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ABSTRACT Acoustic vector sensor (AVS) is an effective tool to tracking acoustic sources. However, for the
problem of tracking multiple wideband sources using distributed AVS array (DAVS), there are still unsolved
issues which include measurements-to-targets association and targets tracking under incorrect or unknown
statistics of measurement noise. Joint probabilistic data association (JPDA) is an effective algorithm to solve
data association between measurements and targets and JPDA based cubature information filter (MTCIF) is
designed for nonlinear system. Meanwhile, noise statistics estimator (NSE) based on modified Sage-Husa
maximum posterior (SHMP) is constructed to cope with incorrect or unknown statistics of measurement
noise. Then, a two-step distributed information fusion based on weighted average consensus (WAC) is
built for DAVS to improve the stability and accuracy of state estimator and NSE. Numerical simulations
demonstrate the effectiveness of the proposed algorithms.

INDEX TERMS Acoustic vector sensor, cubature information filter, joint probabilistic data association,
noise statistics estimator, weighted average consensus.

I. INTRODUCTION
Developed on the basis of acoustic pressure sensor, AVS
is of low mass and small volume [1]. Since main compo-
nents are one omni-directional pressure sensor and three
orthogonal velocity sensors, AVS is capable of acquiring
acoustic pressure and three-dimensional acoustic particle
velocities [2]. Due to the above advantages, AVS is more
attractive and applicable for positioning and tracking acoustic
sources, comparing to the traditional sensor array [1]. DAVS
belongs to the kind of distributed wireless sensor network,
which adopts the cooperative adjacent nodes to replace the
centralized computing node [3]. Therefore, DAVS possesses
stronger stability and robustness as well as lower communi-
cation burden than centralized AVS array.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Zhang .

Research efforts have been dedicated on target tracking
using DAVS [4]–[6]. A direct positioning method was stud-
ied for tracking multiple wideband sources [4], where the
positions of acoustic sources were directly obtained through
the measurements of DAVS. However, the dimension of the
measurement vector is linearly increased with the increase
of the AVS sampling rate, leading to the exponential growth
of the computational load. A two-step or indirect positioning
method was reported for a single wideband source [5], where
direction of arrival (DOA) from the target to the AVS was
estimated by capon beamforming, and then the algorithm of
least squares was used to triangle the position of tracking
target. However, this method is only suitable for positioning
a single target, since capon beamforming can only extract
the DOA of a single target and the least squares cannot be
used to solve the problem of data association between targets
and measurements. Zhong et al. proposed a two-step posi-
tioning method for multiple wideband sources [6], where an
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advanced capon beamforming was used to estimate the DOAs
of multiple targets and then the random finite set (RFS) was
adopted to locate multiple targets. The existing algorithms on
multi-target tracking can be mainly classified into two cate-
gories [7]: RFS and data association. Although RFS based
method avoids the problem of measurements-to-tracks asso-
ciation, the use of RFS causes a huge computation burden and
lacks an exact solution for integral operations [7]. In addition,
although the structure of DAVS is selected, the algorithm
of information fusion in [4]–[6] is a centralized technology
which transmits all the information of local nodes to the
centralized computing node. Then a huge communication
bandwidth of AVS array and the strong computing power of
the computing node are needed in the process of centralized
information fusion.

Distributed information fusion algorithms were investi-
gated in [8]–[10] for multi-target tracking. Since only the
information of adjacent nodes is accepted, the computing
power for the local node and network bandwidth is much
smaller in distributed information fusion algorithms, com-
pared with the centralized fusion algorithm. A distributed
multi-target tracking algorithm was proposed in [8] based on
Kalman consensus filtering (KCF) and joint probabilistic data
association (JPDA). JPDA-KCF is only suitable for linear
system models, rather than nonlinear systems in practical
applications. In order to solve the problem of nonlinearity
in multi-target tracking, the distributed cubature informa-
tion filtering based on JPDA and weighted consensus was
proposed in [9] and [10] respectively. Cubature information
filtering (CIF) is an algebraic equivalent form of cubature
Kalman filtering (CKF) [11], which is designed to cope with
state estimation for nonlinear systems. CIF can provide more
stable and accurate state estimation than most of Gaussian
filters [11], such as extended Kalman filtering (EKF) and
unscented Kalman filtering (UKF) and their improved ver-
sions. Furthermore, compared with Kalman filtering, infor-
mation filtering is more suitable for distributed information
fusion [12]. However, two problems need to be solved for
JPDA based algorithms. The first problem is that the prior
knowledge of measurement noise is supposed already known,
which is hardly satisfied in the real application. The second
problem is that the selected algorithm for distributed infor-
mation fusion belongs to consensus on measurements (CM),
the stability of which can only be guaranteed by plentiful
consensus steps [13].

State estimation for multi-target tracking is usually
affected by the accuracy of measurements and the assumed
system model. However, measurements are subject to the
noise caused by metering instruments, and uncertainties like
instrument failures, erroneous zero-injections, etc. are always
classified into measurement noise which is usually unknown
in practice [14]. Hence the statistics estimation of measure-
ment noise is an essential problem for multi-target tracking.
Noise statistics estimator (NSE) is an effective algorithm
to take special care of incorrect or unknown statistics of
measurement noise which belongs to the first problem in

the previous paragraph. Sage et al. proposed a NSE based
on SHMP to obtain the statistics of system noise including
mean and error covariance [15]. However, stability of NSE
based on SHMP cannot be guaranteed in high-order system
on account of the nonpositive definite noise covariance [16].
To improve the stability of NSE, a new adaptive unscented
Kalman filtering (AUKF) based on modified SHMP was
designed in [17] at the expense of accuracy of NSE. Yu et al.
proposed an adaptive CKF to cope with the time-varying
system noise and given the expression of NSE based on
SHMP [18]. Nevertheless, the stability of the designed NSE
in adaptive CKF is not considered.

For the second problem, weighted average consensus
(WAC) [19]–[21] is an effective solution to complete infor-
mation fusion of distributed networks. WAC belongs to the
algorithm of consensus on information (CI), which outper-
forms CM algorithm since the stability of CI can be guaran-
teed by any time of consensus steps (even a single one)[21].
Therefore, in terms of stability, CI is more suitable for infor-
mation fusion of DAVS than the CM algorithm. Furthermore,
each sensor node owns different estimations of statistics of
measurement noise, which is made by the designed NSE.
The difference in noise statistics of measurements indirectly
affects the precision of the data fusion of information pairs.
In other words, the precision of information pairs at each
node depends on the accuracy of statistics of measurement
noise. Hence, the distributed information fusion of statistics
of measurement noise is considered in this paper.

In this work, we present an indirect localization method for
multi-target tracking using DAVS. On the basis of acquired
measurement DOAs, MTCIF with a NSE (MTCIF-NSE)
is derived for state estimation of multiple targets under
unknown or incorrect statistics of measurement noise. Then,
a two-step information fusion, including information fusion
of state estimation and information fusion of statistics of
measurement noise, is designed based on WAC to improve
the accuracy and stability of NSE and state estimator. Sim-
ulations in indoor multi-target tracking have comprehen-
sively evaluate the performance of the proposed localization
method. The main contributions of this work are as
follows:

a) The specific expressions of MTCIF based on JPDA are
deduced and given out.

b) In consideration of the stability of NSE, a modified
SHMP based NSE is design for MTCIF to estimate unknown
statistics of measurement noise.

c) A distributed NSE based on WAC is derived to improve
the accuracy and stability of NSE. The improved precision
of statistics of measurement noise indirectly enhances the
accuracy of state estimation.

