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ABSTRACT Online Learning algorithms and Indoor Positioning Systems are complex applications in the
environment of cyber-physical systems. These distributed systems are created by networking intelligent
machines and autonomous robots on the Internet of Things using embedded systems that enable the exchange
of information at any time. This information is processed by Machine Learning algorithms to make decisions
about current developments in production or to influence logistics processes for optimization purposes.
In this article, we present and categorize the further development of the prototype of a novel Indoor
Positioning System, which constantly adapts its knowledge to the conditions of its environment with the
help of Online Learning. Here, we apply Online Learning algorithms in the field of sound-based indoor
localization with low-cost hardware and demonstrate the improvement of the system over its predecessor
and its adaptability for different applications in an experimental case study.

INDEX TERMS Fingerprint recognition, incremental learning, indoor localization, internet of things,
learning vector quantization, machine learning, online learning, signal processing.

I. INTRODUCTION

This paper presents the further development of an innovative
Indoor Positioning System (IPS). IPS gain more and more
importance with the increasing development of the Internet
of Things (IoT). Industrial applications such as

« autonomous robots in smart factory environments,
« warehouse management applications for large devices or
« automated repacking stations

require information about positions of participating compo-
nents in a life-long learning [1], [2] application to enable Al
resource-conserving optimization. The quality of the position
information such as accuracy, real-time capability and effi-
ciency is directly related to the possibility of saving resources.
The necessary costs for purchasing and operating the required
devices influence the cost-effectiveness of the applications
and thus their acceptance by industrial companies. In [3],
accuracy and costs of the most popular IPS are compared.
The paper concludes that there is still no satisfactory overall
solution because accurate solutions are expensive or cannot
localize in real time while cheap IPS are inaccurate. Further-
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more, most recent technologies are based on triangulation and
therefore require multiple, often expensive, devices. In addi-
tion, centimeter-scale technologies are either expensive or
prone to failure. In this paper, we present an alternative tech-
nology that promises to yield outstanding results with cost-
effective hardware aiming at replacing existing technologies
in the long run, which often require high maintenance and
acquisition costs while at the same time offering medium
quality services. Regarding the required hardware, we only
use a single $2 electronic microphone, a single ordinary loud-
speaker and the WiFi-capable ESP8266 based loT-Kit Octo-
pus [4] and improve localization performance by combining
efficient Machine Learning (ML) algorithms like K-Nearest-
Neighbor (KNN), K-Means and Learning Vector Quantiza-
tion (LVQ) in a distributed cloud application. We apply these
algorithms to room impulse response (RIR) records, which
depend on the position of the microphone, the room geometry
and the setup of the room. If the environmental conditions
remain constant, the suitability of the RIR for localization
becomes apparent.

Figure 1 schematically shows the relationship between the
RIR and the position of the recording device. As the micro-
phone moves away from the loudspeaker, the time required
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FIGURE 1. Schematic illustration of the room impulse response, the direct
sound (red) reaches the microphones earlier with a higher amplitude than
the first reflections (green and blue) due to signal propagation theory [4].
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FIGURE 2. Comparison between standard RIR and RIR after room change.

for the signal to reach the microphone increases and the
measured intensity decreases. The Direct Sound (red impulse)
reaches the microphone first, the First Reflections (green and
blue impulse) are received later and weaker due to the larger
distance and the energy loss due to acoustic reflection. The
locations of microphones 1 and 2 can be distinguished based
on the different RIR s1(¢) and s5(7).

Figure 2 shows two RIRs for the same position, while the
right RIR is affected by a major room change. The plots show
2000 measured values recorded over a period of 0.2 seconds
at a sampling rate of 10 kHz. Based on this information,
a rule-based algorithm could be used to locate the micro-
phone, but it would be highly susceptible to interference
if changes were made in the room. Therefore, we investi-
gated the use of algorithms of Unsupervised Learning (UL)
and Supervised Learning (SL) that use Online Learn-
ing (OL) at runtime to adapt to changes in the localization
environment.
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A. RELATED WORK

We already demonstrated the applicability for static room
setups [4] in 2018, where we extend a nature-inspired method
[5] without need for high spatial accuracy or big microphone
arrays which is inspired by [6] and [7] and uses K-Means
generated representative prototypes in a KNN model. With
this model, an 88 % success rate can be achieved in dis-
tinguishing 16 squares with a side length of 15 cm on a
60 cm x 60 cm table top. Since the classification relies
on the RIR, which depends not only on the position of the
microphone but also on the room geometry and the objects
in the room, this method only works in very similar room
configurations thus only being conditionally suited for real
applications.

In order to counter these problems, a learning algorithm
is used to adapt to room changes at runtime. Therefore,
a combination of batch learning and OL [8] based on LVQ is
used to address the problem of the stability plasticity dilemma
[9], [10], which describes the problem of a learning system
to preserve acquired knowledge while at the same time new
knowledge is being built up. In this offline online learning
architecture (OOLA), basic knowledge is acquired to achieve
stability in a batch learning process before runtime (offline).
In the case of sound-based indoor localization (SBI), this is
achieved by initially learning the RIR from different positions
in space using fingerprinting procedures. In order to realize
the plasticity at runtime, the algorithm learns step by step,
which is realized by the use of LVQ (online). The combina-
tion of the procedure is performed by a dynamic selection
strategy, which uses information from both knowledge bases
for a decision.

B. CONTRIBUTION

We extend the functionality of our IPS with low-cost hard-
ware for more complex environments and improve the quality
of positioning in static environments. Therefore, we adapt the
described OOLA to the problem of our RIR based IPS and use
LVQ to improve our initial prototypes depicting the classifi-
cation model for static room setups. Further, we classify our
system among other IPS.

C. STRUCTURE

Section II gives an overview of existing IPS and classifies
ours regarding the given criteria. It gives a short overview of
the applied algorithms and a simulation of their behaviour.
Section IIT describes the components of the learning archi-
tecture and reviews the functionality by a case study of our
IPS. Section IV summarizes the results and gives an outlook
on further developments.

D. NOTATION

Vectors are indicated by bold letters x, matrices by bold cap-
ital letters M, transpositions are indicated by x” or M7 . Sets
are marked with calligraphic font, e.g. S, their cardinality is
expressed by |S|.
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Il. IPS AND SIMULATION

In this section, we give a short overview about existing IPS
and present our method, further we describe simulations of
the used algorithms.

A. IPS
The survey [3] compares existing IPS in 2017. They evaluate
current approaches based on audible sound with an accuracy
in the range of meters as inaccurate. First positioning experi-
ments by evaluation of the RIR provide promising results in
the decimeter range [4]. Other presented methods allow more
precise positioning, but require a high amount of resources
in the form of high-quality hardware or complex algorithms.
The required routers for WiFi-based methods are usually
available anyway, but must still be included in the resource
calculation. Our approach only requires a few inexpensive
devices and computers of average performance:

o a MAX4466 microphone to be located,

« an ordinary speaker giving the signal,

« ausual ESP8266 based controller board,

« and a common i5-laptop.

The survey [3] proposes a classification of the IPS accord-
ing to the following three main criteria:

1) signal carrier - distinction between radio, light, sound
or magnetic waves

2) signal processing - distinction between active and pas-
sive systems

3) signal structure - distinction between signals with and
without embedded information.

If the mobile device receives a signal and the signal is pro-
cessed by peripheral devices, this is referred to as active sig-
nal processing. Passive systems are characterized by mobile
devices that process a received signal to determine their own
position. Since the SBI uses the RIR, the mobile device
receives a signal sent by the infrastructure, which is a criteria
for passive signal processing. However, since this signal is
evaluated after a transmission in the periphery, the proce-
dure is classified as active signal processing. Signals with
embedded information contain coded information, which can
be used to estimate the location, e.g., device codes in light
bulbs or time stamps in GPS [3]. Accordingly, the present
methodology can be categorized as

1) a sound based locating method with
2) active signal processing
3) without embedded information.

