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ABSTRACT The target localization based on the unmanned aerial vehicle (UAV) is becoming more and
more popular due to its flexible mobility. In this paper, the bearing-only localization with respect to the
single UAV in the three-dimensional (3D) scenario is studied by the angle of arrival (AOA). In the current
researches, the bias of the closed-form solution caused by the coefficient errors of the pseudo-linear equations
constructed by the AOA is not effectively eliminated. In order to reduce the bias, an asymptotically unbiased
localization algorithm is proposed, which eliminates the bias by constructing the constrained weighted least-
squares. Since the term that causes the bias is constrained to a constant, which no longer affects the closed-
form solution of the pseudo-linear equations, the closed-form solution is unbiased. After that, the position
errors of the UAV are considered in path planning, which improves localization accuracy by taking account
of both AOA errors and position errors of the UAV rather than just AOA errors.

INDEX TERMS Path planning, target localization, AOA, UAV.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Recently, the bearing-only target localization has been an
important research topic in various fields. Different from the
time difference of arrival (TDOA) and frequency difference
of arrival (FDOA), the AOA-based target localization does
not require the time and frequency synchronization, which
makes it suitable to use the single UAV for non-cooperative
localization [1]–[3]. However, there are still some problems
in current researches. Firstly, the closed-form solution of the
pseudo-linear equation constructed by AOA is still biased due
to the nonlinear relation between theAOA errors and the coef-
ficient errors of pseudo-linear equation [4]–[8]. Secondly,
the position errors of the UAV have not been considered in the
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path planning [9]–[12], which also degrades the localization
accuracy.

B. RELATED WORK
Due to the nonlinear relation between the AOA measure-
ments and the target position [13]–[16], it is difficult to
directly solve the target position with the knowledge of AOA.
Reference [17] estimated the target position by the Gauss-
Newton implementation of theMaximumLikelihood Estima-
tor (MLE). In addition to the high computational complexity,
its localization performance severely suffers from the initial
estimate. A pseudo linear estimator (PLE) with the closed-
form solution in the two-dimensional (2D) scenario was
proposed to reduce computational complexity and overcome
the effect of the initial estimate [18]. Nevertheless, the bias
caused by the coefficient errors of the pseudo-linear equations
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is not considered in the closed-form solution of PLE. There
were some attempts based on the instrumental variable (IV)
estimator to reduce the bias of the PLE [15], [19]–[21]. These
IV estimators fail to provide a closed-form solution due to the
iterative procedures. In order to develop an estimator without
iterative procedures, a closed-form asymptotically unbiased
IV estimator was proposed in [22]. However, the above-
mentioned researches only considered the 2D scenario, while
there are still many intractable problems for the target local-
ization in three-dimensional (3D) geometries. Recently, a few
literatures have investigated the target localization in the
3D scenario [23]–[25]. Considering that the bias of target
localization methods is influenced by the coefficient errors of
pseudo-linear equations, a novel bias reduction pseudo-linear
estimator (BRPLE) was developed to reduce the bias [26].
However, the bias caused by the coefficient errors of the
pseudo-linear equation is not effectively eliminated because
the term that causes the bias is very difficult to calculate.

On the other hand, the trajectory of the UAV plays
an important role in the path planning [27]–[29]. Specifi-
cally, the localization accuracy of different trajectories can
be characterized by the Cramer-Rao lower bound (CRLB),
which is the inverse matrix of the Fisher information matrix
(FIM) [30]. In the context of bearings-only target motion
analysis, maximizing the determinant of FIM is preferred
as the criteria of the path planning [11], [31]–[33]. In order
to develop a more realistic system model, the scenario of
obstacles and no-fly zones was considered in [34], [35]. All
these papers simply assume that the position of the UAV is
completely accurate. In fact, the position of the UAV usually
obtained by the global position system (GPS) in practice
is not accurate. The coefficient errors of the pseudo-linear
equation increase due to the influence of both the errors
of measurement angles and the position errors of the UAV,
which degrades the localization performance. So it is neces-
sary to consider the impact of both AOA errors and position
errors of the UAV in path planning. To the best knowledge
of the authors, current researches on path planning have not
considered the position errors of the UAV.

C. CONTRIBUTIONS
In this paper, the improved BRPLE (IBRPLE) is proposed to
reduce the bias of closed-form solution in the pseudo-linear
equation. The closed-form solutions of the pseudo-linear
equations in [23], [24], [26] are based on the weighted least
squares solution. Although the closed-form solution does not
require the initial estimate, it is always biased because the
term that causes the bias is very difficult to calculate. In this
paper, the bias will be reduced from two aspects in this paper.
On the one hand, the weight of the equation constructed
by the elevation angle was calculated by only considering
the elevation-angle errors in [26], which is recalculated by
considering the azimuth errors, the elevation-angle errors and
the position errors of the UAV. On the other hand, we divide
the cost function based on the weighted least squares into two
parts. The first part contains the parameters to be estimated

and the real value of the pseudo linear equation coeffi-
cients, and the second part consists of the parameters to
be estimated and the coefficient errors caused by the AOA
measurements and the position measurements.

