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ABSTRACT Cooperative navigation aims at improving positioning accuracy of Autonomous Underwater
Vehicles (AUVs). In this paper, a dual leaders cooperative navigation method is proposed based on Cross
Entropy (CE) algorithm. Since the trajectories of the slave AUVs are assumed to be predetermined, the
Markov Decision Process (MDP) is also integrated in the proposed algorithm to generate optimal trajectories
of master AUVs from the perspective of probability. Firstly, the navigation model and cost functions are
established for the cooperative navigation system with multiple masters and slaves. Then, the CE algorithm
is used to train the system with help of MDP to obtain the path of the master AUVs. In the simulation,
the cooperative localization trajectories of the slave AUVs are obtained by Extended Kalman Filter (EKF)
and are compared with other positioning methods. The results show that the trajectories of dual master AUVs
obtained by the proposed algorithm can not only reduce the observation error of the slave AUVs in the system
effectively, but also keep relative measurement distance between the master AUVs and the slave AUVs in a
suitable range.

INDEX TERMS Cooperative navigation, cross entropy, Markov decision process, path planning.

I. INTRODUCTION
Autonomous Underwater Vehicles (AUVs) can expand scope
of human marine activities. With the improvement of effi-
ciency requirements for underwater operations, the usage
of networked Autonomous Underwater Vehicle (AUV) for
collaborative work has recently become a hot issue in the field
of marine engineering. For example, when searching for the
missing Malaysia Airlines Flight MH370, the Ocean Infinity
Company used eight AUVs simultaneously, and was able to
search more than 460 square miles of seabed per day.

During the operation, AUV needs to locate itself for navi-
gation. Due to the barrier of water to electromagnetic waves
and the complexity of underwater environment, the posi-
tioning and navigation methods that AUV can use are very
limited [1]. Commonly used positioning methods for a single
AUV are seabed terrain matching, dead reckoning (DR),
visual navigation, acoustic navigation and so on. In order to
improve positioning accuracy of the whole system, position-
ing accuracy of each AUV in the network can be improved
separately. However, this will lead to a multiplication of
the cost of navigation equipment, which is too expensive to
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achieve in most cases. Collaborative navigation can balance
positioning accuracy and cost [2], [3].

For collaborative navigation, the positioning information
is shared by each AUV in a multi-AUV system. One of the
most commonly used structures is the master-slave struc-
ture, in which several master AUVs carry high precision
navigation equipments to provide location service for the
slave AUVs whose navigation equipments are less accurate.
They communicate with each other using underwater acoustic
devices.

Formation configurations of multi-AUVs cooperative nav-
igation are mainly divided into single-leader formation and
multi-leader formation [1], [4]. Mythrehee studied the opti-
mal energy-saving distribution in the underwater mobile
sensor network based on the single-leader and multi-follower
formation through the Steinberger game theory [5].
Gao et al. proposed a new algorithm called Huber-based
Iterated Divided Difference Filtering (HIDDF) and applied
the algorithm to cooperative localization of AUVs supported
by a single surface leader [6]. Huang et al. proposed a beacon
network that does not depend on long baseline positioning
system [7]. The cooperative navigationmodel of single leader
AUV is used to verify the reliability of the algorithm. Yan
solved the problem of longitude density in high latitudes
by studing cooperative navigation in polar coordinates [8].
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Wen proposed an Unscented Particle Filter (UPF) algorithm
for cooperative navigation with two leaders, which can effec-
tively reduce the impact of sensor noise [9]. Gao established
a cooperative navigation algorithm for two leader AUVs,
which solved the weakness of the observability of the system
and reduced the requirement for the maneuverability of the
leader AUVs [10]. Among literature [10], using multiple
AUVs as leaders can not only improve the observability of
the system, but also reduce the maneuverability requirements
of the leaders.

In terms of error compensation, Xiao studied the character-
istics of time delay in AUV cooperative navigation system in
master-slave mode, and converted the time delay into mea-
surement deviation from the observation equation of AUV
platform [11]. Chen proposed a positioning error algorithm
based on underwater acoustic propagation time compensa-
tion [12]. The author used the Extended Kalman Filter (EKF)
to reconstruct the measurement equation through the position
error state estimated by the inertial navigation system (INS).
Therefore, the measurement equation and the system mea-
surement became synchronized, and the error from the time
delay was eliminated. Another Augmented Extended Kalman
Filter (AEKF) algorithm was proposed by Qi to solve the
positional failures due to time delay measurements [13].