The technique used in this work can be described as a combi-
nation of fingerprinting and evaluation of the signal propaga-
tion behaviour. Fingerprinting is already used in applications
with WiFi, Bluetooth or magnetic waves. At first, a map of
signal recordings (fingerprints) is created. This map allows
conclusions to be drawn about the position by comparing
stored data with the data to be localized [11]. Frequently
Kalman or particle filters are used to filter out unwanted
interference through the suppression of superimposition and
noise [12]. Signal propagation deals with the behaviour of
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FIGURE 3. Experimental setup, the twelve blue squares depict the
locating range, the book represents the obstacle which changes the RIR
of the room. The measurements are carried out along the cable duct
(x-direction) centimetre by centimetre row by row (y-direction).

signals during their propagation in space. The strength of the
signal decreases with distance, walls and obstacles lead to
reflections and interference. The IPS discussed in this article
uses this signal behaviour to distinguish different positions
by means of automatic learning procedures. To the best of
our knowledge, there is no similar methodology for indoor
positioning. The listed sound-based methods mainly work via
direct evaluation of signal propagation, mostly using mul-
tilateral methods that rely on signal propagation durations
(e.g., time of flight) for position determination. A passive
method [13] based on fingerprinting of audio recordings com-
pares background noise from rooms and is not comparable in
its accuracy. It is stated in [3] that no satisfactory solution
has yet been found in the area of interior location. Precise
technologies are too expensive or do not provide results in
real time.

B. LOCALIZATION SCENARIO

The core of the experiment is the localization of a microphone
on a table using ML methods. The data required for this
is generated by a loudspeaker repeatedly transmitting the
same signal, which is recorded by a microphone at different
positions on the test table. Figure 3 shows the table used
with a 90 cm x 60 cm table top. The loudspeaker is fixed
on the right side of the table and transmits its signal over
the locating range in the direction of a reflecting wall to the
left. To avoid possible ambiguity due to room symmetry,
the loudspeaker is positioned at an angle of approximately
10° to the reflecting wall. The locating range corresponds to
a 20 cm x 60 cm area 30 cm in front of the loudspeaker,
which is divided into twelve squares with an edge length of
10 cm. The experiment is carried out in an ordinary office of
6 m x 3 m x 2.5 m size, in which furnishings for two persons
are placed. The aim of the SL algorithm is to assign the
distinctible recordings of the microphone to one of the twelve
areas in order to estimate the position of the microphone.
To do this, the MAX4466 microphone is placed centimetre by
centimetre in each of these twelve fields to produce a labeled
comparison recording (fingerprinting). To ensure uniform
alignment across all recordings and to improve positioning
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TABLE 1. Order of recordings related to position and label of area.

Number Length x [cm] | Width y [cm] Label
1,2,3 1 1 1
28,29, 30 10 1 1
31,...,60 11,...,20 1 2
151,...,180 | 51,...,60 1 6
181,...,360 | 1,...,60 2 1,...,6
1621,...,1800 | 1,...,60 10 1,...,6
1801,...,3600 | 1,...,60 | 11,...,20 | 7,...,12

accuracy, the microphone is mounted on the sliding cover of
a cable duct. This cable duct can be moved parallel to the
wall via two angles. Both sides of the table and the cable duct
cover were calibrated for centimetre accurate positioning of
the microphone. The recording of the microphone positions
serves the subsequent visualization and evaluation of the
results and the generation of the labels within the frame-
work of SL. During test execution, the microphone cable
is mounted inside the cable duct with the IoT-Kit Octopus
attached to the underside of the table in order to avoid possible
interference of the RIR by obstacles.

The centimeterwise distribution of the RIR recording over
the locating range results in the amount of [ys = 1200
different positions (100 per 10 cm x 10 cm square, see
Figure 3). At each position, three recordings are taken to
obtain sufficient training and test data. Due to physical condi-
tions, hardware characteristics of the devices used, and noise,
the three recordings at the same position are not identical,
but have a similar profile. We use the first instance of each
position as training data. In order to simplify processing and
guarantee or improve accuracy, all recordings were taken in
rows along the 60 cm long x-direction (along the cable duct)
row by row along the 20 cm y-direction depicted in Figure 3.
This leads to 180 recordings each row, in the order depicted
in Table 1.

This is repeated the first ten rows, representing the width of
the locating range. From the eleventh row, the same procedure
is repeated for labels 7-12, leading to a total of 3600 record-
ings. After the introduction of a room change by an obstacle,
the changed RIR is recorded again three times at the same
1200 positions in the same order to generate the online test
data of 3600 additional files in the same order.The order also
plays a role when testing the algorithm, since the test data
vectors are classified in this order.

1) SIGNAL GENERATION

The signal is generated by means of an audio file over an ordi-
nary loudspeaker, which is driven by the peripheral computer.
The audio file is created by a Matlab script. The lower cutoff
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frequency or Schroeder frequency fschroeder 1S for a room with
avolumeof V=1-b-h=3m-6m-25m=45m>anda
reverberation time 7y = (0.2 s approximately:
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In a heuristic procedure, however, the frequency of 100 Hz
was determined. After the user presses a button on the
IoT-Kit, the data acquisition process begins. The IoT-Kit
sends a Message Queuing Telemetry Transport Proto-
col (MQTT) message using topic play to the peripheral com-
puter, which triggers playback of the audio file. Figure 4
illustrates the machine to machine (M2M) communication for
data acquisition.

SSchroeder = 2 kHz -

2) SIGNAL RECORDING

The generated audio file containing a 100 Hz sine sound
of 1 ms duration is played by a distributed cyber-physical
system (CPS) [14]. Since this requires a certain amount of
transmission and processing time, the IoT-Kit waits a heuris-
tically determined waiting time span until the recording starts.
This waiting time ensures synchronization between recording
and playback of the signal. The recording time 7, = 1 second
with a sampling rate of f; = 10 kHz, resulting in the length
of the raw data /.,y = 10000 measured values. We store all
sampled measurements s(rm7) in a vector

v =[s(T), s2T), ..., s(awT)]" 2)

which represents the raw data of a recording [4].

3) DATA TRANSMISSION

After recording, the data is sent to the cloud for storage
and further processing via MQTT topic transmit. Due to
limited storage ressources on the IoT-Kit, we store the mea-
sured values in a Byte array, where each value is represented
by 2 Bytes. Regarding the maximum MQTT payload size
of 1 kByte each message, we split the 20000 Bytes into
20 MQTT packages to be transmitted. Function byte_to_int
calculates integer values from the submitted bytes. This
allows us to leverage the maximum capacity of our IoT-Kit
by outsourcing complex calculations and data structures.

4) DATA PREPROCESSING

After the data transfer is complete, the IoT-Kit sends a com-
mand in topic convert to trigger the create.csv node that runs
a Python script to merge the 20 generated plain text files into
a valid.csv file to convert the received data into a suitable
format for further processing. To limit the amount of data,
a Matlab script cuts 0.2 seconds from the recording of the
pulse to create the work data from the raw data. In order
to cut the most informative 0.2 s, we search for the highest
peak, and cut shortly before that to extract the following
Iwork = 2000 values of the recording. After standardisation
of these values, they serve as the work data x and basis for the
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FIGURE 4. M2M via MQTT, after triggering the speaker (1) of the peripheral device, the sound is recorded (2) by the mobile device. The transmission (3)

will be preprocessed and evaluated (4) to locate the microphone.

formation of the long-term memory (LTM). We formalize a
work data vector x, by:

X Lyork ) 3

where n = ., 3600 is the sequential number of the
recording and entries of x,, are in the range of [—1; 1]. We for-
malize the training data set M as a matrix of column-wise
arranged work data vectors x, by

an[xngl,---a

X1;1 X4;1 X7;1 X3598;1
M = : : : : 1@
x1§lw0rk x4§lw0rk

x7§lw0rk x3598;lwork
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and the Offline Setup Test Data as matrix OffDatal starting
with x7.1, and OffData2 starting with x3.; using the second,
respectively third instance of the work data from the three
recordings at each position. This way, we build a similar, not
equal test set simulating the offline scenario, when no room
change is applied. The Online Setup Test Data, simulating
the online case of a changed room setup by an obstacle in
the locating range (see the book in Figure 3), OnDatal,
OnData2 and OnData3 are structured in the same way. Since
no training data is required as the algorithm learns while
testing, we can use all three instances for testing purposes.
The five test data sets will be handed over to the OOLA via

VOLUME 7, 2019



R. Machhamer et al.: Online Offline Learning for SBI Using Low-Cost Hardware

IEEE Access

O£, which incrementally transfers each single test data vector
one after another to the classification algorithm.