The bias of closed-form solution is mainly caused by
the second part. The ideal of reducing the bias is that the
minimum of the cost function is determined by the first part if
the second part is equal to a constant. Hence the cost function
can achieve theminimum at the ideal solution and the solution
is unbiased because the first part is the real coefficients
of the pseudo linear equation. In practice, the second part
is equal to a constant that will be used as a constraint of
the cost function to construct a constrained weighted least
squares problem. This problem will be solved by Lagrangian
multipliermethod. In practice, the coefficient errors should be
known when the second part is used as a constraint. However,
it is impossible to calculate the coefficient errors accurately
because they are caused by the random measurement errors.
They will be calculated by the statistical method. Meanwhile,
how to calculate the expectation of coefficient errors with
higher precision is also a challenge due to nonlinear relation
between the random measurement errors and the coefficients
of pseudo-linear equations. In the section III, the method will
be proposed to calculate the expectation of coefficient errors
with higher precision, which will improve the localization
performance significantly.

In order to improve the accuracy of localization through
adjusting the position of UAV, a path planning algorithm
considering the position error of the UAV is proposed in this
paper. Maximizing the determinant of FIM is the criterion for
the path planning of the UAV. We assume that the position
of the UAV is not accurate. It is obvious that the position
of the UAV is also the parameter to be estimated like the
speed and position of the target. The FIM of all parameters
to be estimated is easily calculated. However, the FIM of the
initial position and speed of the target is what we really want
to calculate because they are the parameters that we hope
to estimate with the high precision, which is calculated by
the relation between FIM and CRLB from the FIM of all
parameters to be estimated.

To summarize the contributions in this paper, they are
summarized as follows:
• By taking into account the measurement errors of
azimuth-angle, elevation-angle, and the position of the
UAV, the improved weighting matrix for the weighted
least squares (WLS) estimator is calculated. On this
basis, an asymptotically bias-reduced closed-form solu-
tion of the proposed IBRPLE is obtained by solv-
ing the constructed constrained weighted least-squares
problem. Compared with other localization algorithms,
the proposed IBRPLE algorithm can obtain higher local-
ization accuracy because it reduces the bias of nonlinear
equations.

• Based on the determinant maximization criterion of
FIM, an effective UAV path planning scheme is devel-
oped to further improve the localization accuracy of the
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FIGURE 1. The system model based on the single UAV in the 3D scenario.

proposed UAV assisted bearing-only target localization
algorithm, while also considering the estimated errors
of the position of the UAV. By considering the position
errors of the UAV in the cost function of the path plan-
ning, the path planning algorithm proposed in this paper
can achieve higher localization accuracy.

• The performance of the UAV assisted bearing-only 3D
target localization is characterized by simulation results,
and other classical localization methods are also pro-
vided for comparison. Simulations show the validity of
analytical results and the superiority of the proposed
IBRPLE to other estimators. The designed UAV path
planning scheme is also verified by corresponding sim-
ulations and it is shown the path planning with mea-
surement errors taken into account can bring about the
improvement of localization accuracy.

D. ORGANIZATION
This paper is organized as follows. The system model for
localization with a moving target in the 3D scenario is
given in Section II. The asymptotically unbiased closed-
form solution for the AOA localization will be derived in
Section III. In Section IV, the path planning algorithm of the
UAV is also proposed under the position errors of the UAV.
In section V, the simulations are carried out and correspond-
ing comparisons with other algorithms are also provided.
In section VI, conclusions are drawn.
Notation: In this paper, ·̂ represents the measured value.

det(·) is the determinant of a matrix. E{·} is the statistical
expectation of a random variable. 0mn is them×n zeromatrix.
Im is the m× m unit matrix.

II. SYSTEM MODEL FOR 3D MOVING TARGET
In this section, we consider a system model for the 3D
moving target localization based on the single UAV. This
model assumes that the target moves linearly at a constant

velocity vt = [vx , vy, vz]T . As shown in Fig.1, the relative
coordinate system is established to describe the AOA from
the target to the UAV, whose axes are parallel to the axes
of the absolute coordinate system and coordinate origin is
set to the position of the UAV. The position vectors of the
UAV and the target are described in the absolute coordinate
system, which are denoted as s = [sT0 , s

T
1 , ..., s

T
N−1]

T and p =
[pT0 , p

T
1 , ..., p

T
N−1]

T , respectively, where N is the total number
of AOA measurements, si = [xi, yi, zi]T is the position of the
UAV at the ith measurement and pi = [xti, yti, zti]T is the
position of the target at the ith measurement. The interval
between adjacent AOA measurements is assumed to be a
constant T . In fact, the position vector of the UAV measured
by the GPS is imprecise, whose measurement is given as

ŝ = s+1s, (1)

where 1s = [1sT0 ,1s
T
1 , ...,1s

T
N−1]

T is a Gaussian vector
with zero mean and covariance matrix Qs, where 1si =
[1xi,1yi,1zi]T is the position error of the UAV at the ith
measurement.