The structure of this paper is presented as follows. The
method of DOA extraction is introduced in section 2. The
system model is given in section 3. MTCIF with a statistics
estimator of measurement noise is designed in section 4.
Section 5 provides the process of two-step information
fusion including information fusion of state estimation and
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information fusion of noise statistics. Results of different
simulation scenarios is discussed in section 6 to verify the
effectiveness of the proposed methods. The conclusion is
drawn in section 7.

II. DOA MEASUREMENT ACQUISITION
This paper adopts the indirect positioning method for
target tracking, which requires the acquisition of DOA
measurement.

A. AVS ARRAY SIGNAL MODEL
Since this paper focuses on evaluating the effectiveness of
AVS array in indoor environments, the target tracking in
indoor environments is basically a problem of 2D positioning.
Accordingly, a fixed elevation ψn

0 ∈ [−π/2, π/2], and a
time-varying azimuth φl,nk ∈ (−π, π] which denotes the
angle from lth target to the nth sensor at time step k , are
selected for modelling the AVS array signal. Let θ l,nk =[
φ
l,n
k , ψ

n
0

]T
be the measurement DOA of the target l at

node n. Then the unit vector ul,nk from sensor node n to target
l is defined as

ul,nk =

 cosψn
0 cosφ

l,n
k

cosψn
0 sinφ

l,n
k

sinψn
0

 (1)

According to [22], the signal model of AVS array is defined
by

ỹnk =
L∑
l=1

[
1
ul,nk

]
slk + ε

n
k (2)

where ỹnk =
[
yn,pk , yn,vk

]T
∈ C4×1, yn,pk and yn,vk represent out-

puts of the pressure sensor and velocity sensors respectively,
and the particle velocity yn,vk is commonly normalized by
multiplying with a constant −ρ0c0 [6]. slk = plke

jς lk denotes
the source signal with amplitude plk and phase ς

l
k ∈ (0, 2π ] ,

which means slk is the wideband signal. εnk ∈ C4×1 is the
complex Gaussian noise with distribution cN (µ, 0), which
denotes the mean µ and the covariance 0.
For node n, we can select T0 frames at each time step k to

estimate the DOAs of targets and the value of T0 is consistent
with the sampling rate of AVS. Especially under a low signal-
to-noise ratio (SNR), a larger T0 compared with the normal
circumstance is selected for better estimation effectiveness.
When T0 is small, the sources are supposed to be stationary at
each sampling step. Then an extension form of (2) is defined
by

Ỹn
k = A

(
θnk
)
Sk + ε̃

n
k (3)

where Ỹn
k ∈ C4×T0 and ε̃nk ∈ C4×T0 . θnk =[

θ
1,n
k , · · · , θ

L,n
k

]
∈ R2×L denotes the DOA measurement

of all targets at node n. Let a
(
θ
l,n
k

)
=

[
1,
(
ul,nk

)T]T
,

then A
(
θnk

)
=

[
a
(
θ
1,n
k

)
, · · · , a

(
θ
L,n
k

)]
∈ C4×L . Sk =[

s1k , · · · , s
L
k

]T
∈ CL×T0 .

B. CAPON BEAMFORMING
The traditional capon beamforming [23] acquires the DOA
of a target by finding the maximum of the following
equation

θ̂nk = arg max
θ∈(−π,π]×[−π/2,π/2]

∥∥∥∥(AH (θ )
(
Rn
k
)−1A(θ))−1∥∥∥∥

(4)

where H denotes the conjugate transpose, ‖·‖ denotes the
amplitude of a complex value, andRn

k is the covariancematrix
and defined by

Rn
k = E

{
Yn
k
(
Yn
k
)H}
≈

1
N
Yn
k
(
Yn
k
)H (5)

where E {·} denotes the expectation operation.
However, the traditional capon beamforming is not appli-

cable to acquire DOAs of multiple targets. Moreover, under
low SNR, the acquired DOAs may be incorrect, especially
in the situation of impulsive noise. A modified capon beam-
forming is presented in [6]. DOA estimations are provided by
finding several local maximums of (4){
θ̂nk,j

}m0

j=1
= arg pnk (θ ) > αpnk,max,

θ ∈ (−π, π]× [−π/2, π/2] (6)

where pnk,max = max
θ∈(−π,π]×[−π/2,π/2]

∥∥∥∥(AH (θ )
(
Rn
k

)−1A(θ))−1∥∥∥∥
is the global maxima at time step k , 0 < α < 1 is the preset

threshold value, and pnk (θ ) =

∥∥∥∥(AH (θ )
(
Rn
k

)−1A(θ))−1∥∥∥∥ is

the local maxima which is larger than αpnk,max.
Furthermore, a fixed elevationψn

0 ∈
[
−
π
2 ,

π
2

]
is selected in

this paper for positioning in indoor environments. Therefore,
(6) can be simplified by{

θ̂nk,j

}m0

j=1
= arg pnk (θ ) > αpnk,max, φnk ∈ (−π, π] (7)

where θ̂nk,j =
[
φnk,j, ψ

n
0

]T
, and φnk is the azimuth of node n.

Let

Ẑnk =
{
Ẑnk,j

}m0

j=1
(8)

where Ẑnk,j = θ̂
n
k,j is the DOA estimation and Ẑnk is the DOA

measurement set of node n.

III. SYSTEM MODEL
A nonlinear discrete-time system is selected to model DAVS.
The process equation and the measurement equation of the
nonlinear system are represented as{

Xl
k = f

(
Xl
k−1

)
+ ωk−1, l = 1, · · · ,L

Znk = hn(Xl
k )+ υ

n
k , n = 1, · · · ,N

(9)
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where L ≥ 1 denotes the number of the tracking targets.

Xl
k =

[
plk,x , p

l
k,y, ṗ

l
k,x , ṗ

l
k,y

]T
∈ R4×1 is the state vector of

target l at time step k , plk,x and plk,y denote the position of
target l, ṗlk,x and ṗ

l
k,y denote the speed of target l. N ≥ 2 is

the number of sensor nodes,
(
pnx , p

n
y

)
is the position of sensor

node n, Znk ∈ RJ is the measurement vector of sensor node
n at time step k . f (·) denotes the nonlinear state transition

function. hn(·) = arc tan
(
plk,y−p

n
y

plk,x−p
n
x

)
denotes the nonlinear

measurement function of sensor node n. ωk ∈ Rm and υnk ∈
RJ denote the process noise andmeasurement noise, and both
are assumed as uncorrelated Gaussian noises. Statistics of ωk
and υnk are defined by


E [ωk ] = qk E

[
(ωk − qk)

(
ωj − qj

)T ]
= Qkδkj

E
[
υnk

]
= rk E

[(
υnk − rk

) (
υnj − rj

)T]
= Rn

kδkj

E
[
(ωk − qk)

(
υnk − rk

)T ]
= 0

(10)

where δkj denotes theKronecker-δ function, qk andQk denote
the mean and the covariance matrix of the process noise, and
rk andRn

k represent the mean and covariance of measurement
noise.

The DAVS adopts the cooperative mechanism of adjacent
nodes. Therefore, the network topology of DAVS is presented
as 4(N, ε), where N = {1, · · · ,N} denotes the node set.
If node j accepts the data transmitted from node n, then
(n, j) ∈ ε. Nn = {n| (n, j) ∈ ε} denotes the adjacent nodes
set of node n. If there is no adjacent node for node n, then
Nn = ∅.