C. ALGORITHMS

In this subsection, we describe the basic algorithms used and
simulate the behaviour of LVQ.

1) K-Means

Since we work with limited resources, we first calculate
twelve representative prototypes from each 100 training
records per area using K-Means [15], resulting in the amount
of lyro = 144 prototypes for the L = 12 areas. K-Means
splits the passed set of 100 data vectors in twelve groups
also known as Cluster and returns their centers which we use
for further classification. The calculation of clusters leads

Algorithm: K-Means
Input: Matrix M; number of Clusters &

Choose k random data vectors from M as initial new
prototypes, set old prototypes as empty matrix

while new prototypes are not old prototypes do
for every point in M find the closest prototype

Set new prototypes as the centroids of those assigned

to the k old prototypes
end

Output: k prototypes of M

to a small loss of information, a so-called in-sample error,
which we accept in order to increase computational effi-
ciency [5]. The in-sample error describes error of the model
based on the training data. We reach classification rates of
about 98 % (2 % in-sample error) in our example, which is a
fair trade-off for minimizing the model from 1200 instances
to 144. Cross-validation, by using the second instance of the
three recordings at each position as training data set, leads to
similar results. In this paper, our results refer to the use of
the first instance of the three recordings at each position as
training data.

2) KNN

The 144 K-Means generated representative prototypes are
labeled according to their twelve origin areas. They have the
same structure as the work data x,,, renamed to pj:

Pn = [pn;lv s ,Pn;lw‘,rk] (5)

where n = 1, ..., 144 and entries of p, are in the range of
[—1; 1] due to standardization. However, they are assigned to
an area by means of a label [, € {1,...,L} = L and thus
form the model of a KNN-algorithm [16], the LTM C%_Means,
given by:

L
CK—Means
C C C C
Py Pzt P 0 Prasn
— . . . . . . , (6)
C C C C
p1s§lwork o p12§lwork p13§lwork o p144§lwork
1 ... 1 2 ... 12
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is formally represented as follows:
C C
[: p e p
CK—Means = ( ]1 o 1{"3) ’ (7)

where the superscript C inidicates the Constant, unchanged
LTM. The LTM is used to decide, which of the prototypes,
respectively label or area, is most similar to the test data to
classify and locate the microphone in a special area. There-
fore, the SL algorithm compares a new signal with the set
of all labeled prototypes and determines the K next records
based on a selected criterion, e.g. the Euclidean Distance.
KNN checks the classes (labels) of those K determined

Algorithm: KNN

Input: Labeled matrix C'C; new sample Xq

Find the K nearest neighbors to xo from ct
Identify the class with the majority of the K points

Output: Class for sample xg

nearest neighbors and assigns the most frequently occurring
class to the signal to be classified to estimate its position.
Since the possible classes are directly related to a defined
position, the position of the data record is determinedWe
already performed the combination of K-Means and KNN
in [4], resulting in about 88 % correct classifications applied
on a 60 cm x 60 cm field on a table divided in 16 areas
of 15 cm x 15 cm. The measuring points were intuitively
distributed in a star shape in the squares, which we verify to
the nearest centimeter in this paper.

This method, also known as lazy learner, has advantages
with regard to the complexity of the algorithm used and thus
the runtime. KNN algorithms are also particularly suitable for
SBI by evaluating the RIR,

« because they’re able to directly classify by multiple
groups,

« from the evaluation of neighbors, resistance to distant
outliers arises,

« since their input is only the training data, a KNN can be
adapted to new training objects by OL.

3) LVQ

The left part of Figure 5 visualizes the classification of a
simulation with 400 two-dimensional, randomly generated
dummy data vectors assigned to four groups. The small points
represent the data sets, the large points represent calculated
prototypes, crosses in the respective colors represent the
classification of the data sets based on the model of the cal-
culated prototypes. The calculation of the 12 representative
prototypes of each group causes a lack of information which
leads to misclassifications of the training data (in-sample
failure). If only K-Means is used to calculate the prototypes,
the classification of the training data results in 95.25 %
correct predictions. Especially in the border areas (solid black
lines) errors often occur, see orange circles. The right picture
shows an incremental manipulation of the prototypes using
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FIGURE 5. Improving K-Means with LVQ, the right plot right shows the
moved representative prototypes and classification improvements.
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FIGURE 6. LVQ processed in online (left) and batch (right) mode [19].

LVQ leading to less faulty classifications. The prototypes
were shifted in 25 incremental learning processes so that
the classification is 100 % correct. The effect is particularly
noticeable in the right center of the image, at the border
between the purple and green areas. The LVQ [17] is another
supervised classification method using a set of representative
prototypes. First, the prototypes are initialized randomly.
Then the nearest prototype is determined per data vector.
If the class of the determined prototype corresponds to that of
the data vector, the prototype is shifted in the direction of the
current data vector. If the classes are different, the prototype
is shifted in the opposite direction. The strength of the shift
is controlled by a factor «(t), the so-called learning rate,
which decreases depending on the time until all data vectors
are processed or an abort criterion is fulfilled [18]. Figure 6
illustrates the process using the example of three randomly
selected prototypes in the upper left corner and three sets of
training vectors. The adjustment is done

« in the left picture by an incremental learning procedure
with a learning rate of o = 0.05,

« in the right picture by a batch learning procedure with a
learning rate of « = 0.1 [19].

In batch learning, the prototypes are updated only after
all data vectors have been processed, in incremental learn-
ing, the prototypes are updated after each training pat-
tern [19]. LVQ have already been extensively modified for
the implementation of incremental learning methods [20].
One approach is to update the prototypes only if the influ-
encing training pattern lies at one of the decision boundaries
between the classes concerned. A basic LVQ in [21] defines

155094

Algorithm: LVQ

Input: Labeled matrix M¥~; new sample x;

Find the nearest neighbor to x; from M~£

if both belong to same class then

|  Shift this neighbor to x;
else

| Shift this neighbor away from x;
end

Output: M~ with shifted data set

a factor s by
: (dl dr
min( —

e d_) > s, where di,dy #0, ()
2 1

and controls in which cases an update takes place.
LVQ 2.1 does not meet the convergence criterion, but pro-
vides a suitable entry point to make more complex extensions
easier to understand. The distances d; and d, represent the
length of the connection vectors to the nearest prototypes
(Euclidean distance). The distance to the next prototype pj
of the same class as x; is described by d;. The distance d»
represents the distance to the next prototype p; of a class
different from x;.

dy = |x; — pjl
dy = |x; — pjl

ifl; =1, )
if 1 # 1. (10)

If d; and d; are almost equal, the minimum quotient is close to
onelf x; is closer to one of the two prototypes p; or p2, d; and
d; are further apart and therefore min(dy/d>, d2/dy) drops.
The appropriate choice of s can be used to control which
training patterns may trigger a learning process. Figure 7
illustrates the adjustment of the prototypes by LVQ 2.1. The
prototypes pj and p; are represented by the colored crosses,
red and blue dots mark the last 40 training patterns of the
respective classes red and blue. The black dots and lines
represent the positions and shifts of the prototypes during the

Plot 40 Plot 80 Plot 120 Plot 160 Plot 200

FIGURE 7. LVQ simulation with moving representative prototypes
(abscissa: feature 1, ordinate: feature 2). When the test data sets switch
their positions, the prototypes start moving. The effect can be undone by
switching the test data positions again.
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last 40 learning phases. The learning rate « is given by

a=0.05+

100 + ¢ an
where ¢ stands for the actual number of updates. The time
factor ¢ is only increased if the prototypes are actually shifted,
further s = 0.5 was selected.