Consequently, the real azimuth angle θi and elevation angle
ϕi at the ith measurement can be expressed as

θi = arctan
(
yti − yi
xti − xi

)
, (2a)

ϕi = arctan
(

zti − zi
(xti − xi) cos(θi)+ (yti − yi) sin(θi)

)
, (2b)

where θi ∈ (−π, π] and ϕi ∈ (−π/2, π/2]. For writing
convenience, the real azimuth angle vector and the elevation
angle vector are denoted as θ = [θ0, θ1, ..., θN−1]T and
ϕ = [ϕ0, ϕ1, ..., ϕN−1]T , respectively. In practice, the mea-
surements of the azimuth angle vector and the elevation angle
vector are obtained by the UAV, which have errors due to the
jitter of the UAV or the noise of the wireless channel, and they
can be written as

θ̂ = θ + n, (3a)

ϕ̂ = ϕ + ω, (3b)

where n = [n0, n1, ..., nN−1]T and ω = [ω0, ω1, ..., ωN−1]T

are the zero-mean Gaussian noises with covariance matrices
Qn and Qω, respectively. The covariance matrices for AOA
measurements have the following forms:

Qn =

σ
2
0 0
. . .

0 σ 2
N−1

=σ 2
n

d
λ
0 0
. . .

0 dλN−1

 , (4a)

Qω =

ρ
2
0 0
. . .

0 ρ2N−1

=σ 2
ω

d
λ
0 0
. . .

0 dλN−1

 , (4b)

where σ 2
n and σ 2

ω are the reference variances of the azimuth
angle and elevation angle at unit range, λ(0 ≤ λ < 2) is
the power loss exponent [35], di = ‖pi − si‖ is the distance
from the target to the UAV at the ith measurement, σ 2

i is the
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variance of azimuth angle at the ith measurement and ρ2i is
the variance of elevation angle at the ith measurement.

The goal of target localization is to find the last position
of pi, which is difficult to be estimated by directly using mul-
tiple measurements. However, since the target moves linearly
at a constant velocity [36], the position pi can be written as

pi = p0 + iT vt = M ix, (5)

where x = [pT0 , v
T
t ]
T and

Mi =

1 0 0 iT 0 0
0 1 0 0 iT 0
0 0 1 0 0 iT

 . (6)

Therefore, the last position of pi can be obtained indi-
rectly by estimating x according to (5). So this paper aims
to estimate the vector x as accurate as possible under the
measurement vector m = [θ̂

T
, ϕ̂

T
, ŝT ]T .

III. THE BIAS REDUCED CLOSED-FORM SOLUTION OF
THE 3D MOVING TARGET
In this section, the bias reduced closed-form solution is
proposed to improve the localization accuracy. Specifically,
we firstly analyse the reason of the bias and the method
of reducing bias is given by the constrained weighted least
squares method. Subsequently, the weighting matrix used in
the method of reducing bias is recalculated by considering
the azimuth angle errors, the elevation angle errors and the
position errors of the UAV. Finally, the term that causes the
bias is calculated by statistical methods.

A. THE BIAS REDUCED CLOSED-FORM SOLUTION
According to (2), the equations constructed by the real
azimuth angle θi and elevation angle ϕi can be respectively
rewritten as

sin(θi)(xti − xi)− cos(θi)(yti − yi) = 0, (7a)

cos(θi) sin(ϕi)(xti − xi)− sin(θi) sin(ϕi)(yti − yi)

− cos(ϕi)(zti − zi) = 0. (7b)

In practice, since there are errors in the AOAs measured
by the UAV and the positions of the UAV obtained by GPS,
the right of (7) is not always equal to zero. Therefore,µi and νi
are defined as the errors of equations constructed by the AOA
measurements and the position measurements of the UAV at
the ith measurement [18], which are expressed as

µi = sin(θ̂i)(xti − x̂i)− cos(θi)(yti − ŷi), (8a)

νi = cos(θ̂i) sin(ϕ̂i)(xti − x̂i)− sin(θ̂i) sin(ϕ̂i)(yti − ŷi)

− cos(ϕ̂i)(zti − ẑi), (8b)

Eq.(8) can be simply expressed by vectors as

µi = b̂
T
i pi − b̂

T
i ŝi, (9a)

νi = ĉTi pi − ĉ
T
i ŝi, (9b)

where ĉi = [cos(θ̂i) sin(ϕ̂i), sin(θ̂i) sin(ϕ̂i),− cos(ϕ̂i)]T and
b̂i = [sin(θ̂i),− cos(θ̂i), 0]T . Meanwhile, η = [µ0, µ1,

· · · , µN−1, ν0, ν1, · · · , νN−1]T is defined as the error vector
of the pseudo-linear equations [24], which is obtained by
putting (5) into (9) as

η = Fx− h, (10)

where

F =



b̂
T
0M0

b̂
T
1M1
...

b̂
T
N−1MN−1

ĉT0M0

ĉT1M1
...

ĉTN−1MN−1


, h =



b̂
T
0 ŝ0
b̂
T
1 ŝ1
...

b̂
T
N−1ŝN−1

ĉT0 ŝ0
ĉT1 ŝ1
...