IV. MULTI-TARGET DATA ASSOCIATION
Based on the DOA measurement set Ẑnk =

{
Ẑnk,j

}m0

j=1
, JPDA

is introduced for data association, which means assigning
the measurements to the targets. However, the traditional
JPDA filtering is only suitable for linear system. Although
JPDA based CIF was already designed in [9], [10] for nonlin-
ear system, only partial expressions of information filtering
were given and information state vector was not involved.
A modified MTCIF is designed for nonlinear system model
and employed in local node for multi-target tracking in this
section. Further, since the prior information of measurement
noise is unknown or inaccurate, the modified SHMP [20]
based noise estimator is designed for MTCIF to improve the
precision of state estimation in consideration of the stability
of NSE.

A. JOINT PROBABILISTIC DATA ASSOCIATION BASED CIF
For the local node n, the general form of MTCIF is sum-
marized as follows. Details for the derivation of MTCIF are
presented in Appendix.

1) TIME UPDATE
For node n, the state estimation X̂l,n

k−1 and the infor-
mation matrix Yl,n

k−1 of target l are supposed already
known at time step k − 1. According to the spheri-
cal cubature integration rule, sigma points are generated
by

χ
n,i
k−1 = X̂l,n

k−1 +

√(
Yl,n
k−1

)−1
ξ i, i = 1, · · · , 2m (11)

where m is the dimension of the state vector,

√(
Yl,n
k−1

)−1
is the square root of

(
Yl,n
k−1

)−1
, which equals to(

Yl,n
k−1

)−1
=

√(
Yl,n
k−1

)−1(√(
Yl,n
k−1

)−1)T
, and ξ i ={ √

mei, i = 1, · · · ,m
−
√
mei, i = m+ 1, · · · , 2m

, where ei denotes the

m-dimensional unit vector with the ith element being 1.
Then, transfer χn,ik−1 by the nonlinear state transition func-

tion

χ
n,i
k|k−1 = f

(
χ
n,i
k−1

)
, i = 1, · · · , 2m (12)

Estimate the predicted state and the predicted covariance
matrix

X̂l,n
k|k−1 =

1
2m

2m∑
i=1

χ
n,i
k|k−1 + qk (13)

Pl,nk|k−1 =
1
2m

2m∑
i=1

(χn,ik|k−1 − X̂l,n
k|k−1)(χ

n,i
k|k−1 − X̂l,n

k|k−1)
T

+Qk−1 (14)

Calculate the predicted information matrix and the predicted
information state vector

Yl,n
k|k−1 =

[
Pl,nk|k−1

]−1
(15)

ŷl,nk|k−1 = Yl,n
k|k−1X̂

l,n
k|k−1 (16)

2) MEASUREMENT UPDATE
Based on (13) and (14), generate a new set of sigma points

χ̄
n,i
k|k−1 = X̂l,n

k|k−1 +

√
Pl,nk|k−1ξ

i, i = 1, · · · , 2m (17)

Propagate χ̄
n,i
k|k−1 through the nonlinear measurement

function to generate the predicted measurement sigma
points

ζ
n,i
k|k−1 = h(χ̄n,ik|k−1), i = 1, · · · , 2m (18)

Calculate the mean of the predicted measurement

Ẑl,nk|k−1 =
1
2m

2m∑
i=1

ζ
n,i
k|k−1 + rk (19)
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Calculate the cross-covariance matrix

Pl,nxz,k|k−1=
1
2m

2m∑
i=1

(
χ
n,i
k|k−1 − X̂l,n

k|k−1

) (
ζ
n,i
k|k−1 − Ẑl,nk|k−1

)T
(20)

Compute the information gain Kl,n
k via

Kl,n
k =

(
Yl,n
k|k−1 + Yl,n

k|k−1P
l,n
xz,k|k−1(R

n
k )
−1
(
Pl,nxz,k|k−1

)T
· Yl,n

k|k−1

)−1
Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1 (21)

Update the information state contribution ĩl,nk and its associ-
ated information matrix Gl,n

k via

ĩl,nk = Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1
·

(
Zl,nk −

(
1− β ln0

)
Ẑl,nk|k−1

+

(
Pl,nxz,k|k−1

)T
Yl,n
k|k−1X̂

l,n
k|k−1

)
(22)

Gl,n
k = Yl,n

k|k−1K
l,n
k

[(
Ml,n

k

)−1
−

(
Kl,n
k

)T
Yl,n
k|k−1K

l,n
k

]−1
·

(
Kl,n
k

)T
Yl,n
k|k−1 (23)

where β ln0 denotes the probability that no measurement is

associated with target l for node n and β ln0 = 1 −
m0∑
j=1
β lnj.

β lnj = P
[
χ lnj|Ẑ

n
k

]
and χ lnj denotes that the measurement j

on node n originated from target l. See [24] for details of

β ln0 and β lnj. Z
l,n
k =

m0∑
j=1
β lnjẐ

n
k,j. See Appendix for the detail

of Ml,n
k .

Obtain the updated information state vector ŷl,nk and the
updated information matrix Yl,n

k via{
ŷl,nk = ŷl,nk|k−1 + ĩl,nk
Yl,n
k = Yl,n

k|k−1 +Gl,n
k

(24)

Finally, the state estimation X̂l,n
k is obtained by

X̂l,n
k =

(
Yl,n
k

)−1
ŷl,nk (25)

B. NOISE STATISTIC ESTIMATOR
If the statistics character of system noise is kept unknown
or inaccurate, the accuracy of state estimation and the diver-
gence of filtering algorithms are usually affected. In this
paper, the prior information of DOA measurement noise is
unknown. Hence, a measurement noise estimator is desirable
to enhance the accuracy of multi-target state estimation. Sim-
ilar to NSE proposed in [17], [25], a SHMP based measure-
ment noise estimator for MTCIF is derived and displayed as
follows.

1) Compute mean of measurement noise

r̂l,nk = (1− dk) r̂
n
k−1 + dk

[
Zl,nk −

1
2m

2m∑
i=1

ζ
n,i
k|k−1

]
(26)

TABLE 1. MTCIF-NSE on node n.

where dk is defined by

dk =
1− b
1− bk

(27)

where b is the forgetting factor and regularly selected by 0.95.
2) Compute covariance matrix of measurement noise

R̂l,n
k = (1− dk) R̂

n
k−1 + dk

[
el,nk,j
(
el,nk,j
)T

−
1
2m

2m∑
i=1

(
ζ
n,i
k|k−1−Ẑ

l,n
k|k−1

) (
ζ
n,i
k|k−1 − Ẑl,nk|k−1

)T]
(28)

where el,nk,j is the innovation vector and given by

el,nk,j = Zl,nk − Ẑl,nk|k−1 (29)

where Zl,nk =

n0∑
j=1
β lnjẐ

n
k,j and Ẑnk,j is the jth DOA esti-

mation. However, the stability and accuracy of Sage-Husa
noise estimator are sensitive to its complicated calculation
and the convergence of the measurement noise′s covari-
ance [26]. To improve the stability of designed noise esti-
mator, the related item of the predicted error covariance in
equation (28) is abandoned at the expense of accuracy for
NSE based on the modified SHMP [17]. Then, the esti-
mated covariance matrix of measurement noise is defined
by

R̂l,n
k = (1− dk) R̂

n
k−1 + dke

l,n
k,j

(
el,nk,j
)T

(30)

Finally, steps of MTCIF-NSE are outlined in Table 1.

