‖rand(M , 1)‖(M = 32) where rand(·) is a stan-
dard uniform distribution (assuming they are the same for all
nodes). In addition, the system noise θk (n) is an independent
white Gaussian noise with variance σ 2

θk
shown in Fig. 2, and

the impulsive noise ωk (n) is a signal-to-interference ratio
of −30 dB at node k . In order to test the tracking ability
of these algorithm, the unknown parameter vector suddenly
changes fromw0 to−w0 at the middle of the iterations. In the
following computer simulations, pk = 0.01, Nw = 16, λ =
0.99, P = 4, τ = 0.9, γ = 0.12, µmax = 2, µmin = 0.0001
are set. The input signal xk (n) is generated by a second-order
autoregressive system

xk (n) = κ1xk (n− 1)+ κ2xk (n− 2)+ ϑk (n) (43)

where ϑk (n) is a zero-mean white Gaussian process with
variance σ 2

ϑk
shown in Fig. 2 for all the nodes.

The network mean square deviation (MSD) is defined as

MSDnet
=

1
N

N∑
k=1

E
{∥∥∥w0

− wk (n)
∥∥∥2} (44)

which is used to test the proposed algorithms performance
regarding convergence rate, steady-state error, and track-
ing ability, and all simulation results are the average over
100 independent trials.
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FIGURE 1. Network topology with N = 20 nodes.

FIGURE 2. Input variances and noise variances of 20 nodes.

FIGURE 3. The network MSD learning curves of DAPM with µ = 0.07 and
different values of P .

A. GAUSSIAN INPUT SIGNAL
The input signal xk (n) is awhite Gaussian noise inwhich κ1 =
κ2 = 0 in (43). In Fig. 4, it can be noted that the convergence
performance of the DAP algorithm is seriously degraded
when the network nodes are disturbed by impulsive noise, and
it is observed that the proposed DAPM algorithm has better
convergence performance than DAP, DSE-LMS and DAPSA

FIGURE 4. The network MSD learning curves of DAP, DSE-LMS, DAPSA,
DAPM, and VSS-DAPM algorithms for Gaussian input signal.

FIGURE 5. The network MSD learning curves of DAP, DSE-LMS, DAPSA,
DAPM, and VSS-DAPM algorithms for AR (1) input signal.

algorithms for distributed estimation in the adaptive diffusion
networks. Furthermore, the proposed VSS-DAPM algorithm
shows better convergence performance than DAPM algo-
rithm and has good tracking performance when the unknown
system suddenly changes at the middle of the iterations.

B. AR (1) INPUT SIGNAL
The input signal xk (n) is a first-order autoregressive (AR (1))
signal in which κ1 = 0.95,κ2 = 0 in (43). Fig. 3 shows the
convergence performance of DAPM algorithm for different
number of projection orders P = 2, 4, 6 and 8, in which the
step-size is set to µ = 0.07. As far as we know, the larger
the projection order P is, the faster the convergence speed is,
but the steady-state error increases accordingly. The network
MSD convergence curves of these algorithms for AR (1)
input signal, which are shown in Fig. 5. It can be concluded
that the proposed VSS-DAPM and DAPM algorithms show
fastest convergence speed and the smallest steady-state error
than DAP, DSE-LMS and DAPSA algorithms for distributed
estimation in the adaptive diffusion networks.

C. AR (2) INPUT SIGNAL
The input signal xk (n) is a second-order autoregressive
(AR (2)) signal in which κ1 = 0.1,κ2 = −0.8 in (43).
The network MSD convergence curves of these algorithms
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FIGURE 6. The network MSD learning curves of DAP, DSE-LMS, DAPSA,
DAPM, and VSS-DAPM algorithms for AR (2) input signal.

for AR (2) input signal, which are shown in Fig. 6. The
DAPSA show better convergence speed compared with
DSE-LMS algorithm. It can be concluded that the proposed
VSS-DAPM and DAPM algorithms show fastest conver-
gence speed and the smallest steady-state error than DAP,
DSE-LMS and DAPSA algorithms for distributed estimation
in the adaptive diffusion networks.

VI. CONCLUSION
This paper presents a robust diffusion affine projection algo-
rithm for distributed estimation in the adaptive diffusion net-
works. The robust cost function based onM-estimate function
is used to solve the problem that the distributed network nodes
are disturbed by impulse noise. In addition, the variable step-
size strategy is used in distributed diffusion networks. Com-
puter simulations have shown that the proposed algorithm
has good robustness, tracking stability, convergence perfor-
mance, and lower network mean square deviation than DAP,
DSE-LMS and DAPSA algorithms. In the future, in order
to develop the distributed algorithm with faster convergence
speed and lower steady-state error, it is particularly important
to establish cost (objective) function under constraints [35],
[36] and some important methods are also worth exploring
and studying.
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