Many researchers have proposed improved algorithms
based on the principle of cooperative navigation. Li et al.
proposed an algorithm based on Student’s Extended Kalman
Filter, which has strong robustness to abnormal points and
measurement noise [14]. Chen studied the application of the
MaximumLikelihoodMethod in cooperative navigation [15].
Huang proposed a new adaptive EKF algorithm [16]. Based
on the online expectation maximization method, the pre-
diction error covariance matrix and the measurement noise
covariance matrix were adaptively estimated to solve the
problem of unknown noise covariance matrix in cooperative
localization. Allotta compared the performance of the EKF
and the Unscented Kalman Filter (UKF) cooperative naviga-
tion algorithm and performed experiments on the Typhoon
AUV [17]. The results showed that the UKF had better per-
formance compared with EKF. Viegas studied the state esti-
mation problem of vehicles with time-varying measurement
topologies [18]. The proposed solution included implement-
ing a local state observers on each vehicle and using the
theory of switching system theory to study the effect of mea-
surement topology changes on estimation error dynamics.

Generally, the operation path of the slave AUVs are
planned before tasks. Therefore, it is themaster AUVs’ task to
maneuver and improve the cooperative navigation position-
ing accuracy of the slave AUVs. In other words, the master
AUVs need to plan optimal path to minimize the observation
error of the slave AUVs. Since the Cross Entropy (CE) is
suitable for measuring uncertain information [19], it is widely
used for optimization problems, such as enterprise resource
planning system selection [20] and information retrieval [21],
etc. The property of CE can be used to design the path
of the master AUVs in the cooperative navigation. In [22]

and [23], the leader vehicles used zigzag path and rhombus
path to improve the observability of the system. However,
in [22], the author just made the leader AUV maintain a 45◦

zigzagging pattern, and did not consider the global optimiza-
tion. Teck and Chitre [24] also had studied CE algorithm in
cooperative navigation, but only one leader in the system is
considered.

In this paper, a cooperative navigation system with dual
master AUVs is proposed. A proper cost function to train the
system based on CE algorithm is also established to reduce
the observation error of the slave AUVs. In addition, EKF
is applied to cooperative navigation system after trained by
CE algorithm to obtain trajectories of slave AUVs. Mor-
ever, the proposed method is compared with other navigation
methods to show its superiority.

The following sections are organized as follows: Section II
gives a formulation of the model and problem. Section III
is the proposed cooperative navigation method. In the
Section IV, simulation results are analyzed. Then the conclu-
sion is given, and some pending further research directions
are proposed In section V.

II. PROBLEM FORMULATION
The core element of cooperative navigation is to allow the
information exchange between nodes. Multi-AUV underwa-
ter cooperative navigation uses underwater acoustic equip-
ment for information exchange, relative angle and distance
measurement. The navigation process is shown in Fig. 1.

In Fig. 1, the master AUV is equipped with high-
performance navigation equipment (with higher accuracy,
smaller drift, higher sensitivity, etc.), the slave AUV is
equipped with low-performance navigation equipment. We
assume that the positioning accuracy of the master AUV
is high enough to be a reference position. The slave AUV
uses its own Doppler Velocity Log (DVL) and inertial mea-
surement unit (IMU) for DR navigation. The master AUV
performs underwater acoustic communication with the slave
AUV every1t time to transfer navigation message. The slave
AUV corrects positioning error caused by DR using the mes-
sage at every time acoustic communication performed. Then
the slave AUV continues to be navigated by the DR, until next
acoustic message is received to correct the positioning error
again.

A. MATHEMATICAL MODEL
For the convenience of analysis, pitch of AUV is approx-
imately considered as zero when AUV runs stably. It is
also deemed that the depth of AUV is unchanged and the
ocean current disturbance is neglected in the cooperative
navigation process. The motion states of AUV are shown
in Fig. 2 [25]–[27].

In Fig. 2, XtOtYt is the navigation coordinate system,
and XbObYb is the body coordinate system of AUV. Xk is
the position of AUV, ϕk is the true heading angle, υk is the
true longitudinal velocity of AUV at time k . The kinematic
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FIGURE 1. Two AUVs cooperative positioning process.