ĉTN−1ŝN−1


. (11)

The most closed-form solutions of the pseudo-linear equa-
tions in (10) based on the weighted least-squares (WLS)
estimator. The inverse of the weighting matrix in the WLS
estimator is defined as the covariance matrix of the error
vector [30],W−1 = E[ηηT ]. In [24], the inverse of weighting
matrix is approximated as

W−1 = diag([l20σ
2
0 + σ

2
s0, ..., l

2
N−1σ

2
N−1 + σ

2
s(N−1),

d20ρ
2
0 + σ

2
s0, ..., d

2
N−1ρ

2
N−1 + σ

2
s(N−1)]), (12)

with σ 2
si = σ 2

six = σ 2
siy = σ 2

six , where σ
2
six , σ

2
siy and σ

2
siz are

the variances of the three coordinates at the ith measurement
position error of the UAV, li =

√
(xti − xi)2 + (yti − yi)2

denotes the horizontal distance between pi and si and di =
‖ri‖ is the distance between pi and si, where ri = pi − si =
di[cos(θi)cos(ϕi), sin(θi)cos(ϕi), sin(ϕi)]T is the vector from
the UAV to the target at the ith measurement.
The cost function based on the WLS estimator is con-

structed to find the closed-form solution in (10) [26], which
is expressed as

f = (Fx− h)TW (Fx− h). (13)

In WLS estimator, the solution of (10) is the x that min-
imizes the cost function f . However, this solution is biased
and the reason is analysed in the next. Let A = [F,−h],
y = [x, 1]T and 9 = ATWA − A0

TWA0 = ATWA − 90,
where A0 is the matrix A with the measurements replaced by
the real ones and 90 = A0

TWA0. Rewrite f as

f = yTATWAy = yT90y+ yT9y. (14)

The expectation of (14) is

E{f } = yT90y+ yTE{9}y, (15)

IfE{9} in (15) is equal to zero, it is obvious that theminimum
of E{f } is determined by the first term and it can reach the
minimum 0 at the ideal solution y = [x, 1]T . However,
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in practice, E{9} is not equal to zero, which is the reason
of the biased solution. In order to reduce the bias, the idea
is to minimize f subject to yTE{9}y equal to a constant c,
which means that the minimum of E{f } is determined by the
first term in (15) like E{9} = 0. This ideal is described by a
mathematical formula as follows,

fmin = yTATWAy

subject to yTE{9}y = c, (16)

It is obvious that the minimum of the cost function f
in (16) is the constrained weighted least-squares problem.
The constrained optimization problem will be solved by the
Lagrange multiplier (LM) method. The auxiliary function
constructed by the LM method is given as

yTATWAy+ χ (c− yTE{9}y), (17)

where χ is the Lagrange multiplier. Taking the partial deriva-
tive with respect to y and setting it equal to zero,

ATWAy = χE{9}y. (18)

According to (18), the solution of y should be the gener-
alized eigenvector of [ATWA,E{9}]. However, the gener-
alized eigenvectors are often not unique. By multiplying yT

in (18), the equation can be rewritten as

yTATWAy = χyTE{9}y = χc. (19)

It is obvious that the χc is the cost function to be
minimized. Hence the solution of y is the eigenvector ξ
corresponding to the smallest generalized eigenvalue of
[ATWA,E{9}] [14]. The closed-form solution of the pro-
posed IBRPLE can be given as

x =
ξ (1 : 6, 1)
ξ (7, 1)

. (20)

B. THE IMPROVED WEIGHTING MATRIX
The weighting matrix is inaccurate in (12) due to the neglect
of the azimuth angle error in νi, which will be recalculated in
the subsection. Rewrite (9) as

µi = b̂
T
i pi − b̂

T
i ŝi = b̂

T
i pi − b̂

T
i (si +1si)

= b̂
T
i ri − b̂

T
i 1si

=

 sin(θ̂i)
− cos(θ̂i)

0

T di
cos(θi) cos(ϕi)sin(θi) cos(ϕi)

sin(ϕi)

−
1xi1yi
1zi


= di cos(ϕi) sin(ni)− [1xi sin(θ̂i)−1yi cos(θ̂i)], (21)

νi = ĉTi pi − ĉ
T
i ŝi = ĉTi pi − ĉ

T
i (si +1si)

= ĉTi ri − ĉ
T
i 1si

=

cos(θ̂i) sin(ϕ̂i)sin(θ̂i) sin(ϕ̂i)
− cos(ϕ̂i)

T di
cos(θi) cos(ϕi)sin(θi) cos(ϕi)

sin(ϕi)

−
1xi1yi
1zi


= di[cos(ni) cos(ϕi) sin(ϕ̂i)− cos(ϕ̂i) sin(ϕi)]

− [1xi cos(θ̂i) sin(ϕ̂i)+1yi sin(θ̂i) sin(ϕ̂i)

−1zi cos(ϕ̂i)], (22)

According to the definition, the inverse of the weighting
matrix is the covariance matrix of the error vector, which is
rewritten as

W−1 = E{ηηT } = E





µ0
µ1
...

µN−1
ν0
ν1
...