Plot 40 of Figure 7 shows the position of the prototypes
after the first 40 training patterns. The prototypes were initial-
ized at coordinates (2,2) and (2,7), the training patterns were
randomly generated with a maximum deviation of £1 around
the initial positions of the prototypes. Since the training pat-
terns of the red and blue class are always relatively close to
their prototypes, weak shifts (black lines) of the prototypes
rarely occur because s < 0.5 most of the time.

If the training patterns change their labels, as in Plot 80
and Plot 120 of Figure 7, the effect of the shift is more
pronounced. The prototypes learn their new position from
the labeled training patterns and forget the old one. So they
adapt to the new conditions. By choosing s and « the speed of
the effect can be controlled. If the labels are reversed again,
as shown in Plot 160 and 200 of Figure 7, the effect can be
undone. According to this principle, the effects of changes in
space on the RIR can be learned.

In various other variants, the LVQ can be easily adapted
to the requirements of the application, e.g. the simultaneous
updating of several prototypes per training sample is possible.

A further extension which optimizes the displacement of
the prototypes is the Generalized Learning Vector Quantiza-
tion (GLVQ) developed by Sato and Yamada [21]. They show
that approaches of e.g. Kohonen [17] give good results, but do
not necessarily converge in the global optimum. By introduc-
ing a minimized cost function, the lowest possible error rate
is achieved.

Finally, Sato and Yamada introduce the Relative Distance
(x) with

di—dy
w(x) = At
where d is the distance to the next prototype of the same class
and d; the distance to the next prototype of another class.
Since d; describes the distance to the prototype of the same
class, u(x) becomes negative if the classification is correct.
To improve the error rate, w(x) should decrease over the
amount of data vectors entered similar to the factor s used in
the LVQ 2.1 procedure. Sato and Yamada propose a function
with a single maximum at © = 0, whose width decreases
with increasing time to ensure that prototype updates are only
performed at similar distances to the training pattern. The
intensity of the update depends on u, and thus on d; and d5.
By choosing p appropriately, the convergence criterion can
be met by this procedure.

(12)

D. SIMULATION RESULTS

While K-Means only calculates representative prototypes
from the existing training data with the same label, it car-
ries out a local optimization in the area. The shifting of
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the wrongly classified data sets of all labels by means of
LVQ results in a global consideration of all prototypes.
However, data sets in boundary areas represented by the
K-Means prototypes may be closer to prototypes of neighbor-
ing areas, causing errors in classification. The LVQ adjust-
ment shifts the prototypes of the boundary areas until all
training data sets are correctly classified (in some cases only
about 99 % could be reached) and thus obviously provides
a sharper separation in the boundary areas (see Figure 5).
In future tests of the OOLA, the success rates of classification
by LVQ-manipulated prototypes CfVQ, which correspond to
the slightly shifted pure K-Means prototypes CéMeanS, will
be compared. It is therefore examined if and how good these
manipulations affect the classification rate on test data sets.
To do this, a Matlab script adapts the previously selected
set of prototypes via LVQ and compares the classification
quotes. To investigate the stability of this effect, 60 sets of
prototypes are manipulated using LVQ and the classification
rates before and after are compared. The quotas are calculated
by the ratio of the amount of correct predictions divided by
total predictions. After evaluating the results, the following
values can be determined:

e Mmaximum quota gmax = 92.3 %

e minimum quota gmin = 89.2 %

e maximum improvement imax = 4.6 %

« minimal improvement ipi, = 0.8 %

« mean of the improvement ipmean = 2.5 %

The LVQ thus offers an opportunity to improve the K-Means
prototypes, which achieve positive results in all tested
cases with the same room conditions. On average about
2.5 % more data points can be classified correctly using
LVQ-manipulated prototypes CfVQ.

IIl. CASE STUDY - ONLINE OFFLINE LEARNING

In this section we first explain the components of the learning
architecture and how they work together until we present our
case study which helps understand the learning methodology.

A. ONLINE OFFLINE MEMORY

Even with improved prototypes, we still face the problem of
environmental change. When applying our Online Setup Test
Data (blue, red and yellow lines) from a changed environment
to this model, the classification rates drop sharply, as shown
in Figure 8. The colored lines show the ratio of so far correctly
classified to so far processed test data vectors. We still achieve
about 90 % correct classifications on our fingerprinting envi-
ronment data (Offline Setup Test Data, green and purple line),
but the classification rates of the LTM for online data are too
poor to be used in a real, changing environment.

Fischer et al. [8] emphasize the requirements of mod-
ern applications in the field of autonomous robots or driv-
ing systems for the use of incremental learning methods.
They refer to the complexity of human learning strategies,
which, despite the use of incremental methods, preserve
basic concepts or basic knowledge, but can nevertheless
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FIGURE 8. Classification quota of offline and online setup test data by
LTM, showing bad results for changed environments. The x-axis
represents the /pos = 1200 work data vectors defined in Section II-B,

the y-axis shows the ratio of so far correctly classified to so far processed
test data vectors.

quickly adapt to important changes. They raise the ques-
tion of how different mechanisms can be efficiently com-
bined to ensure stability and flexibility at the same time,
which are contradictory in their requirements. They address
the so-called Catastrophic Forgetting Effect (CFE) [22],
which occurs in incremental learning methods and describes
the forgetting of already learned knowledge through incre-
mentally acquired information. Another typical problem of
incremental methods, in which the concept of classification
(the relationship between input and output) changes, is also
dealt with. The so-called concept-drift is avoided by the
extension of a hybrid architecture, which consists of three
components [8]:

1) Akind of static LTM to avoid forgetting and thus ensure
stability. This classifier is generated by a batch learning
process at the beginning of runtime and is not subject to
any changes.

2) A flexible short-term memory (STM) as a second clas-
sifier, that starts without knowledge and adapts per-
manently and flexibly to the circumstances through
incremental learning in order to respond to conceptual
changes.

3) A decision element which compares the results of
the classifications, in order to control the output of
the OOLA and the training of the STM based on
this data.

The essential function of the LTM is to counteract the CFE.
By separating the batch process from the incremental process,
it can be ensured that changes to the prototypes through OL
do not affect the static knowledge. The static knowledge (o
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is generated before runtime in the described fingerprinting
process (Section II-C1 to II-D).

The rating of the prototypes in the STM and the selection of
the decision element, which of the two classifiers is responsi-
ble in the respective case, is made by evaluating the Relative
Similarity introduced in [23]. They negate w(x) from GLVQ
to the relative similarity relSim(x):

dy —dp
di+do

This formally expresses the quality of the classification. The
values of the relative similarity are rational numbers in the
range of [—1, 1] > relSim(x),

relSim(x) := —u(x) = — (13)

o Values of one indicate a high level of security for
the classification, since the distance (dj) to the pro-
totype of the class corresponding to the label of x
is small.

« values close to zero indicate a high degree of uncertainty,
since the distance to the next correct prototype is approx-
imately as large as the distance to the next incorrect
prototype.