FIGURE 2. The motion states of the AUV.

equation of AUV can be expressed as:
xk+1 = xk +1tυ̂kcosϕ̂k
yk+1 = yk +1tυ̂ksinϕ̂k
ϕ̂k+1 = ϕk+1 + wϕ
υ̂k+1 = υk+1 + wυ ,

(1)

where xk+1 and yk+1 are the position of vehicle on the X and
Y axes in the navigation coordinate system at time k + 1;
ϕ̂k+1 is the course angle measured by gyroscope and υ̂k+1
is longitudinal velocity measured by DVL at time k + 1,
and wϕ , wυ are the zero mean Gauss white noise caused by
measurements of both the compass and DVL, respectively.

Equation (1) can be simplified to:

X(k + 1) = 8(k + 1, k)X(k)+ 0(u(k)+ w(k))

= f [X(k),u(k),w(k)], (2)

where X(k + 1) = ( xk yk θk )T is the system state matrix
at time tk+1, 8(k + 1, k) is the state transition matrix of the
system, 0(u(k) + w(k)) is the nonlinear part of the system,
uk = ( vk ϕk )T and wk = (wv wϕ )T are the system process
noises. Then, the measurement covariance matrix and state
transition matrix can be described as

Q(k + 1) = E[wk+1 wT
k+1] =

(
σ 2
vk 0
0 σ 2

ϕk

)
, (3)

8(k + 1, k) =

 1 0 −1t · υk · sinϕk
0 1 1t · υk · cosϕk
0 0 1

 . (4)

As the navigation and positioning error of INS will accu-
mulate over time, underwater acoustic positioning system
is required to continuously correct the positioning error.
According to the principle of underwater acoustic localiza-
tion, the observation equation is defined as

Zij(k + 1) =
∥∥X i(k + 1)− X j(k + 1)

∥∥+ wρ(k + 1)

= h[X i(k + 1),X j(k + 1)]+ wρ(k + 1), (5)

where Zij (k + 1) represent the relative distance between
AUVi and AUVj at time k + 1; X i(k + 1) =

[ xi(k + 1) yi(k + 1) ] and X j(k + 1) = [ xj(k + 1) yj(k + 1) ]
respectively denote the position of AUVi and AUVj at time
k + 1; wρ (k + 1) is the system measurement noise with
Gaussian distribution; h[X i(k + 1),X j(k + 1) ] is a nonlinear
function of X i(k + 1) and X j(k + 1). Covariance matrix for
systematic observation noise can be defined as

Rρ(k + 1) = E[wρ wT
ρ ] = σ

2
ρ . (6)

B. OBSERVABILITY ANALYSIS
In order to avoid the loss of high-order terms after linearizing
the nonlinear model in cooperative navigation, researchers in
[25], [28]–[30] used the Lee derivative observability theory to
analyze the observability of nonlinear systems. On this basis,
Gao [25] has studied the observability analysis of multi AUVs
cooperative navigation. First, the author built the state equa-
tion and observation equation of the navigation system. Then,
as the nonlinear characteristics of the cooperative navigation
model, observability analysis of nonlinear systems using the
Lie Derivative weak observability theory was carried out.
And the navigation model was based on the 2-Dimensional
replaces the 3-Dimensional.

The following conclusions are derived: If the measurement
angles γ between two contiguous times in underwater acous-
tic measurement direction are 0◦, the system is unobservable
at this time. The closer γ is to 0◦, the lower observability
of the system. When γ = 90◦, observability of the system
reaches to max. In other words, when the system is moving,
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FIGURE 3. Unobservable motion states of the cooperative navigation system.

FIGURE 4. Error propagation in multi-AUV cooperative navigation.

the system is unobservable if and only if the master AUVs
and the slave AUVs are moving along the same straight line;
when the system is stationary, the system is unobservable
if and only if the motion direction of the master AUVs and
the slave AUVs along the measurement direction is constant,
as shown in Fig. 3. Otherwise, the system is observable.

C. ERROR ANALYSIS
Maurice [31] analyzed the error of acoustic ranging. The
position error of the slave AUV can be regarded as an oval
error, the error in the direction of the underwater acoustic
measurement is a fixed value. Fig. 4 indicates the propagation
of errors during the two underwater acoustic measurements at
adjacent times. γk+1 is the angle between directions of under-
water acoustic measurement at time k + 1 and k . eH ,k and
eV ,k respectively represent horizontal error and vertical error
of underwater acoustic measurement between the master and
the slave at time k .

eH ,k+1 =

√
e2V ,ke

2
H ,k

(eV ,k cos γk+1)2 + (eH ,k sin γk+1)2
+ α ·1t,

(7)

where α is a constant value, 1t is the length of communica-
tion interval.