νN−1





µ0
µ1
...

µN−1
ν0
ν1
...

νN−1



T


(23)

In order to calculate the weighting matrix W in (23),
the expectations of µkµj, νkνj, and µkνj for the arbitrary k ,
j should be calculated as a premise. Because two measure-
ments for k 6= j are independent, here we have [24]

E{µkµj} = E{µkνj} = E{νkνj} = 0

for k, j = 0, 1, . . . ,N − 1 and k 6= j (24)

For k = j = i, the expectations of µiνi, µiµi and νiνi are
calculated in appendix A, which are respectively given as

E{µiνi} = 0,

E{µiµi} = l2i σ
2
i + σ

2
si,

E{νiνi} = ρ2i (d
2
i − σ

2
i l

2
i )+ σ

2
si. (25)

With these expectations, the inverse of the improved
weighting matrixW can be written as

W−1 = diag





l20σ
2
0 + σ

2
s0

l21σ
2
1 + σ

2
s1

...

l2N−1σ
2
N−1 + σ

2
s(N−1)

ρ20 (d
2
0 − σ

2
0 l

2
0 )+ σ

2
s0

ρ21 (d
2
1 − σ

2
1 l

2
1 )+ σ

2
s1

...

ρ2N−1(d
2
N−1 − σ

2
N−1l

2
N−1)+ σ

2
s(N−1)




.

(26)

C. THE CALCULATION OF THE BIASED TERM WITH
HIGHER PRECISION
In (16), E{9} should be calculated as a premise to find the
solution of the constrained weighted least-squares problem.
However, the calculation of E{9} is not easy due to the non-
linear relation between the AOA errors and the coefficients
of pseudo linear equations. In this subsection, the method is
developed to calculate E{9} with higher precision. The ideal
of calculating E{9} is to calculate E{ATWA} in the first
step. Subsequently, E{9} can be obtained by E{ATWA} −
AT0WA0.
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The expectation of ATWA can be calculated as (See
appendix B in details),

0 = E{ATWA}

= E{[F− h]TW [F− h]}

= E

{[
FTWF − FTWh

−(FTWh)T hTWh

]}

= E

{[
Z1 − Z2
−ZT2 Z3

]}

=

[
E{Z1} − E{Z2}

−E{ZT2 } E{Z3}

]
(27)

where 
E{Z1} = Z01 +1Z1,

E{Z2} = Z02 +1Z2,

E{Z3} = Z03 +1Z3,

(28)

where Z0i is the real value and 1Zi is the bias term caused
by the AOA errors and the position errors of the UAV.
Consequently, AT0WA0 can be expressed by Z0i as

AT0WA0 =

 Z01 −Z02
−Z0T2 Z03

 (29)

It is obvious that E{9} can be given as

E{9} =

[
1Z1 −1Z2

−1ZT2 1Z3

]
(30)

According to appendix B, the bias terms of Z1, Z2 and Z3
are obtained as

1Z1 =
N−1∑
i=0

w1iMT
i 1J1iM i + w2iMT

i 1J2iM i,

1Z2 =
N−1∑
i=0

w1iMT
i 1J1isi + w2iMT

i 1J2isi,

1Z3 =
N−1∑
i=0

w1isTi 1J1isi + w2isTi 1J2isi

+

N−1∑
i=0

w1iσ
2
si + w2iσ

2
si,

(31)

where w2i = 1/(ρ2i (d
2
i − σ 2

i l
2
i ) + σ 2

si) are the diagonal
elements of the improved weighting matrix W , 1J1i and
1J2i can be written as

1J1i = σ 2
i

cos(2θi) sin(2θi) 0

sin(2θi) − cos(2θi) 0

0 0 0

 , (32)

1J2i = σ 2
i

g1 g2 g3
g2 g4 g5
g3 g5 g6

 , (33)

where

g1 = −σ 2
i cos(2θi) sin

2(ϕi)+ ρ2i cos
2(θi) cos(2ϕi),

g2 = −σ 2
i sin(2θi) sin

2(ϕi)+
ρ2i

2
sin(2θi) cos(2ϕi),

g3 =
σ 2
i

4
cos(θi) sin(2ϕi)+ ρ2i cos(θi) sin(2ϕi),

g4 = σ 2
i cos(2θi) sin

2(ϕi)+ ρ2i sin
2(θi) cos(2ϕi),

g5 =
σ 2
i

4
sin(θi) sin(2ϕi)+ ρ2i sin(θi) sin(2ϕi),

g6 = ρ2i cos(2ϕi). (34)

IV. IMPROVING THE ACCURACY OF LOCALIZATION BY
THE UAV PATH PLANNING
In this section, the path planning algorithm with the position
errors of the UAV is discussed to further improve the localiza-
tion accuracy. In [32], the localization accuracy is evaluated
by the 1σ error ellipse area A1σ (39.4% confidence region),
which shows that the result of the maximum likelihood esti-
mation falls in the region of the area A1σ with a probability of
39.4%. Therefore, the localization accuracy is high when the
area A1σ is small. A1σ has been demonstrated in [32] to have
the form A1σ = π/(

√
det(�(x))), where�(x) is the FIM of x.