« Values at minus one indicate a wrong classification.
The latter two are of special importance for online learning.
Since it makes no sense to learn already correctly classi-
fied vectors, the misclassified ones are especially interesting.
They provide the highest gain in information. To test the
OOLA we hand over the five test matrices

1) OnDatal,

2) OnData2,
3) OnData3,
4) OffDatal,
5) and OffData2

together with their origin labels described in Section II-B as
online learning test matrix O~ defined as:

o o
X .. X
ﬁ_ 1 Ipos
© _(110 15)’ (1

lpos

one after another. A test data vector x,? equals the recordings
Xn = [Xuls - oo Xnelon s the label 19 € {1,...,L}, with
n = 1,..., lps. These are classified by the LTM, which
leads to multiple misclassifications, but improves plastic-
ity by using the misclassified data vectors with their cor-
rect label (provided by SL) as additional prototypes in the
STM [24]. After building the STM, only prototypes that
cannot be correctly classified by both classifiers will be
learned. Due to limited resources, shortest possible comput-
ing time and the adaptability of the algorithm, prototypes
should also be removed from the STM when they are no
longer useful.

B. LEARNING AND FORGETTING

To evaluate their usefulness, the value of the relative similar-
ity is summed up per prototype in the STM, if it falls below
a certain value (here 0), the prototype is often responsible
for wrong classifications and should be removed from the
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FIGURE 9. Overview of the overall process, after data generation and preprocessing for training and test data creation, the LTMs are built up first. These

components are then used to test the OOLA.

STM [25]. In particular, the STM K% starts without any

knowledge, i.e. Kf = ), two mechanisms are used for the

generation of the incremental learned online knowledge:

1) add prototypes:
Based on the idea of [26], a Workbuffer W contains
incorrectly classified online test data vectors Xl.O as can-
didates for a promotion to a STM prototype, up to a max-
imum memory capacity e. They are stored together with
their correct label ll-O and the relative similarity value
relSimC(le) calculated under usage of the prototypes
of the LTM C% during classification. If the buffer is
full, the candidate with the smallest value of relative
similarity for each class occuring in W is stored in the
STM KZ£ as new prototype. This results in selecting
data sets that have a high uncertainty and therefore are
potentially useful.
2) remove prototypes:

Similar to [25] the usefulness of prototypes is evaluated
by their relative similarity. For this purpose each STM
prototype is assigned aparameter relSimX for the accu-
mulation of the relative similarities, which describes its
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usefulness for cost minimization. If a prototype repre-
sents the best matching unit (the nearest neighbor) for
a new data vector, the evaluated relative similarity is
added to this parameter. After a heuristically determined
number of m learned data vectors, all prototypes with
negative accumulated relative similarity are deleted.

The effects on the error rate of the classification are exam-
ined, regarding the number of processed data vectors m until
deletion, and the variable size e of the buffer W. Workbuffer
W is defined by:

W= i W, (15)
relSim}” relSim¥

where a candidate equals a column of W including:

o the vector x,zV , which equals the i-th processed online
test data vector OF(i) = xiO = [xl.;ol, A xi?lwork] of
the online test data matrix OE, which lead to the n’th
misclassification and therefore a negative relSimC(xlO),
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o the label l,fv e {l,...,L} = L is the label ll-o of this
processed test data vector,

e and relSimXV is the (negative) value of the relSim® (xlo)
calculated by the usage of the LTM C£, which leads
to relSime € [—1; O[ due to selection strategy of the
decision element, just adding prototypes with negative
values of relSim(xiO) as candidates,

withn € {1, ..., e}. The negative value serves as indicator of
the quality of test data vector O~£(i) to be added as candidate
with its origin label lio (given by the SL) and the negative
value relSim(xiO) to W. If e is reached, for each existing
label 1)V in W, the one of the candidates carrying this label
with the lowest relSim" will be promoted to a representative
prototype pgm 41 and therefore be added to the STM K~,
given by:

p{( ... pﬁd
K¢ = Koo X, (16)
relSimf relSimlIZCl

where ;¢ gives the amount of prototypes actually in KZ. The
added prototype plljm 1 consists of the following elements:

« the prototype pfa 41 equals the data vector x,v,V of the
candidate W(n) which became promoted to the proto-
type,

o the label lfcﬁl e {l,...,L} = Lis the label l,‘;v of this
promoted candidate,

e and relSimfd 41 1s the accumulated value added up over
all classification usages of this prototype,

with the initial value of the accumulated Relative Similarity
relSim,If = 0. Fischer et al. conclude in [8], that the appropri-
ate choice of the parameters depends on the use-case and the
complexity and accuracy of the resulting models. The STM
in the context of this work has the task of learning changes
in space, leading to a modified RIR. The test data vectors
Oﬁ(i) are classified by both classifiers CL and K% in the
hybrid OOLA. LTM C% and STM K% determine the values
relative similarities relSithemp(x?) and relSim{émp(x?) and
label lic and liK according to their prototypes. These values
are transferred to a decision algorithm, deciding

« which classification loy; will be output after evaluating
the relative similarities, choosing the label of the classi-
fier with the highest relSimgemp by,

C C
li

if rel&mtemp

(xio) > relSimfgmp(x?)

low = a7

liK else

o and whether the data vector is used to train the STM.
We add O%(i) to W if
— the LZG C¥ leaves a better result than the KZG KX

relSimfgmp(le) < relSithemp(le) <0, (18)

but both classifiers still fail,
— or if the LTM classification is worse than the classifi-
cation of the STM,

relSithmnp (XZQ) < relSimfgmp(x?) (19)
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TABLE 2. Relative similarities, classification decisions and their
reasons - plot 1 of figure 10.

Data | relSim® | relSim® | 1€ | 1K | loy
pX(1) 0.89 - 1] =71
pX(2) 0.89 -l27-712

x¢ 0.20 022 1|11

xJ | —020] —022] 2] 2 2

x§ —0.60 | —0.64 [ 2 [ 2 [ 2

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5
8 8 8 8 8
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3 pX(2) 3 3 o 3
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FIGURE 10. Effects of the existing prototypes for the Relative Similarity
and their effects on the selection of online learning prototypes pX
regarding just two areas (abscissa: feature 1, ordinate: feature 2). The
light red (p€ (1)) and light blue (p€(2)) crosses show the LTM C£
prototypes of the both areas 1 and 2. Dark red (pX (1)) and dark blue
(PX(2)) crosses show 5 hypotetic online learned prototypes. The light red

points x? — x9 are examples of test data vectors from area 1 (SL) to be

classified. Table 2 - Table 6 show the values of the different Relative
Similarities and decisions of the OOLA.

which generates many candidates with little chance to
get promoted,
— or if both classifiers leave no better result than 0.2

max (relSimG,,,(xP), relSimf, (x?)) < 0.2 (20)

to cover the areas of high uncertainity.

Due to limited resources and computational time issues,
we limit the amount of prototypes for each label to 13,
resulting in lyoon = 156 online prototypes pf , where
L,...,lproon. If a prototype of a label is to be
learned that already has the maximum number of prototypes,
the prototype with the actually lowest accumulated relSimX
is replaced by the new prototype.

n =

C. CLOSER LOOK AT THE RELATIVE SIMILARITY

The Relative Similaity plays the main role for the generation
of the STM K¥£. It is responsible for evaluating the value of
a test data vector to be stored in the Workbuffer W and is the
criteria for those candidates to be promoted to an OL vector
pX. As already mentioned, it makes no sense for the STM to
learn information already present in the LTM. Therefore, [8]
recommends learning data vectors which provide a negative
relSimC. Figure 10 shows five different setups for potential
OL vectors pX. In Plot 1 of Figure 10, the data vectors near
the LTM C¥ have been promoted and learned, even having a
high relSim® = 0.89 as summarized in Table 2.
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TABLE 3. Relative similarities, classification decisions and their
reasons - plot 2 of figure 10.