FIGURE 5. Error propagation process in underwater acoustic
measurement.

Since eV ,k is the error caused by underwater acoustic mea-
surement, and eH ,k is the error caused by DR with inertial
equipment and DVL, and the inertial equipment and DVL of
the slave AUVs are low accuracy equipment. So eH ,k is far
greater than eV ,k , and if γk+1 = 90◦, the position error of the
slave AUVs is converging.

Figure 5 shows error change of the slave AUV. Master
AUV first measures the distance and orientation between
itself and the slave AUV by underwater acoustic as the basis
for its decision-making process. Then the master AUV sends
the message of its position to the slave AUV by acoustic
system and the slave AUV corrects its own position with
the message. Next, the slave AUV uses dead reckoning to
navigate till the next communication node, and repeating the
above process. In this way, the error can be limited to a fixed
circumference.

III. MODEL OF PATH PLANNING
According to the above analysis, the purpose of this paper
is to find the most effective navigation strategy, so that the
adjacent two measurement angles of the master AUVs and
the slave AUVs in the cooperative navigation process are as
close as possible to 90◦ to improve the overall positioning
accuracy. The key is to use CE algorithm to find the strategy
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to maximum change of measurement angle, and to keep
the total observation error minimum, while maintaining the
stability of the system. In order to facilitate the establishment
of the system decision model, a multi-AUV collaborative
navigation main framework is proposed based on MDP. The
MDP framework does not require explicit systemmodel data,
which greatly facilitates the usage of CE algorithm.

A. CE ALGORITHM
CE is an important concept in the theory of Shannon infor-
mation. The size of information can be measured by Infor-
mation Entropy, and CE can be used to measure the degree
of difference between two sets of information. From the per-
spective of probability selection, this paper selects the optimal
action to make the change of each observation angle close
to 90◦. This is a sub-problem of the Optimal Combination
Problem (COP). In COP, CE method involves an iterative
procedure where each iteration can be broken down into two
phase:

1) Generate a random data sample (trajectories, vectors,
etc.) according to a specified mechanism.

2) Update the parameters of the randommechanism based
on the data to produce a better sample in the next
iteration.

When the COP is complex, not only is themodel difficult to
build, but even the equation cannot find the optimal solution.
However, CE establish the problem under the probability
model to estimate optimal solution through the analysis and
selection of the probability.

We assume that f (X) is the real probability density of
X , and h(X) is the estimated probability density of of X .
CE value between f (X) and h(X) can be written as

D(f , g) = Eh ln
h(X)
f (X)

=

∫
h(X) ln f (X)dX −

∫
f (X) ln h(X)dX, (8)

where D(f , g) is also called the Kullback-Leibler (K-L) dis-
tance [32], which is used to measure the distance between
h and f .

Equation (8) can be written as
H (f ) =

∫
f (X) ln f (X)dX

H (f , h) = −
∫
f (X) ln h(X)dX,

(9)

whereH (f ) is the entropy of the true probability density f (X),
and H (f , h) is the cross entropy of f (X) and h(X). In the
optimization learning algorithm, the true probability density
distribution of random variable X is invariant. Thus in (9) we
ignore the influence of term H (f ) and focus on the influence
of cross entropy termH (f , h) on K-L distance. In information
entropy, there is always

−

∫
f (X) ln f (X)dX ≤ −

∫
f (X) ln h(X)dX, (10)

according to Gibbs’ inequality. The equal sign is true if and
only if f (X) = h(X). Therefore, D(f , h) ≥ 0. In the case
where the H (f ) term is fixed, in order to minimize the value
ofD(f , h), it is necessary tomake the value ofH (f , h) smaller.
It can be obtained that

max
v

∫
f (X) ln h(X, v)dX, (11)

where v is sample data of the random variable X , and h(X, v)
is the probability density function estimated from the sample
data v.