V. DISTRIBUTED INFORMATION FUSION
This section mainly focuses on information fusion of DAVS.
To improve the precision and stability of state estimator and
NSE, WAC based algorithms are designed for distributed
information fusion. MTCIF-NSE is employed in the local
node for multi-target state estimation. Next, two different
parts are contained in the distributed information fusion.
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The first one is the data fusion of information pairs, which
is conducted to make an agreement on the information pairs
among all the sensor nodes. The second one is the information
fusion of statistics of measurement noise. In order to improve
the precision of NSE in the local node, a distributed noise
statistic estimator (DNSE) is derived to make an agreement
on the noise statistics of measurements among all the sensor
nodes. Furthermore, to verify the effectiveness of DNSE, two
different algorithms are designed for distributed multi-target
tracking. The one is the distributed multi-target CIF with
noise statistic estimator (DMTCIF-NSE), which only incor-
porates the first part of distributed information fusion. The
other one is the distributed multi-target CIF with distributed
noise statistic estimator (DMTCIF-DNSE), which includes
both parts of distributed information fusion. The general
form of DMTCIF-NSE and DMTCIF-DNSE are displayed
as follows.

A. DATA FUSION OF INFORMATION PAIRS
Let t be the consensus time. For node n, information pairs(
ŷl,nk ,Y

l,n
k

)
of target l are supposed already known at time

step k . The consensusweight is defined byπn,j, where j ∈ Nn,
πn,j ≥ 0,

∑
j∈Nn

πn,j = 1. The information pair in different

sensor node has the same behavior(
ŷ∗k ,Y

∗
k
)
= lim

t→∞

(
ŷl,nk,t ,Y

l,n
k,t

)
(31)

The WAC update of information pairs is defined by
ŷl,nk,t+1 =

∑
j∈Nn

πn,jŷl,jk,t

Yl,n
k,t+1 =

∑
j∈Nn

πn,jYl,j
k,t

(32)

Let T̄ be the number of WAC iterations, where t ∈
[0, T̄ − 1]. For node n, initial information pairs are given as{
ŷl,nk,0 = ŷl,nk
Yl,n
k,0 = Yl,n

k
. Updated information pairs are

(
ŷl,n
k,T̄
,Yl,n

k,T̄

)
after T̄ iterations. Next, the updated state estimation X̂l,n

k at
time step k after the information fusion are presented by

X̂l,n
k =

(
Yl,n
k,T̄

)−1
ŷl,n
k,T̄

(33)

Then, the general form of DMTCIF-NSE is presented
in Table 2.

B. DISTRIBUTED NOISE STATISTIC ESTIMATOR
The information fusion of statistics of measurements noise
must be considered to improve the stability and accuracy of
noise estimator and the filtering. The DNSE is founded on
the assumption that sensor nodes own the same statistics of
measurement noise. Performing the similar fusion procedure
as the data fusion of information pairs. The WAC update of

TABLE 2. DMTCIF with noise statistic estimator.

TABLE 3. DMTCIF with distributed noise statistic estimator.

statistics of measurement noise is defined by
r̂l,nk,t+1 =

∑
j∈Nn

πn,jr̂l,nk,t

R̂l,n
k,t+1 =

∑
j∈Nn

πn,jR̂l,n
k,t

(34)

Then, when T̄ times WAC iterations are finished, updated
noise statistics of measurements r̂l,nk and R̂l,n

k are defined by(
r̂l,n
k,T̄
, R̂l,n

k,T̄

)
. Finally, the procedure of DMTCIF-DNSE is

summarized in Table 3.

VI. PERFORMANCE EVALUATION AND DISCUSSIONS
The indoor scenario has been designed for multi-target track-
ing using the DAVS. Simulations are conducted to evaluate
the effectiveness of the proposed methodology for target
tracking in the presence of incorrect statistics of measure-
ment noise. Centralized fusion technology based multi-target
square-root cubature Kalman filtering (CMTSCKF) [7]
and weighted consensus based multi-target square-root
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FIGURE 1. The preset simulation scene.

CIF (DMTSCIF) [12] are selected for comparison analysis.
The coordinated turn (CT) model is chosen for targets track-
ing in DAVS and a fixed angular speed γ of turning is
employed for the maneuvering target in X/Y plane. The
process equation is defined by

Xk =


1 0

sin(γT )
γ

−(1− cos(γT ))
γ

0 1
1− cos(γT )

γ

sin(γT )
γ

0 0 cos(γT ) − sin(γT )
0 0 sin(γT ) cos(γT )

Xk−1

+


T 2

2
0

0
T 2

2
T 0
0 T

ωk−1 (35)

where Xk =
[
pk,x , pk,y, ṗk,x , ṗk,y

]T is the state vector at
time step k . pk,x and pk,y denote the target position. ṗk,x and
ṗk,y denote the target speed. ωk ∼ N (qk ,Qk) denotes the
process noise with mean qk and covariance matrix Qk . T is
the sampling period of the system.

A. SIMULATION SETUP
For the simulation setup, a preset simulation scene is dis-
played in Fig. 1. The size of simulated room is chosen

FIGURE 2. The topology map of DAVS.

as (20m× 30m× 4m). The preset height and elevation of
AVSs are 0.5m and 60◦, respectively. The azimuth of AVSs
is varied from −90◦ to 90◦. In terms of X/Y plane, AVSs
are employed at the position of (0, 0), (0, 15), (0, 30), (10, 0),
(10, 30), (20, 0), (20, 15) and (20, 30), respectively. Interac-
tive trajectories which are generated by two different acoustic
sources are displayed in Fig. 1. The first target starts at the
point (5, 15) and moves at a constant angular speed γ =
−0.2rad/s. And the initial point of the second target is (5, 21)
and its angular speed is γ = 0.2rad/s. The simulation period
is T = 100s.
The topology map of DAVS is presented in Fig. 2.

According to [19]–[21], the weight matrix is defined through
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Metropolis weight rule.

πn,j =


1/
(
1+max

{
dn, dj

})
, if (n, j) ∈ ε

1−
∑
(n,j)∈ε

πn,j, if n = j

0, otherwise

(36)

Sensor nodes are equivalent to each other. Hence node 1, 2,
4, 7 are selected and 50 independent Mentos Carlo is chosen
for the following simulation with the same initial conditions.
Then root mean square error (RMSE) is adopted to verify the
effectiveness of the proposed algorithms. Position RMSE at
node n is defined by

RMSEnp,k =

√√√√ 1
M

M∑
i=1

((
pik,x − p̂

i
k,x

)2
+

(
pik,y − p̂

i
k,y

)2)
(37)

where the variable M denotes the number of Monte Carlo
runs.