It is obvious that between the minimizing the area A1σ and
the maximizing the determinant det(�(x)) of FIM to obtain
the highest localization accuracy are equivalent. Therefore,
the determinant maximization criterion of FIM will be used
to design the path of the UAV. The FIM is defined in [30] as

�(z) = E

{[
∂ ln f (m)
∂zT

]T [
∂ ln f (m)
∂zT

]}
, (35)

where z = [pT0 , v
T , sT ]T , m = [θ̂

T
, ϕ̂

T
, ŝT ]T , f (m) is

the probability density function (PDF) of the m measure-
ments [24]. Because the errors of the AOA measurements
and the UAV positions submit the independent Gaussian
distribution, f (m) can be expressed as the product between
the PDF of the AOA errors and the PDF of the UAV position
errors,

f (m) =
1

(2π )3N/2 det(Qm)

× exp{−
1
2
(m−m0)TQ−1m (m−m0)}

=
1

(2π )N det(Qa)
exp{−

1
2
(a− a0)TQ−1a (a− a0)}

×
1

(2π )N/2 det(Qs)
exp{−

1
2
(ŝ− s)TQ−1s (ŝ− s)},

(36)

where m0 = [θT ,ϕT , sT ]T , a = [θ̂
T
, ϕ̂

T ]T is the AOA
measurements, a0 = [θT ,ϕT ]T is the real AOA,

Qm =

Qn Qω
Qs

 ,
Qa =

[
Qn

Qω

]
. (37)
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In order to calculate FIM, the logarithm of f (m) is required
to be calculated in advance, which is obtained from (36) as

ln f (m) = C −
1
2
(a− a0)TQ−1a (a− a0)

−
1
2
(ŝ− s)TQ−1s (ŝ− s), (38)

where C is constant. Putting (38) into (35), the FIM of z is
given as

�(z) = E{
[
(a− a0)TQ−1a

∂a0
∂zT
+ (ŝ− s)TQ−1s

∂s
∂zT

]T
×

[
(a− a0)TQ−1a

∂a0
∂zT
+ (ŝ− s)TQ−1s

∂s
∂zT

]
}

=

[
∂a0
∂zT

]T
Q−1a

∂a0
∂zT
+

[
∂s
∂zT

]T
Q−1s

∂s
∂zT

. (39)

Details are provided in Appendix C. Let Gx =
∂a0
∂xT and

Gs =
∂a0
∂sT , here we have

∂a0
∂zT = [Gx,Gs]. ∂s

∂zT can be rewritten

as
[
∂s
∂xT ,

∂s
∂sT

]
= [03N×6, I3N ] due to swithout the variable x.

The FIM of z can be simplified as

�(z) =
[
Y1 Y2

YT2 Y3

]
, (40)

where Y1 = Gx
TQ−1a Gx, Y2 = Gx

TQ−1a Gs and Y3 =

Gs
TQ−1a Gs+Q−1s . Because the CRLB is equal to the inverse

of the FIM, the CRLB of x and s can be given from (40) as

CRLB(x) = (Y1 − Y2Y−13 YT2 )
−1,

CRLB(s) = (Y3 − YT2 Y
−1
1 Y2)−1. (41)

According to the mathematical expression in (41),
CRLB(x) can be expressed by CRLB(s) [37] as

CRLB(x) = Y−11 + Y
−1
1 Y2CRLB(s)YT2 Y

−1
1 . (42)

Eq. (42) shows that the CRLB of x is mainly determined
by the AOA errors and the position errors of the UAV.
The first term indicates the uncertainty of the localization
caused by the AOA errors. The second term indicates the
influence of the position errors of the UAV on the localzi-
ation performance. If the position of the UAV is accurate,
i.e., CRLB(s) = 0, it is obvious that the CRLB of x is only
related to the AOA errors. However, the position of the UAV
is usually inaccurate, which will result in some increase in
CRLB(x). This is the reason why the position errors of the
UAV lead to the degradation of the localization accuracy. The
past path planning only considered that how to reduce the
impact of the AOA errors on localization accuracy. However,
it is necessary to consider how to reduce the impact of the
UAV position error on the localization accuracy in path plan-
ning, because it will also lead to the degradation of localiza-
tion performance.
The determinant maximization criterion of FIM is used in

path planning, so the FIM of x need to be calculated and is
obtained by (42) as

�(x) = Y1 − Y2Y−13 YT2 (43)

FIGURE 2. The flowchart of the UAV path planning and the target
localization based on maximizing the determinant of FIM.