B. MARKOV DECISION PROCESS
The Markov decision process [33]–[35] is an optimal deci-
sion process of a stochastic dynamic system based on the
Markov Process Theory. The MDP refers to decision-makers
periodically or continuously observing a stochastic dynamic
system with Markovian characteristics and making decisions
in a sequential manner. That is, according to observed state
at each moment, an action is selected from the available
action set to make a decision. The next (future) state of
the system is random, and its state transition probability is
Markovian. Decision makers make a new decision based
on the newly observed status, and then repeat this process.
Markov’s property refers to the nature of the probability that
the stochastic process’s future development is independent
of the history before observation. Markov’s property can be
simply described as the non-post-effect of state transition
probability.

MDP consists of four elements:

M = (S,A,Psa,R), (12)

where S = {s1, s2, s3, . . . , sn} indicates set of states. A =
{a1, a2, a3, . . . , am} indicates set of actions. Psa is the state
transition matrix, which indicates in the current state s ∈ S,
the probability distribution of other states that will be trans-
ferred after action a ∈ A. R is the cost function, which
indicates that the cost value of after performing the action a
in the state of s, it can be marked as r(s, a).

C. PATH PLANNING ALGORITHM
Based on the analysis above, state variables of the multi-AUV
cooperative navigation system are determined first, including
the heading angle ϕs,ik and the estimated position (xs,ik , y

s,i
k )

of the slave AUVi at time k; the heading angle ϕm,jk and the
estimated position (xm,jk , ym,jk ) of the master AUVj at time k;
themeasured distance r i,jk and the change of relativemeasured
angleγ i,jk between the slave AUVi and the master AUVj at
time k , which can be expressed as

S ∈
{
ϕ
s,i
k , (x

s,i
k , y

s,i
k ), ϕm,jk , (xm,jk , ym,jk ), γ i,jk , γ

i,j
k

}
. (13)

S is a subset of the total state set and can describe the
operating state of the multi-AUV collaborative navigation
system at time k .
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Because an AUV can directly control its heading angular
velocity, we take the heading angular velocity ωm,jk of the
master AUVs as an action. In order to avoid an infinite
amount of computation, the angular velocity is discretized as:

A ∈ {ωmin, . . . , ωmax} , (14)

where A is a subset of the set of discrete heading angular
velocities between the minimum heading angular velocity
and the maximum heading angular velocity.

Let psi,j be the probability of action ωj (j = 0, 1, . . . , n) at
state si (i = 0, 1, . . . ,m), then the state transition matrix can
be written as:

Psa =

 ps1,1 . . . ps1,n
...

. . .
...

psm,1 · · · psm,n

 . (15)

The feedback cost function R is discussed in two parts.
First, the influence relative measurement angle change is
considered as

R1k =
Ln∑
j=1

K
(
1− Dj,k

)
,

Dj,k =
2ζ jk

∣∣∣sin(1θ jk )∣∣∣
(ζ jk )

2
+ 1+

√
(ζ jk )

4
+ 2(ζ jk )

2
cos(21θ jk )+ 1

, (16)

where Ln is the number of the slave AUVs. K is a constant
coefficient which controls the proportion of angle change in
the cost function. ζ jk is ratio of the distance between the slave
AUVj and master AUV1 to the distance between the slave
AUVj and master AUV2. 1θ

j
k indicates the angle measured

by underwater acoustic equipments between the slave AUVj
and the two master AUVs at time k .
Then the influence of relative distance is considered. A col-

lision may happen if the distance is relatively small. Other-
wise, the acoustic signal may be too weak to navigate if the
distance is quite large. Assume that the minimum distance
allowed between AUVs is rmin, the maximum distance is
rmax, and the range suitable for navigation is [rmin, rfit]. Since
the slave AUVs has already planned their routes, collision
between the slave AUVs is neglected. For the sake of con-
venience, it is assumed that the master AUVs are distributed
at different depths, so the collision between the master AUVs
is ignored. Therefore, only the collision avoidance problem
between the master AUVs and the slave AUVs needs to be
considered. The cost function of the distance can be expressed
as:

R2k =


C1
k (r) ·

(
ermin−r − 1

)
0 ≤ r < rmin

0 rmin ≤ r < rfit
C2
k (r) ·

(
er−rfit − 1

)
rfit ≤ r ≤ rmax,

(17)

where C1
k (r) is a monotonic non-incremental function on

interval [0, rmin), C2
k (r) is a monotonic non-decreasing func-

tion on interval [rfit, rmax]. Then the total cost function is

defined as

Rk = R1k + R
2
k . (18)

After planning the path of the slave AUVs, the starting
state of the master AUVs is determined. Then, the path of
the master AUVs is planned according to CE algorithm. At
each iteration, an action ωi is randomly selected and executed
according to the probability in the current system state Sk of
the state transition matrix Psa, and when the next measure-
ment time comes, the above procedure is repeated until all
the motions are completed.