Data relSim® | relSim® | ¥ | 15 | low
p~(1) 0.49 -1 1
p(2) 0.49 - 2] 12

x¢ 0.20 023 1 [ 1] 1

x9 —020] —023| 2] 2] 2

x5 —0.60 | —052] 2] 2| 2

The classifications of the test data vectors xlo — xg) from

area 1 (with label 1) can be interpreted as follows:

o The test data vector X? is classified correctly (green

colored font in field / lC ) by the STM Kﬁ, but the LTM
would have lead to the same result anyhow, so the pro-
totype was kind of useless.

o The test data vectors x20 and x30 are classified wrong
(red colored font in field ll.C ), the STM can not provide
a better relSimX .

It can be said that learning test data vectors with high relative
similarities does not have a particularly beneficial effect.

Comparing the results of Table 3 confirms the observa-
tion, however, as the distance between the prototypes learnt
(pX (1) and pX (2)) and the LTM prototypes (p€ (1) and p€ (2))
increases, the relative similarities improve slightly.

Table 4 referring Plot 3 of Figure 10 shows no new insights,
but confirms the improvement of the relative similarities
especially for x30 .

Finally, Table 5 related to Plot 4 of Figure 10 shows the
intended effect, the learnt test data vectors which have been
classified wrong by the LTM lead to correct classifications
for x20 and x30.

Additionally, Table 6 related to Plot 5 of Figure 10 con-
firms the results. The learnt test data vectors which have been
classified wrong by the LTM lead to correct classifications
for xg and xg).

It can also be stated that the relSim® values for x? — xg)
remain constant, while the relSimX values improve when
using STM prototypes with negative relSimC. However, this
is only happening if those test data vectors have not already
been correctly classified by the LTM (see xlo). Selecting the
highest Relative Similarity according to equation (17) leads to
improvement of the overall number of correct classifications.

TABLE 4. Relative similarities, classification decisions and their reasons -
plot 3 of figure 10.

Data relSim€ | relSim®& lic liK lout
pX(1) 0.17 -1 ] =11
p~(2) 0.17 -2 7 -12

x¢ 0.20 017 [ 1 | 1 [ 1

x5 —020 ] —017[ 2] 2| 2

x§ -060 [ 023 2] 2] 2
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TABLE 5. Relative similarities, classification decisions and their reasons -
plot 4 of figure 10.

Data | relSim® | relSim¥ | (¢ | 1K | loy
pX(1) | —0.17 -l1]-12
pX(2) | —0.17 -2 =11

x¢ 020 =017 1| 1| 1

x9 —0.20 01722 [ 1

x5 —0.60 02312 ] 2] 1

TABLE 6. Relative similarities, classification decisions and their reasons -
plot 5 of figure 10.

Data | relSim® | relSim¥ | (¢ | 1K | lou
pX(1) | —0.89 -1 =712
pX(2) | —0.89 -2 =11

x¢ 020 —022 1] 1] 1

x5 —0.20 022221

x5 —0.60 064|212 1

D. CASE STUDY

Figure 9 shows the overall process with the components
involved. As part of Data Generation, 7200 individual.csv
files are generated, which represent RIR recordings. Dur-
ing Data Preprocessing, these recordings are processed to
the training data vectors in M and the offline test data
vectors in OffDatal and OffData2, respectively the online
test data vectors in OnDatal, OnData2 and OnData3 with
their associated labels. The first part of the learning section,
the Section Data Analysis - Offline Learning describes the
generation of both LTM the K-Means prototypes Cé»Means,
which are trained offline in batch mode by K-Means, and the
incrementally improved LVQ-manipulated prototypes CfVQ
to determine the suitability of LVQ for improving the clas-
sification quality of the LTM. The second part of the learn-
ing section, the Section Data Analysis - Online Learning
describes the OOLA, which is adapting to changes by eval-
uation of the STM K% without losing existing knowledge in
the LTM.

In order to compare the quality of the STM and to inves-
tigate the behaviour of the algorithms, the Matlab script
InitOOL.m loads the prepared data sets and calls the main
program OOL . m five times with different work data. This is
repeated in five different test cases C1-C5:

C1) Limitation of the number of prototypes to 13:
Each area (label) has a maximum of 13 prototypes pX in
the STM K~.

C2) Verification with 19 prototypes per label:
Increasing the maximum amount to 19 prototypes p
each label in the STM KZ to determine the trade-off
between improvement increased calculating time.

C3) Random order of test data:
Using 13 prototypes pX each area and bringing in the
test data vectors randomly instead of using the data
generation order described in Section II-B.

K

155099



IEEE Access

R. Machhamer et al.: Online Offline Learning for SBI Using Low-Cost Hardware

C4) Further criterion for the deletion of prototypes:
Using 13 prototypes pX each area determining, if the
deletion of the prototype, which was not involved in a
positive classification for the longest time leads to better
results than using the one with the lowest accumulated
relative similarity relSimX .

C5) Only learning with wrong LTM classification:
Using 13 prototypes pX each area disallowing to learn
prototypes when the LTM provides a correct classifica-
tion (only using the condition of Equation 18).

While processing these test data sets, the algorithm will fill
the buffer W as described above, until it reaches its maximum
size e. Each time an online data test set O'C(i) is classified
wrong by the LTM, it will be added to W as potential can-
didate. When the size of W reaches e, algorithm LO.m will
add one candidate of each label existing in W as prototype to
the STM KL, together with the correct label, the origin of the
online test data vector (provided by SL), and an initial value
(we use 0) of the accumulated relative similarity relSimZV.
The candidate with the lowest relSim)V is selected and thus
represents the highest gain in information. After learning
m test data vectors, the STM prototypes with a negative
re]SimXV will be deleted. These sequences will be repeated
until the 6000 test data vectors are processed in five groups,
respectively the five online test data sets:

1) The LTM C~ and an empty STM KZ as well as the first
online test data set OnDatal as O after bringing in
the room change. The OOLA starts learning the room
changes and returns a STM with selected prototypes.
Compared to the blue line in Figure 8, the blue lines
of Figure 11 perform better, depending on the values
of e and m.

2) The LTM C~£ and the STM KX formed in step 1), as well
as the second online test data set OnData2 as OF after
introducing the room change. The OOLA applies the
learned knowledge and constantly expands it. The red
lines of Figure 11 reach similar classification quotas.

3) The LTM C% and the STM K% expanded in step 2),
as well as the third online test data set OnData3 as O~
after the introduction of the spatial change. The OOLA
applies the learned knowledge and constantly expands
it. The orange lines of Figure 11 verify the results of
step 1 and 2.

4) The LTM C£ and the STM K% extended in step 3) as

well as the offline test data set OffDatal as OF before

introducing the room change. This step checks if the

CFE can be avoided by the static LTM. The OOLA

classifies according to the evaluation of the learned STM

and the existing LTM. Erroneous classifications of the

LTM are learned as new knowledge in the STM, as in the

previous calls. Knowledge of the STM that is no longer

required is replaced by relevant information. The purple
lines of Figure 11 confirm the avoidance of the CFE.

The LTM C% and the STM K% expanded in step 4)

as well as the second offline test data set OffData2 as

5
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FIGURE 11. Classification quota of offline and online setup test data by
OOLA, showing good results for changed environments and improved
results for standard room setup, regarding various combinations of e and
m. The x-axis represents the /pos = 1200 work data vectors defined in
Section 11-B, the y-axis shows the ratio of so far correct classified to so far
processed test data vectors.

O~ before introducing the room change. The OOLA
classifies as in step 4 and adjusts itself continuously.