[
pk,x , pk,y

]
and

[
p̂k,x , p̂k,y

]
stand for the real position

and estimated position of targets respectively at time step k .
DOAs from the target to the sensor node are supposed
unchanged in one second. According to [6], the SNR of
signals achieved byAVS is set as 4dB, the sampling frequency
of AVS is 64Hz and the preset threshold for DOA extraction
is set as α = 1/20. Then a set of measurement for pro-
posed information filtering is acquired by the Capon Spectra
Estimator, which is used for measurement update. The initial
parameters for filtering algorithms are given as follows. The
number of clutter λ is an adjust parameter which is changed
with the SNR of signals achieved by AVS and λ = 2 is
selected in this paper. The gate probability is PG = 0.99
and the probability of detecting a target is PD = 0.9. The
number of consensus steps is T̄ = 5 for WAC based consen-
sus algorithms and the weighted consensus based algorithm.
The mean and the covariance matrix of process noise are
qk = [0.001, 0.001, 0.001, 0.001]T and Qk = 10−4 ∗
diag [1, 1, 1, 1], respectively. The mean and the covariance
matrix of measurement noise are rk = 0.02 and Rk = 16 ∗
10−4, respectively. The frequency of measurement update for
filtering algorithms is 1Hz. Initial state vectors of target 1 and
target 2 are X1

k = [5, 15, 0, 1]T and X2
k = [5, 21, 0,−1]T ,

respectively. And the related error covariance matrix of state
vectors is Pk = diag [25, 16, 0.25, 0.25]. To quantitatively
analyze the performance of proposed algorithms, two differ-
ent scenarios of unmatched or incorrect statistics of measure-
ment noise are constructed and defined as follows.
Scenario 1 :The real prior information ofmeasurement noise
is greater than the initial noise statistics of measurements.
Then, statistics of real measurement noise are defined by{

r̃k = 2 ∗ rk = 0.04
R̃k = 10 ∗ Rk = 1.6 ∗ 10−2

Scenario 2 :The real prior information ofmeasurement noise
is less than the initial noise statistics of measurements. Then,

FIGURE 3. Single target tracking under scenario 1.

statistics of real measurement noise are defined by{
r̃k = 0.1 ∗ rk = 0.002
R̃k = 0.5 ∗ Rk = 8 ∗ 10−4

B. SIMULATION RESULTS AND DISCUSSION
1) SINGLE TARGET TRACKING
Target 2 is chosen as the tracking object, the trajectory of
which is shown in Fig. 1. Because of centralized fusion
technology adopted in CMTSCKF, sensor node 1 is selected
as the central computing node. In other word, measurements
of node 2, node 4 and node 7 are transmitted to node 1 for
measurement update and sequential approach is adopted in
this process. The proposed MTCIF-NSE is designed for the
target tracking of a single node. DMTSCIF, DMTCIF-NSE
and DMTCIF-DNSE are used for distributed target tracking.
The method for information fusion in DMTSCIF is weighted
consensus based method which belongs to CM. The method
for information in DMTCIF-NSE and DMTCIF-DNSE is
WAC based method which belongs to CI. For better com-
parison analysis, estimated values of node 1 are presented
in Fig. 3.

For scenario 1, tracking results of node 1 are presented
in Fig. 3. Although poor tracking performance acquired by
CMTSCKF, the estimated error decreases with the increased
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FIGURE 4. Position RMSE for single target tracking under scenario 1.

time step. Hence we can get that centralized technology
based information fusion algorithms can reduce the impact
of mismatched noise statistics on state estimation in some
aspects. Since the stability of designed NSE is improved at
the expense of accuracy and there is no information fusion for
state estimation, large errors still exist in the estimated results
of MTCIF-NSE. For the reason that NSE is not contained,
the tracking performance of DMTSCIF cannot hold a candle
to DMTCIF-NSE, but outperforms MTCIF-NSE. Hence one
point is obvious that the algorithm of distributed informa-
tion fusion also can reduce the impact of mismatched noise
statistics on state estimation. In terms of stability and accu-
racy, DMTCIF-DNSE outperforms other algorithms since
the designed DNSE can acquire more accurate statistics of
measurement noise andWAC based fusion algorithms can get
more precise information pairs after distributed data fusion.

The comparison of position RMSE for different algorithms
is displayed in Fig. 4. CMTSCKF and DMTSCIF obtain
worse divergence speed than MTCIF-NSE. But after 10s,
the RMSE of CMTSCKF decreases quickly and is better than
MTCIF-NSE after 62s. Meanwhile, the RMSE of DMTSCIF
is better than MTCIF-NSE after 20s. Then the inference in
the previous paragraph is confirmed again that centralized
technology and distributed information fusion can reduce
the impact of mismatched noise statistics on state estima-
tion. Since the distributed information fusion of statistics of
measurement noise is contained, DMTCIF-DNSE acquires
better RMSEs than DMTCIF-NSE. Hence DMTCIF-DNSE
is more suitable for distributed target tracking compared with
the reference algorithms under scenario 1.

For scenario 2, tracking results of node 1 are presented
in Fig. 5. Estimated values of MTCIF-NSE are relatively
stable, but large errors still exist because of lacking dis-
tributed information fusion of state estimation and the affec-
tion of accuracy of the designed NSE. The estimated error
of CMTSCKF decreases with the increased time instants due
to the centralized fusion algorithm, and the estimated value
of DMTSCIF is relatively stable because of weighted con-
sensus based distributed information fusion. DMTCIF-DNSE

FIGURE 5. Single target tracking under scenario 2.

FIGURE 6. Position RMSE for single target tracking under scenario 2.

achieves the best result of target tracking on account of WAC
based two-step information fusion and the accurate estima-
tion of statistics of measurement noise.

Position RMSEs of different algorithms are presented
in Fig. 6. Although noise statistics of measurement are mis-
matched, CMTSCIF and DMTSCIF obtain the approximate
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FIGURE 7. Multiple-target tracking under scenario 1.

RMSE compared with MTCIF-NSE when the state estima-
tion is stable. But after 24s, the RMSE of MTCIF-NSE
is smaller than DMTSCIF because of precise noise statis-
tics obtained by NSE. Then, weighted consensus based
distributed information fusion and centralized technology
can depress the effect of mismatched statistics of mea-
surement noise on state estimation in some aspects under
scenario 2. Although the distribution information fusion is
included in both algorithms, DMTCIF-NSE achieves much
better RMSEs than DMTSCIF due to the contained NSE.
Besides, since more precise noise statistics of measurements
are acquired by DNSE, the RMSE of DMTCIF-DNSE is
much lower than DMTCIF-NSE.

2) MULTI-TARGET TRACKING
Target 1 and target 2 in Fig. 1 are selected as the tracking
sources. Sensor 1 is also selected as the central computing
node for CMTSCKF. Both targets start moving at the same
time and tracking results of node 1 are presented as follows
for better comparison.

For scenario 1, multi-target tracking results are given
in Fig. 7 and position RMSEs of both targets are displayed

in Fig. 8. From Fig. 7, DMTCIF-DNSE obtains the best
tracking result than the other algorithms on account of the
contained two-step information fusion which is designed
for DAVS. DMTCIF-NSE acquires better tracking results
than DMTSCIF because of more precise measurement noise
statistics obtained by the designed NSE. Although estimated
values of MTCIF-NSE are relatively stable, there is still
deviation in its tracking results which are worse than the
estimation of DMTSCIF. Hence we can get that the dis-
tributed information fusion of state estimation can reduce
the affection of mismatch statistics of measurement noise.
The CMTSCKF obtains the worst tracking result due to the
mismatch noise statistics of measurements, but the estimation
error is decreased with the increased time steps. Similarly,
the centralized technology also can improve the quality of
tracking results under mismatched noise statistics of mea-
surements.