The key of CE algorithm is picking the optimal sample to
update the probability of samples iteratively. In one iteration
process, total cost of the system under each trajectory is

l1 : C1 =

N∑
k=1

Rl1k ,

l2 : C2 =

N∑
k=1

Rl2k ,

...

lL : CL =

N∑
k=1

RlLk , (19)

for i = 1, . . . ,L, li is the number of the master AUV
trajectory. Ci is total cost of each trajectory. Rik is the cost
of each step. Arrange Ci from small to large as

C =
[
Cmin _max
1 ,Cmin _max

2 , . . . ,Cmin _max
L

]
. (20)

The cutoff optimal sample value is determined as

ηm = Cmin _max
Co , (21)

where Co ∈ [1, 2, . . . ,L], ηm represents the cutoff optimal
sample value in iteration m. The optimal sample data in one
iterative process can be obtained as

CB =
[
Cmin _max
1 ,Cmin _max

2 , . . . ,Cmin _max
Co

]
. (22)

According to (22), times of the same state in the optimal
sample are counted as

Ns =
Co∑
i=1

N∑
j=1

I{Si,j=s}, (23)

where Ns represents the time of state Si,j and state s are same
from the first step to theN th step in the optimal sample path i.
Then the number of identical actions in state s is counted as

Nsa =
Co∑
i=1

N∑
j=1

I{(Si,j=s)∩(Ai,j=a)}, (24)

where Nsa represents the time of identical actions a in state s
from the first step to theN th step in the optimal sample path i.

Then the state transition matrix Psa is updated as

psa = µm,1psa +
µm,2Nsa
Ns

, (25)
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TABLE 1. Parameters of localization of the master AUVs and the slave AUVs.

where psa ∈ Psa. In order to avoid falling into local optimiza-
tion, the probability of previous moment and the probability
calculated at current moment are weighted. µm,1 and µm,2 is
the weighting coefficient, we have

µm,1 + µm,2 = 1, (26)

where µm,1 < µm,2. As the number of update iterations
increases, µm,1 will decrease while µm,2 will increase.

Finally, iteration stop condition is

|ηm − ηm−1| ≤ ϕend. (27)

In order to get the optimal path of the master AUVs, Psa
needs to be continuously optimized so that the total cost of the
selected actions can be nearly minimized and the navigation
accuracy can be near optimal.

The training process can be described as follows:
(a) Initialize the state transition matrix Psa, cut-off cost

value ϕend, etc.
(b) Generate the target path of the slave AUVs include N

communication nodes.
(c) Initialize the state of the system S1. Pick an action ran-

domly fromPsa and reach a new state. Then calculate the
cost value. Repeat this procedure until measurements of
N communication nodes are complete. Total cost of this
path is calculate according to (18).

(d) Repeat (c) till L master AUV paths are selected, and
choose the optimal sample based on the (20) to (24).

(e) Update the state transition matrix according to (25) and
verify the conditions of (27). If the condition is met,
the iteration ends, otherwise return to (c) to continue
iteration.

IV. RESULT
In this section, we design the simulation programs to analyze
the performance of CE navigation algorithm. After setting
trajectories of the slave AUVs as straight line and harvester
line, the state transition matrix Psa is finally obtained accord-
ing to training process master AUVs using CE algorithm.
In the process of cooperative navigation, the master AUVs
choose actions from Psa to maximize the change of obser-
vation angle. The EKF is applied to obtain the localization
results of the slave AUVs.

The parameters of the master AUVs and the slave AUVs
are shown in Table 1.

Three parallel curves are used as the path of the slave AUV,
and two master AUVs are used for cooperative navigation.
There are 100 communication nodes in the navigation pro-
cess, and the communication time interval is 10 seconds.

The selection of system states and the discretization of state
variables are shown in the table 2.

FIGURE 6. Cost of measured angle.