The sequence of the calls is carried out with different parame-
ters for the size e of the cache W and the number m of learning
processes until the deletion of the prototypes from KZ. Fur-
thermore, InitOOL . m collects statistics about the processes
during the classification and their results. The full results
and source codes are accessible via https://cosy.umwelt-
campus.de/software. After processing the five test data sets,
InitOOL.m erases the STM and restarts the process with
the next combination of e and m using a new STM KE =y.

VOLUME 7, 2019



R. Machhamer et al.: Online Offline Learning for SBI Using Low-Cost Hardware

IEEE Access

For each of the five test data sets InitOOL.m calls the
algorithm OOL . m with

o the actual LTM Cfé_Means or CfVQ,

o the actual STM K%

o the actual online test data set O,

« and the actual configuration of e and m
and is awaiting the return of STM K£ after processing the
online test data set O%.

OOL . m initializes the Workbuffer W if necessary and rep-
resents the basic application to learn the changed RIR by
passing algorithm OL . m

o the LTM,

o the STM,

« the individual online test data vectors Oﬁ(i) incremen-
tally,

« and the Workbuffer W

and is awaiting the return of the STM KZ after the incremen-
tal processing of the individual online test data vector O%(i).

OL . m requests

« the index of the nearest prototypes of the same label as
O~(i),

« the index of the nearest prototypes of a different label as
0%(i),

« the relative similarity relSimgmp of the LTM,

« and the relative similarity relSimfgm1D of the STM, if the
conditions are met (an existing prototype of the same
class as O“ (i) and an existing prototype of different class
from O£ (i) in the STM K£)

from PRS.m and therefore passes the LTM, STM and
online test data vector Oﬁ(i). PRS.m uses algorithm NN.m,
representing a l-nearest-neighbor classifier, to get these
information.

OL.m further hands over the STM K% and the filled
Workbuffer W to algorithm LO . m, if the conditions are met,
which adapts the STM. Algorithm Learn Online (LO) is the
main component for learning the modified RIR. Each time
the amount of e records in the work buffer W is reached,
they are passed to LO along with the current STM. LO deter-
mines the best candidate for each label present in W and
adds it to the STM. After processing each existing label,
all candidates are erased, W = ¢J. The e parameter can
therefore affect the quality of the learned prototypes and the
speed of growth of the STM. The higher e, the higher the
quality of the learned prototypes should be, but the STM takes
longer to fill. The lower e, the faster the Workbuffer gets
learned, e.g. ¢ = 1, each candidate is learned immediately.
LO further checks the amount of incrementally processed test
data vectors and starts the deletion of STM prototypes with
negative accumulated relative similarity relSimX. It should
be emphasized once again that Algorithm OOL.m receives
the test data individually, RIR for RIR one after the other,
and always learns immediately when W reaches the size e.
Due to faster simulation results and for reasons of organiza-
tion of work processes we have not focused on a variety of
agents to be located. Since the data is transferred RIR-wise,
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Algorithm: LO
Input: STM KE; Workbuffer W

for each existing label in the Workbuffer do
Find the candidate with the lowest relative similarity

if STM for this label is not full then
| Learn candidate

else

Replace existing prototype of the STM with
lowest accumulated relative similarity

end
if number of learning operations until deletion is

reached then
delete all prototypes with negative accumulated

relative similarity

end
end

Output: new STM K£; empty Workbuffer W

TABLE 7. Exemplary view of errors using combinations of test set (S) and
test case (C) for combinations of e and m (heree=1and m =1 as in

upper pictures of Figure 12 using pure K-M LT™M Cf(: S B
C: S OffData2 | OffDatal | OnData3 | OnData2 | OnDatal
C5 56 71 122 145 150
C4 42 64 139 148 156
C3 109 95 164 185 227
C2 40 70 134 142 155
Cl 47 66 140 148 156

however, the procedure used approximates the workflow in a
multi-agent scenario.

IV. RESULTS

The overall results show an increase of the average classifica-
tion rate to about 95 % for unchanged environments and the
ability of the algorithms to adapt to changed environments by
increasing from 72 % to 91 % (configuration dependent) of
the OOLA compared to about 45 % (see Figure 8) in a pure
offline setup with just LTM.

These results could even be improved, if not limiting the
amount of prototypes each area, but this leads to very long
processing times. For comparison, unlimited learning during
first experiments led to 1198 prototypes at 6000 test data
vectors, where the classification of the last 1200 vectors
from OffData2 required 3957.71 seconds, resulting in 37
classifications being incorrect (quota of about 96.92 %).
Examples limited to 13 prototypes each label need about
100 — 150 seconds, resulting in 40 — 50 classifications being
incorrect (quota of about 95.83 — 96.67 %) at 6000 test
data vectors to classify the last 1200 vectors from OffData2
(overall 141 — 146 prototypes).

The diagrams of Figure 11 show eight success rates of
classification under different configurations of e and m with
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FIGURE 12. Total failures with and without LVQ dependingone,m =1, 2, 3, 4, 5, 10, 20, 30, 40, 50.

TABLE 8. Color codes figure 12.

Test data Color Errors in %
Online | green <10
Online | yellow <15
Online | orange <20
Online red > 20
Offline | green <3
Offline | yellow <75
Offline | orange <10
Offline red > 10

standard and improved LTM. With e increasing from 1 to
50, the STM will not learn until e potential candidates for
learning new prototypes are reached, which explains the sharp
drop in the blue curve in the lower four plots, using e = 50.
However, the effect should have a positive long-term effect
with larger test data sets, as the quality of the prototypes
should increase, due to selection of the best prototype each
label is obsolete while e = 1. Because of the increase
of m from 1 to 50, prototypes of the STM that have just
been learned are no more deleted immediately, once they are
responsible for a single wrong classification, and thus have
a negative accumulated relative similarity. This can have a
positive effect on the success rates, because they may start
fitting in the long run. By processing the test data line by
line, only test data in the 1 — 6 range will be processed up
to the 600-th data set. Starting from 601 the test data of the
ranges 7 — 12 are classified, the range change leads to a strong
decrease of the quota, since no current prototypes of these
ranges are available in the STM yet.
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TABLE 9. Color codes figure 13.

Color Error difference
green > 60
light green >0
orange <0
red < 60

The effect of the improved LTM is not visible in the plots,
but a closer look at the classification rates shows that LVQ
manipulation leads to an improvement in 1783 of 2500 cases.
Figure 12 shows the errors of all five test runs bundled
together. The upper two images show the errors when using
the non-manipulated LTM, the lower ones the errors when
using the LVQ-manipulated LTM. The left pictures show the
errors as bar charts, each bar showing the classification error
while processing the 1200 test data vectors of the test data
set, the right pictures show a top view to improve the clear
visibility of all results. The classification errors of the five
test data sets OnDatal, OnData2, OnData3, OffDatal and
OffData2 are displayed repeatedly from right to left along
the e-scale for each tested configuration of e and m. The five
test cases C1-C5:

C1) Limitation of the number of prototypes to 13

C2) Verification with 19 prototypes per label

C3) Random order of test data

C4) Further criterion for the deletion of prototypes

CS5) Only learning with wrong LTM classification

are repeatedly shown for each different combination of e and
m in this order along the m-scale from bottom to top. So the
25 bars in each 5 x 5 square of a single combination of e and m
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TABLE 10. Matrix of the sums of classification errors over the five different configurations using pure K-Means prototypes CIL(:-M eans- Each field shows
the amount of misclassifications per 30000 test data vectors (per row/column 300000, total 3000000). Green filled cells show lowest amount of errors in
each column (red: highest). Green font indicates lowest failure amount each line (red: highest).