Then, how to plan the path of UAV will be discussed.
According to (35), the localization performance is improved
by maximizing the determinant of FIM. Obviously we can
solve such a problem by the gradient rise method. However,
it is difficult to calculate the partial derivative of the determi-
nant det(�(x)) with respect to si. Therefore, we will take an
approximate approach to find the optimal path. The partial
derivative of �(x) with respect to x axis is derived as an
example. Let ε be a value close to zero. Let si+1 = si +
[ε, 0, 0]T . The partial derivative Gx can be calculated as the
follow

Gx =
∂ det(�(x))

∂x

≈
det(�(x, si+1))− det(�(x, si))

ε
(44)

Gy and Gz can be calculated by the same method. The nor-
malized gradient direction of the determinant of the �(x) is
G = [Gx ,Gy,Gz]T /‖[Gx ,Gy,Gz]T ‖. Assume that the speed
of the UAV is a constant vu. The next position of UAV is
calculated as follows

si+1 = si + GvuT (45)

In order to clearly understand these methods, the detailed
steps of the path planning and the target localization are
shown in Fig.2. It is obvious that the UAV should randomly
fly several waypoints to obtain AOA measurements. the ini-
tial estimate of the target position can be calculated by the
IBRPLE method. Subsequently,the initial estimate is used
in path planning. The path planning and target localization
methods are alternately executed until the constraint (the
range constraint, the time constraint, and so on ) is reached.

V. SIMULATION RESULTS
In this section, the localization performance comparison
between the proposed IBRPLE method and various methods
(IPLE and IIV in [24], BRPLE in [26]) is given in Fig.3-4
to show the higher accuracy of localization achieved by the
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FIGURE 3. The localization performance comparison between different
algorithms versus the number of measurements.

IBRPLEmethod. The path of the UAV is simulated in Fig.5 to
show the importance of considering the position errors of
UAV in path planning.

In Fig.3-4, we assume that the target is fixed, the position
of target is p0 = [4000, 3000, 100]m, the initial position
of the UAV is s = [300, 500, 700, 900, 1100, 1300, 1500; 0,
100, 100, 200, 200, 300, 300; 1000, 1000,950,950,900, 800,
800]Tm, the power loss exponent is λ = 1.2, the reference
standard deviation of azimuth angle is σn = (0.005 ×
π/180)rad , the reference standard deviation of elevation
angle is σω = (0.005×π/180)rad , the standard deviation of
position of the UAV is σS0 = σS1 = · · · = σS(N−1) = 0.2m,
the interval of measurement is T = 5s.

In Fig.3, the performance of localization for different local-
ization methods is simulated with the change of the number
N of measurements. All the performance curves become
smaller as the number of measurements increases, which
means that the performance of localization can be improved
by the large N . As shown in Fig.3, when the number of mea-
surements is relatively small, the proposed IBRPLE method
can achieve higher accuracy of localization than the other
methods. The reason behind this observation is that the bias
is effectively reduced by using IBRPLE method. On the
other hand, for large N, the methods except IIV method can
achieve almost same RMSE. This is because the weighting
matrix is not considered in the IIV method which causes the
equations with the different error to have the same weight,
its performance of localization is mainly determined by the
equation with a large error. The localization accuracy of the
proposed IBRPLE method is always close to that of CRLB,
which shows that the IBRPLE method is feasible and has a
high accuracy for target localization.

Fig.4 shows the performance of localization for different
localization methods versus the variance of the measurement
angle. We assume that the number of measurements is N =
55, and the reference variances of the azimuth angle and
elevation angle at unit range are equal. It can be seen from
the Fig.4 that the errors of localization will increase with the
increase of the standard deviation of the angle measurement.

FIGURE 4. The localization performance comparison between different
algorithms versus the reference standard deviation σn.

FIGURE 5. Paths of the UAV in two different path planning methods.

FIGURE 6. RMSE of two paths in two different path planning methods.

At the small σn, the localization performance of most algo-
rithms are almost identical and are close to CRLB, which
shows that all algorithms have good performance of local-
ization when the accuracy of AOA measurement is high.
However, only the localization performance of the IBRPLE
algorithm is still close to CRLB when σn is large. The pro-
posed IBRPLE has better robustness to the impact of angu-
lar errors compared to several algorithms. The performance
degradation of other algorithms is mainly caused by the bias
of closed-form solutions.
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FIGURE 7. Paths of the UAV in two different path planning methods.

FIGURE 8. RMSE of two paths in two different path planning methods.

Fig.5 and Fig.6 illustrate the paths of the UAV for dif-
ferent path planning schemes and corresponding localiza-
tion performances, respectively. The simulation parameters
are set as follows: the initial position of target is
p0 = [4000, 3000, 100]m, the speed of target is v =
[1, 0.8, 0.6]Tm/s. The initial position of the UAV is s =
[300, 500, 700, 900, 1100, 1300, 1500; 0,100,100, 200, 200,
300, 300; 1000, 1000, 950, 950, 900, 800, 800]Tm, the speed
of UAV is vu = 20m/s, σn = σω = (0.005 × π/180)rad ,
the standard deviation of position of the UAV is σs0 =
σs1, · · · , σs(N−1) = 0.8m, and the interval of measurement
is T = 5s.

Two paths of the UAV corresponding to different path
planing schemes are shown in Fig.6, one of which considers
the position errors of the UAV in our proposed path planing
scheme, and the other ignores the position errors. It is obvious
that the two paths are different. Corresponding error curves
of localization are shown in the Fig.6. For the small N ,
the localization performance of for two path planing schemes
is almost the same since the initial position of two paths are
approximately the same. For the largeN , The higher localiza-
tion accuracy for the path planing which considers position
errors of the UAV can be achieved, as shown in Fig. 5. The
reason behind this observation is that the adverse impact of
position errors of the UAV on localization performance can
be reduced accordingly if the position errors are considered
in path planning.