In Fig. 8, (a) and (b) stand for the position RMSE
of target 1 and target 2, respectively. As far as the rate
of convergence is concerned, MTCIF-NSE, DMTCIF-NSE
and DMTCIF-DNSE obtain better results than CMTSCKF
and DMTSCIF since more accurate statistics of measure-
ment noise are acquired by the designed NSE and DNSE.
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FIGURE 8. Position RMSE for multi-target tracking under scenario 1.

FIGURE 9. Multiple-target tracking under scenario 2.

Benefited from the distributed information fusion of
state estimation, the RMSE of DMTSCIF is lower
than MTCIF-NSE, but the stability of which is better.
DMTCIF-DNSE obtains the best RMSE while the RMSE

of CMTSCKF is the worst, but after 17s, the RMSE of
CMTSCKF decreases quickly which benefits from the affec-
tion of centralized fusion technology on state estimation
under mismatched noise statistics of measurements. In terms
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FIGURE 10. Position RMSE for multi-target tracking under scenario 2.

FIGURE 11. Comparison of estimation values obtained by DNSE and NSE under scenario 1.

of accuracy and convergence, DMTCIF-DNSE outperforms
the other algorithms on account of the two-step information
fusion including the information fusion of state estimation
and the information fusion of statistics of measurement noise.

Hence compared with the other algorithms, DMTCIF-DNSE
is more suitable for multi-target tracking under scenario 1.

For scenario 2, results of multi-target tracking are pre-
sented in Fig. 9 and position RMSEs of targets are displayed

151862 VOLUME 7, 2019



J. Zhang et al.: Advanced Cubature Information Filtering for Indoor Multiple Wideband Source Tracking With a DNSE

FIGURE 12. Comparison of estimation values obtained by DNSE and NSE under scenario 2.

in Fig. 10. From Fig. 9, estimated values of MTCIF-NSE are
worse than DMTCIF-NSE because of lacking information
fusion for state estimation, but are better than CMTSCKF
and DMTSCIF while the state estimation is stable due to
more accurate statistics of measurement noise acquired by
the designed NSE. Tracking results of DMTCIF-DNSE are
still the best among the tracking algorithms in this paper.
Hence the proposed two-step information fusion is an effec-
tive tool to deal with state estimation under mismatched
statistics of measurement noise. From Fig. 10, the RMSE
of MTCIF-NSE is lower than DMTSCIF for both targets
after 26s. Benefited from the distributed information fusion,
RMSE curves of DMTCIF-NSE and DMTCIF-DNSE are
lower and more flat than MTCIF-NSE when the algorithm
is stable after 30s. DMTCIF-DNSE achieves the best RMSE
under scenario 2. Above all, DMTCIF-DNSE is more suit-
able for distributed target tracking under mismatched noise
statistics of measurements.

3) PERFORMANCE ANALYSIS OF DNSE
Target 1 is selected as the tracking source. The estimated val-
ues and its mean of statistics of measurement noise produced

by DMTCIF-DNSE and DMTCIF-NSE are selected as the
comparison items to verify the effectiveness of DNSE under
mismatched noise statistics of measurements. For simplicity,
NSE and DNSE are used to stand for DMTCIF-NSE and
DMTCIF-DNSE, respectively. Estimated values produced by
DNSE and NSE in node 1, node 2, node 4 and node 7 are
presented in the following simulations.

For scenario 1, (a) and (c) in Fig. 11 respectively stand for
the estimated mean rk and covariance Rk of measurement
noise produced by DNSE under scenario 1. (b) and (d) denote
rk andRk obtained by NSE, respectively. Because of the ran-
domness of NSE, the worst noise statistics of measurements
is obtained by node 2 from (b) and (d). From (a) and (c),
similar estimated values are obtained by the chosen sensor
nodes due to the distributed information fusion of noise
statistics. We can get that WAC based DNSE can improve
the stability of NSE. The mean estimation of statistics of
measurement noise is displayed in Table 4. Then one point is
obvious, benefited from WAC based distributed information
algorithms, DNSE can obtain more precise noise statistics of
measurements, compared with NSE. Hence, the accuracy and
stability of DNSE are better than NSE under scenario 1.
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TABLE 4. Mean estimation of statistics of measurement noise under
scenario 1.

TABLE 5. Mean estimation of statistics of measurement noise under
scenario 2.

For scenario 2, estimated values of statistics of mea-
surement noise obtained by DNSE and NSE are displayed
in Fig. 12 and the mean of obtained noise statistics is pre-
sented in Table 5. From (b) and (d) in Fig. 12, large biases
exist in the estimated values of node 4 which are worse than
estimations of other nodes. And from a) and (c), similar esti-
mations obtained by DNSE benefited fromWAC based infor-
mation fusion algorithm. Therefore, the stability of DNSE
is stronger than the designed NSE. From table 2, DNSE
obtains better estimations of statistics of measurement noise
in all nodes, compared with NSE. Hence in terms of stability
and precision, DNSE acquires better performance than NSE
under scenario 2. Above all, benefited from WAC based dis-
tributed information fusion, the designed DNSE outperforms
NSE under mismatched noise statistics of measurements and
DNSE is more suitable for noise estimation in DAVS than
NSE.

VII. CONCLUSION
The multi-target tracking algorithm presented in this paper
is an indirect algorithm. Firstly, Measurement DOAs are
acquired by capon spectra estimator through sampling points
obtained by the AVS. Then, JPDA based MTCIF is used for
multi-target tracking to solve the problem of measurements-
to-targets association on the basis of acquired measurement
DOAs. However, the prior knowledge of measurement noise
is usually kept unknown in the real application and initial
statistics of measurement noise are also incorrect, which
always affects the precision of state estimation. Hence,
in view of the stability of NSE, the modified SHMP based
NSE is designed for MTCIF to obtain accurate statistics
of measurement noise. To further improve the stability and
accuracy of NSE and state estimator, a two-step infor-
mation fusion is designed for MTCIF-NSE, including the
information fusion of state estimation and the informa-
tion fusion of statistics of measurement noise. The infor-
mation fusion algorithm in this paper which belongs to
distributed algorithms, owns better robustness and lower
communication burden than the centralized information

fusion technology. Meanwhile, the algorithm for distributed
information fusion is founded based onWAC since the stabil-
ity of WAC can be guaranteed by any number of consensus
steps.

In addition, traditional Cramer-Rao lower bound (CRLB)
is only suitable for the performance evaluation of state esti-
mator on single sensor node with given noise statistics, but
not applicable to the performance evaluation of distributed
state estimator based on sensor networks under unknown
or incorrect noise statistics. Hence, the further work of
this paper will focus on stability analysis and construction
of distributed CRLB for the proposed multi-target track-
ing algorithms, including MTCIF-NSE, DMTCIF-NSE and
DMTCIF-DNSE. Meanwhile, performance verification of
the proposed algorithms will be designed under various SNR.
MTCIF-NSE is founded for targets tracking on single sensor
node and DMTCIF-NSE and DMTCIF-DNSE are designed
for targets tracking in distributed networks.

APPENDIX
Derivation of MTCIF

According to [8], the state estimation X̂l,n
k and its error

covariance matrix Pl,nk of JPDA filtering are defined by

X̂l,n
k = X̂l,n

k|k−1 +Kl,n
k

(
Zl,nk −

(
1− β ln0

)
Hn
k X̂

l,n
k|k−1

)
(38)

Pl,nk = Pl,nk|k−1 −
(
1− β ln0

)
Kl,n
k Pl,nzz,k|k−1

(
Kl,n
k

)T
+Kl,n

k P̃l,nzz,k|k−1
(
Kl,n
k

)T
(39)

where β ln0 denotes the probability that no measurement is

associated with target l for node n and β ln0 = 1 −
m0∑
j=1
β lnj.