S 2 3 4 5 10 | 20 | 30 | 40 | 50 >
1 2071 | 3002 | 2969 | 2947 | 2061 | 2860 | 2867 | 2824 | 2858 | 2837 | 39096
2 3241 | 3247 | 3250 | 3214 | 3189 | 3167 | 3013 | 3004 | 3008 | 3002 | 31335
3 3431 | 3397 | 3488 | 3426 | 3358 | 3327 | 3322 | 3206 | 3167 | 3198 | 33319
4 3512 | 3460 | 3536 | 3450 | 3431 | 3407 | 3350 | 3379 | 3315 | 3358 | 34198
5 3596 | 3633 | 3613 | 3006 | 3557 | 3529 | 3501 | 3390 | 3365 | 3328 | 35178
10 | 3887 | 3879 | 3733 | 3801 | 3795 | 3565 | 3714 | 3637 | 3546 | 3577 | 37134
20 | 3928 | 3028 | 3891 | 3838 | 3903 | 3878 | 3713 | 3664 | 3655 | 3698 | 38096
30 | 4180 | 4189 | 4189 | 4196 | 4125 | 4041 | 3950 | 3894 | 3896 | 3892 | 40561
40 | 4393 | 4393 | 4393 | 4412 | 4426 | 4360 | 4155 | 4109 | 4079 | 4061 | 42781
50 4546 | 4546 | 4546 | 4546 | 4463 | 4415 | 4382 | 4258 | 4258 | 4219 | 44179
S | 37694 | 37674 | 37608 | 37496 | 37208 | 36549 | 35967 | 35364 | 35147 | 35170 | 365877

TABLE 11. Matrix of the sums of the classification errors using LVQ-manipulated LTM Cﬁ, over the five different configurations. Each field shows the
amount of misclassifications per 30000 test data vectors (per row/column 300000, total 3000000). Green filled cells show lowest amount of errors in
each column (red: highest). Green font indicates lowest failure amount each line (red: highest).

e m 1 2 3 4 5 10 20 30 40 50 >
1 2811 2826 2766 2753 2741 2699 2735 2719 2718 2738 27506
2 3051 2956 3035 3077 | 2957 | 2935 2910 | 2926 2946 2820 29613
3 3262 6234 3225 3132 3140 3157 3033 3074 3118 3082 31457
4 3334 3207 | 3250 | 3223 | 3243 3102 3085 3180 3051 3103 31706
5 3518 3349 3283 3323 3367 3260 3252 3227 3228 3216 33023
10 3529 3542 3592 3530 | 3501 3497 | 3416 3508 | 3428 3308 34851
20 3664 3664 3652 3663 3671 3626 3683 3550 3512 3522 36207
30 3927 | 3927 | 3927 | 3952 3997 | 3858 3757 | 3849 3757 | 3762 38713
40 4169 4169 4169 4157 4129 4052 4055 3966 3961 3922 40749
50 4476 4476 4476 4476 4377 4263 4191 4017 4041 4113 42906
> 35741 | 35350 | 35375 | 35286 | 35123 | 34449 | 34117 | 33944 | 33760 | 33586 | 346731

50

FIEEEEE Secess = 40

e : 30

20

g =l = 10
5n1

4

3

2

40 30 20 e 10 5 4 3 2 1

FIGURE 13. Differences of failures with and without LVQ dependingone,m =1, 2, 3, 4, 5, 10, 20, 30, 40, 50.

represent the classification errors while testing combinations
of test data sets and test cases according to Table 7.

The colour codes shown in Table 8 distinguish between
online and offline data sets to be tested.

Figure 13 shows a fairly homogeneous distribution across
all configurations of ¢ and m with a few exceptions. With
high values for e and low values for m, the LVQ manipulation
sometimes leads to strong deteriorations, e,g. on the online
test data set OnData3 for the last two test cases. In 1783
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cases an improvement by LVQ-manipulated LTM is achieved,
in 717 cases it leads to a deterioration of the results. Table 9
serves as color code table for Figure 13.

The Tables 10 and 11 show the sum of the classification
errors depending on e and m when using the K-Means LTM
and LVQ-LTM respectively. Cells with a green background
indicate the lowest number of errors per column, cells with
the highest number of errors per column are marked in red.
The lowest number of errors per row is indicated by a green
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font and the highest by a red font. This form of representation
clearly shows that the success rate of the classification is
higher at low values for e (green/red cells). There is also a ten-
dency that the number of errors decreases with an increase of
m (green/red font). Each field shows the amount of misclassi-
fications per 30000 test data vectors, 1200 vectors x 5 sets x
5 test cases = 30000 classifications.

V. CONCLUSION

The results of the case study show the robustness of the pre-
sented concept for indoor localization via the room impulse
response with OL. The classification is highly accurate and
can be used for semantic localization in indoor areas with
low-cost hardware. Since Brena et al. [3] can not find a
satisfactory IPS method yet, we recommend further research
to make the system applicable in a real environment. The
results of the five test cases C1-C5 can be interpreted as
follows:

C1) Limitation of the number of prototypes to 13:
The restriction leads to almost the same classification
rates compared to the unlimited version, but saves a lot
of computing time.

C2) Verification with 19 prototypes per label:
The improvement is not constant on all configurations of
e and m. The limitation should therefore be determined
considering the application case.

C3) Random order of test data:
With an overall rate of 87.95 % of correct classifications,
good results are achieved, so the classification quality of
the algorithms does not depend on the insertion of test
data in the order of data generation.

C4) Further criterion for the deletion of prototypes:
The change of the deletion strategy does not lead to the
desired results, which however underlines the quality of
the usage of the Relative Similarity.

C5) Only learning with wrong LTM classification:
The change of the deletion strategy does not lead to the
desired results too, which gives an indication that not
only wrongly classified prototypes, but also prototypes
in areas of uncertainty are particularly interesting to
learn.

Although the effect of the improved LTM CfVQ is not clearly
visible, the fact that the LVQ-manipulation leads to improved
results in 1783 of 2500 cases suggests, that it should be further
investigated.

A. DISCUSSION
The OOLA provides good results for the application of a table
demo, but raises the question whether the results can also be
achieved in larger rooms.

The Tables 10 & 11 clearly show, that low amounts of
e (size of the Workbuffer W) lead to better classifications
results in our setup. However, it is likely that the e increase
in significantly larger test data sets will lead to a long-term
improvement in the classification rate, as more candidates
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that are potentially better suited will be available for selec-
tion. The configuration is therefore potentially suitable to
configure the algorithm for different use cases. Small values
for e could be interesting in cases that are subject to rapid
frequent changes. High values for e should be interesting in
stable environments, that are subject to minor changes.

Table 10 & 11 also allow the assumption that low values
of m (number of learning operations until deletion of STM
prototypes with negative Relative Similarity relSimX) can
lead to prototypes being deleted ‘““too quickly” and thus
not developing their potential, since low values for m often
yield poorer classification rates. These effects should also be
investigated more intensively in further work.

B. OUTLOOK

Further projects in a 3D environment have already been
launched to investigate more complex cases than the ones pre-
sented in this work. We are planning an extended case study to
generate larger test data sets, a live environment with multiple
moving agents to be located and to replace the fingerprinting
process with the extraction of an early STM as LTM. The
generation of the 7200 raw data files took three working
days, so we think about the development of an agent based
automated supervised online learning scenario. We continue
to think about dynamically modifying the e and m parameters
to adjust the learning speed depending on the error rate for
different use cases and loading multiple STMs for different
situations. In addition, there are some other questions to be
explored - especially regarding energy consumption - like
the reduction of transmitted characteristics on the IoT-Kit to
lower the amount of data, or to use an alternative technology
like bluetooth or zigbee instead of WiFi or implementing a
threshold monitoring at the analog digital converter to stay
in sleep mode till a sound wave reaches the microphone.
Also, different room configurations, sizes and distances have
to be investigated, not least to determine the required sound
pressure corresponding to the range of the process. It might
be useful to switch to the infra- and ultrasound spectrum, but
this could create new challenges. Finally, the extremely low
hardware costs yield great potential for improving the results
by investing in better microphones or more sophisticated
algorithms.
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