Actions of MDP are discrete heading angular velocity
(rad/s), namely

A ∈ {−0.08,−0.05,−0.03, 0.00, 0.03, 0.05, 0.08} . (28)

A. TRAINING PROCESS
In order to balance the observation angle change and the
distance between the master and slave AUVs, after several
rounds of trial and error, K is taken as 50. Set rmin = 100,
rfit = 700, rmax = +∞, C1

k (r) = C2
k (r) = 50.0. In

each train process, 300 master AUV trajectories is generated
based on the state and their cost value is calculated. Then
30 paths with minimum cost are used as the optimal sample
to update the probability values of Psa. After 2000 times of
training, the training process terminates. The main propose
of the training is to get two state transition matrices of the
master AUVs, so that they can choose certain action in the
cooperative navigation.

The change of cost value caused by measured angle in the
training process is shown in Fig. 6. It is shown that the cost
is fluctuant during the first 35 sessions. After the 40th train
process, the cost is stable at 9148.

The change of cost value caused by relative measured
distance in the training process is shown in Fig. 7. During the
first 4 sessions, the cost descends dramatically and is stable
at 1186.

The trajectories of master AUVs selected by Psa is shown
in Fig. 8. Three slave AUVsmove in sinusoidal curves and are
in the same state of motion. The initial position of the slave
AUV1 is (−300.0, 0.0), the slave AUV2 is (0.0, 0.0), and the
slave AUV3 is (0.0, 300.0). Their initial heading is 45◦. The
initial position of the master AUV1 is (−150.0,−100.0), and
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TABLE 2. State variables of MDP.

FIGURE 7. Cost of relative measured distance.

FIGURE 8. Trajectories of master AUVs based on CE algorithm.

the master AUV2 is (150.0,−100.0). Their initial heading
is 90◦.

Relative distance between the master AUVs and the slave
AUVs in Fig. 8 is shown in Fig. 9. It can be seen that distance
between eachmaster AUV and each slaveAUV are in suitable
range during the process.

Measured angle between the master AUVs and the slave
AUVs in Fig. 8 is shown in Fig. 10. The probability change
of action selection of master AUV1 and AUV2 is shown
in Fig. 11, where the probability of master AUV1 choosing

FIGURE 9. Relative distance between master AUVs and slave AUVs.

FIGURE 10. Measured angle between master AUVs and slave AUVs.

action is 1 and the average of AUV2 is 0.9899 and most of
them are 1. This indicates that these state-action points are
well-trained and are able to select proper action to execute
according to the current state.

B. COOPERATIVE NAVIGATION SIMULATION
Based on the trajectories of the slave AUVs in section IV-
A, DR paths of the slave AUVs is shown in Fig. 12. It
demonstrates that the DR positions of the slave AUVs lag
behind their real position and the error continues to increase.
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TABLE 3. Positioning error of DR and CE.

FIGURE 11. Probability of master AUVs selecting actions.

FIGURE 12. DR trajectories of slave AUVs.

FIGURE 13. Cooperative navigation trajectories of the slave AUVs.

The navigation trajectories using cooperative navigation
system with aforementioned CE algorithm and EKF are
shown in Fig. 13. It can be seen intuitively from Fig. 13 that
the trajectories obtained by cooperative navigation have only

FIGURE 14. Localization error of slave AUVs.

small difference between the real trajectories, and can follow
every turn of the latter. The detailed data are listed in table 3

Localization error of the aforementioned two kinds of
navigation method is shown in Fig. 14. In this figure, it is
obvious that the localization error of DR continues to increase
while CE algorithm trained cooperative navigation is able to
restrain the growth of error.

V. CONCLUSION
In this paper, the CE algorithm and MDP are used to gener-
ate a novel cooperative navigation method with dual master
AUVs andmultiple slave AUVs. Firstly, a cost function based
on the mathematic model, observability and error model of
the system is established, whose purpose is to quantify the
advantages and disadvantages of the actions chosen by MDP
according to the state transition matrices. During the training
process, the system optimize the state transition matrices
according to CE algorithm to minimize the cost of generated
trajectories. In the end of the training process, probabilistic
optimal state transition matrices are obtained. The simulation
results show that the training process of CE algorithm is able
to generate optimal state transition matrices of two master
AUVs so that the best actions can be chosen at certain state.
In addition with the help of the EKF, the proposed method
can reduce the localization error efficiently.

There are still some aspects to be improved in the future.
For example, adding the amounts of actions to choose such
as changing the speed of master AUVs will improve the
navigation accuracy. Considering the ocean current and time
delay of acoustic communication may also help to improve
the robustness of the algorithm.
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