β lnj = P
[
χ lnj|Ẑ

n
k

]
and χ lnj denote that the measurement j on

node n originated from target l. See [24] for details of β ln0 and

β lnj. K
l,n
k is the Kalman gain. Zl,nk =

m0∑
j=1
β lnjẐ

n
k,j. P̃

l,n
zz,k|k−1 is

defined by

P̃l,nzz,k|k−1

=

m0∑
j=1

β lnj

(
Ẑnk,j −Hn

k X̂
l,n
k|k−1

)(
Ẑnk,j −Hn

k X̂
l,n
k|k−1

)T
−

(
Zl,nk −Hn

k X̂
l,n
k|k−1

) (
Zl,nk −Hn

k X̂
l,n
k|k−1

)T
(40)

Transform state estimation X̂l,n
k and its error covariance

matrixPl,nk into the form of information filtering for nonlinear
system model. According to [27], the Kalman gain Kl,n

k and
the predicted measurement covariance matrix Pl,nzz,k|k−1 is
defined by

Kl,n
k =

(
Yl,n
k

)−1
Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1 (41)
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Pl,nzz,k|k−1 =
(
Pl,nxz,k|k−1

)T
Yl,n
k|k−1P

l,n
xz,k|k−1 + Rn

k (42)

According to [11], the information matrix of CIF is defined
by

Yl,n
k = Yl,n

k|k−1 + Yl,n
k|k−1P

l,n
xz,k|k−1(R

n
k )
−1

·

(
Pl,nxz,k|k−1

)T
Yl,n
k|k−1 (43)

Substitute (43) into (41), the information filtering form of
Kalman gain Kl,n

k is given by

Kl,n
k =

(
Yl,n
k|k−1 + Yl,n

k|k−1P
l,n
xz,k|k−1(R

n
k )
−1
(
Pl,nxz,k|k−1

)T
· Yl,n

k|k−1

)−1
Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1 (44)

MultiplyYl,n
k to both sides of (38) to obtain information state

vector

ŷl,nk = Yl,n
k X̂l,n

k|k−1 + Yl,n
k Kl,n

k

(
Zl,nk −

(
1− β ln0

)
Ẑl,nk|k−1

)
(45)

where ŷl,nk = Yl,n
k X̂l,n

k .
Substitute (43) and (41) into (45), the equivalent form of

(45) is given by

ŷl,nk = ŷl,nk|k−1 + Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1

·

(
Zl,nk −

(
1− β ln0

)
Ẑl,nk|k−1

+

(
Pl,nxz,k|k−1

)T
Yl,n
k|k−1X̂

l,n
k|k−1

)
(46)

Denote

ĩl,nk = Yl,n
k|k−1P

l,n
xz,k|k−1

(
Rn
k
)−1

·

(
Zl,nk −

(
1− β ln0

)
Ẑl,nk|k−1

+

(
Pl,nxz,k|k−1

)T
Yl,n
k|k−1X̂

l,n
k|k−1

)
(47)

Then information state vector ŷl,nk is defined by

ŷl,nk = ŷl,nk|k−1 + ĩl,nk (48)

Next, readjust the error covariance matrix Pl,nk of state esti-
mation into the form of information filtering and substitute
(42) into (39)

Pl,nk = Pl,nk|k−1 −Kl,n
k

×

((
1− β ln0

)
Pl,nzz,k|k−1 −P̃

l,n
zz,k|k−1

)
·

(
Kl,n
k

)T
= Pl,nk|k−1 −Kl,n

k

((
1− β ln0

)((
Pl,nxz,k|k−1

)T
Yl,n
k|k−1

·Pl,nxz,k|k−1 + Rn
k

)
−P̃l,nzz,k|k−1

) (
Kl,n
k

)T
(49)

Transform P̃l,nzz,k|k−1 into the form of nonlinear and substitute
(19) into (40)

P̃l,nzz,k|k−1 =
m0∑
j=1

β lnj

(
Ẑnk,j − Ẑl,nk|k−1

)(
Ẑnk,j − Ẑl,nk|k−1

)T
−

(
Zl,nk − Ẑl,nk|k−1

) (
Zl,nk − Ẑl,nk|k−1

)T
(50)

Let

Ml,n
k =

(
1− β ln0

)((
Pl,nxz,k|k−1

)T
Yl,n
k|k−1P

l,n
xz,k|k−1 + Rn

k

)
− P̃l,nzz,k|k−1 (51)

According to the matrix inversion lemma, equation (49) is
written as

Yl,n
k

=

(
Pl,nk|k−1 −Kl,n

k Ml,n
k

(
Kl,n
k

)T)−1
=

(
Pl,nk|k−1

)−1
+

(
Pl,nk|k−1

)−1
Kl,n
k

((
Ml,n

k

)−1
−

(
Kl,n
k

)T
·

(
Pl,nk|k−1

)−1
Kl,n
k

)−1(
Kl,n
k

)T(
Pl,nk|k−1

)−1
= Yl,n

k|k−1 + Yl,n
k|k−1K

l,n
k

((
Ml,n

k

)−1
−

(
Kl,n
k

)T
Yl,n
k|k−1

·Kl,n
k

)−1(
Kl,n
k

)T
Yl,n
k|k−1 (52)

where Yl,n
k =

(
Pl,nk

)−1
. Let

Gl,n
k = Yl,n

k|k−1K
l,n
k

[(
Ml,n

k

)−1
−

(
Kl,n
k

)T
Yl,n
k|k−1K

l,n
k

]−1
·

(
Kl,n
k

)T
Yl,n
k|k−1 (53)

Then information matrix Yl,n
k is defined by

Yl,n
k = Yl,n

k|k−1 +Gl,n
k (54)

Finally, for target l, the state estimation X̂l,n
k at time step k is

given by

X̂l,n
k =

(
Yl,n
k

)−1
ŷl,nk (55)

REFERENCES
[1] J. Cao, J. Liu, J. Wang, and X. Lai, ‘‘Acoustic vector sensor: Reviews

and future perspectives,’’ IET Signal Process., vol. 11, no. 1, pp. 1–9,
Feb. 2017.

[2] M. J. Berliner, J. F. Lindberg, and O. B.Wilson, ‘‘Acoustic particle velocity
sensors: Design, performance, and applications,’’ Acoust. Soc. Amer. J.,
vol. 100, no. 6, pp. 3478–3479, 1996.

[3] Y. Wang, J. Li, and Q. Sun, ‘‘Coordinated target tracking by dis-
tributed unscented information filter in sensor networks with mea-
surement constraints,’’ Math. Problems Eng., vol. 2013, Sep. 2013,
Art. no. 402732.

[4] X. Zhong, A. B. Premkumar, and H. Wang, ‘‘Multiple wideband acous-
tic source tracking in 3-D space using a distributed acoustic vec-
tor sensor array,’’ IEEE Sensors J., vol. 14, no. 8, pp. 2502–2513,
Aug. 2014.

VOLUME 7, 2019 151865



J. Zhang et al.: Advanced Cubature Information Filtering for Indoor Multiple Wideband Source Tracking With a DNSE

[5] M. Hawkes and A. Nehorai, ‘‘Wideband source localization using a
distributed acoustic vector-sensor array,’’ IEEE Trans. Signal Process.,
vol. 51, no. 6, pp. 1479–1491, Jun. 2003.

[6] X. Zhong and A. B. Premkumar, ‘‘Multiple wideband source detec-
tion and tracking using a distributed acoustic vector sensor array:
A random finite set approach,’’ Signal Process., vol. 94, pp. 583–594,
Jan. 2014.

[7] Y. Liu, J. Liu, G. Li, L. Qi, Y. Li, and Y. He, ‘‘Centralized multi-sensor
square root cubature joint probabilistic data association,’’ Sensors, vol. 17,
no. 11, p. 2546, Nov. 2017.

[8] N. F. Sandell and R. Olfati-Saber, ‘‘Distributed data association for multi-
target tracking in sensor networks,’’ in Proc. 47th IEEE Conf. Decis.
Control, Dec. 2008, pp. 1085–1090.

[9] Y. Chen, Q. Zhao, and R. Liu, ‘‘A novel square-root cubature information
weighted consensus filter algorithm for distributed camera networks,’’Acta
Electronica Sinica, vol. 44, no. 10, pp. 2335–2343, 2016.

[10] Y. Chen, Q. Zhao, Z. An, P. Lv, and L. Zhao, ‘‘Distributed multi-target
tracking based on the K-MTSCF algorithm in camera networks,’’ IEEE
Sensors J., vol. 16, no. 13, pp. 5481–5490, Jul. 2016.

[11] K. Pakki, B. Chandra, D.-W. Gu, and I. Postlethwaite, ‘‘Cubature
information filter and its applications,’’ in Proc. Amer. Control Conf.,
Jun./Jul. 2011, pp. 3609–3614.

[12] Y. Chen and Q. Zhao, ‘‘A novel square-root cubature information weighted
consensus filter algorithm for multi-target tracking in distributed camera
networks,’’ Sensors, vol. 15, no. 5, pp. 10526–10546, 2015.

[13] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
‘‘Consensus-based linear and nonlinear filtering,’’ IEEE Trans. Autom.
Control, vol. 60, no. 5, pp. 1410–1415, May 2015.

[14] J. Zhao and L. Mili, ‘‘A framework for robust hybrid state estimation
with unknown measurement noise statistics,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 5, pp. 1866–1875, May 2018.

[15] A. P. Sage and G. W. Husa, ‘‘Algorithms for sequential adaptive estima-
tion of prior statistics,’’ in Proc. 8th Decis. Control IEEE Symp. Adapt.
Processes, Nov. 1969, p. 61.

[16] Q. Song and R. Liu, ‘‘Weighted adaptive filtering algorithm for car-
rier tracking of deep space signal,’’ Chin. J. Aeronaut., vol. 28, no. 4,
pp. 1236–1244, 2015.

[17] S. Peng, C. Chen, H. Shi, and Z. Yao, ‘‘State of charge estimation of
battery energy storage systems based on adaptive unscented Kalman filter
with a noise statistics estimator,’’ IEEE Access, vol. 5, pp. 13202–13212,
Jul. 2017.

[18] H. Yu, X. Wei, S. Song, and M. Liu, ‘‘Relative motion estimation
of non-cooperative spacecraft based on adaptive CKF,’’ (in Chinese),
Acta Aeronautica et Astronautica Sinica, vol. 35, no. 8, pp. 2251–2260,
2014.

[19] W. Li, G. Wei, F. Han, and Y. Liu, ‘‘Weighted average consensus-
based unscented Kalman filtering,’’ IEEE Trans. Cybern., vol. 46, no. 2,
pp. 558–567, Feb. 2016.

[20] Q. Tan, X. Dong, Q. Li, and Z. Ren, ‘‘Distributed event-triggered cubature
information filtering based on weighted average consensus,’’ IET Control
Theory Appl., vol. 12, no. 1, pp. 78–86, Jan. 2018.

[21] Q. Chen,W.Wang, C. Yin, X. Jin, and J. Zhou, ‘‘Distributed cubature infor-
mation filtering based on weighted average consensus,’’ Neurocomputing,
vol. 243, pp. 115–124, Jun. 2017.

[22] A. Nehorai and E. Paldi, ‘‘Acoustic vector-sensor array processing,’’ IEEE
Trans. Signal Process., vol. 42, no. 9, pp. 2481–2491, Sep. 1994.

[23] M. Hawkes and A. Nehorai, ‘‘Acoustic vector-sensor beamforming and
capon direction estimation,’’ IEEE Trans. Signal Process., vol. 46, no. 9,
pp. 2291–2304, Sep. 1998.

[24] Y. Bar-Shalom, F. Daum, and J. Huang, ‘‘The probabilistic data
association filter,’’ IEEE Control Syst., vol. 29, no. 6, pp. 82–100,
Dec. 2009.

[25] J. Sun, X. Xu, Y. Liu, T. Zhang, and Y. Li, ‘‘FOG random drift sig-
nal denoising based on the improved ar model and modified Sage-
Husa adaptive Kalman filter,’’ Sensors, vol. 16, no. 7, p. 1073,
Jul. 2016.

[26] J. Meng, G. Luo, and F. Gao, ‘‘Lithium polymer battery state-of-charge
estimation based on adaptive unscented Kalman filter and support vector
machine,’’ IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2226–2238,
Mar. 2016.

[27] Y. S. Kim, J. H. Lee, H. M. Do, B. K. Kim, T. Tanikawa, K. Ohba,
G. Lee, and S. H. Yun, ‘‘Unscented information filtering method for reduc-
ing multiple sensor registration error,’’ in Proc. IEEE Conf. Multisensor
Fusion Integr. Intell. Syst. (MFI), vols. 1–2, Aug. 2008, pp. 326–331.

JIAHAO ZHANG is currently pursuing the Ph.D.
degree with the School of Automatics, Northwest-
ern Polytechnical University, China. His research
interests include control theory and engineering,
navigation, guidance, and control, target tracking,
signal processing, and information fusion.

SHESHENG GAO is currently a Professor with
the School of Automatics, Northwestern Poly-
technical University, China. His research interests
include control theory and engineering, naviga-
tion, guidance, and control, optimum estimation
and control, integrated inertial navigation systems,
and information fusion.

YONGMIN ZHONG is currently a Senior Lec-
turer with the School of Aerospace, Mechanical
and Manufacturing Engineering, RMIT Univer-
sity, Australia. His research interests include vir-
tual reality and haptics, soft tissue modeling and
surgery simulation, robotics, mechatronics, opti-
mum estimation and control, and integrated nav-
igation systems.

XIAOMIN QI received the B.Sc. degree in elec-
tronic and information engineering from Henan
Normal University, in 2010, and the M.Sc. degree
in control theory and control engineering from
the Zhongyuan University of Technology, in 2014.
He is currently pursuing the Ph.D. degree in wire-
less communication with COMSATS University
Islamabad.

JUAN XIA is currently pursuing the Ph.D. degree
with the School of Automatics, Northwestern
Polytechnical University, China. Her research
interests include control theory and engineering,
navigation, guidance, and control, optimum esti-
mation and control, information fusion, target
tracking, and integrated navigation.

JIAHUI YANG is currently pursuing the Ph.D.
degree with the School of Automatics, Northwest-
ern Polytechnical University, China. Her research
interests include control theory and engineer-
ing, navigation, guidance, and control, and target
tracking.

151866 VOLUME 7, 2019