In order to further illustrate the advantages of path
planning proposed in this paper, the path of the UAV is
once again simulated with different simulation parameters
in Fig.7 and Fig.8. The initial position of target is
p0 = [4000, 3000, 100]m, the speed of target is v =
[2, 1.6, 1.2]Tm/s. the initial position of the UAV is
s = [1000, 1200, 1300, 1500, 1500, 1600, 1700; 500, 4000,
400, 400, 300, 300, 300; 1500,1400,1400, 1300,1400, 1300,
1300]Tm, the speed of UAV is vu = 20m/s, σn = σω =

(0.005 × π/180)rad , the standard deviation of position of
the UAV is σs0 = σs1 = · · · = σs(N−1) = 1.5m, and
the interval of measurement is T = 5s. The paths of the
UAV for different path planning schemes and corresponding
localization performances are shown in Fig.6 and Fig.7,
respectively. The path planning scheme proposed in this paper
that considers the position error of the UAV can achieve the
better localization performance.

VI. CONCLUSION
In this paper, the localization performance for the bearing-
only target localization based on the UAV is improved from
two aspects. On the one hand, in order to reduce the bias,
the weighting matrix is recalculated more accurately and the
improved bias reduction pseudo-linear estimator (IBRPLE)
is proposed which achieves better localization performance
verified by simulation. On the other hand, a path planning
algorithm considering the position errors of the UAV is
proposed to reduce the adverse impact of position errors
of the UAV on localization performance. The simulation
shows that the path planning scheme considering the posi-
tion errors of the UAV can achieve the better localization
performance.

APPENDIX A
Let us calculate the expectation of the product of µi and νi

E{µiνi}

= E{{di cos(ϕi) sin(ni)

− [1x sin(θ̂i)−1y cos(θ̂i)]}

· {di[cos(ni) cos(ϕi) sin(ϕ̂i)− cos(ϕ̂i) sin(ϕi)]

− [1x cos(θ̂i) sin(ϕ̂i)+1y sin(θ̂i) sin(ϕ̂i)

−1z cos(ϕ̂i)]}}

=
1
2
d2i cos(ϕi)E{sin(2ni)}E{sin(2ϕ̂i)}

−E{1x2i }E{sin(θ̂i) cos(θ̂i) sin(ϕ̂i)}

+E{1y2i }E{sin(θ̂i) cos(θ̂i) sin(ϕ̂i)}

= d2i cos(ϕi)E{ni}

+E{sin(θ̂i) cos(θ̂i) sin(ϕ̂i)}

· (E{1y2i } − E{1x
2
i })

= 0 (46)
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E{µiµi}

= E{{di cos(ϕi) sin(ni)

− [1x sin(θ̂i)−1y cos(θ̂i)]}2}

= d2i cos
2(ϕi)E{sin2(ni)}

+E{1x2i }E{sin
2(θ̂i)}

+E{1y2i }E{cos
2(θ̂i)}

= d2i cos
2(ϕi)σ 2

i + σ
2
si

= l2i σ
2
i + σ

2
si (47)

E{νiνi}

= E{{di[cos(ni) cos(ϕi) sin(ϕ̂i)− cos(ϕ̂i) sin(ϕi)]

− [1xi cos(θ̂i) sin(ϕ̂i)+1yi sin(θ̂i) sin(ϕ̂i)

−1zi cos(ϕ̂i)]}2}

= d2i E{sin
2(ϕ̂i) cos2(ϕi) cos2(ni)

+ cos2(ϕ̂i) sin2(ϕi)− 1/2 sin(2ϕ̂i) sin(2ϕi) cos(ni)}

+E{1x2i }E{cos
2(θ̂i) sin2(ϕ̂i)}

+E{1y2i }E{sin
2(θ̂i) sin2(ϕ̂i)}

+E{1z2i }E{(cos
2(ϕ̂i)}

= d2i (1/4 cos
2(ϕi)(1− E{cos(2ϕi + 2ωi)})

× (1+ E{cos(2ni)})

+ 1/2 sin2(ϕi)(1+ E{cos(2ϕi + 2ωi)})

− 1/2 sin(2ϕi)E{sin(2ϕi + 2ωi)}E{cos(ni)})

+ σsi

= d2i ρ
2
i (1− σ

2
i cos

2(ϕi))+ σ 2
si

= ρ2i (d
2
i − σ

2
i l

2
i )+ σ

2
si (48)

APPENDIX B
Let us directly calculate the expectation of ATWA.

0 = E{ATWA}

= E{[F − h]TW [F − h]}

= E{
[

FTWF − FTWh
−(FTWh)T hTWh

]
}

= E{
[
Z1 − Z2
−ZT2 Z3

]
} (49)

where 

Z1 =
N−1∑
i=0

w1iMT
i Ĵ1iM i + w2iMT

i Ĵ2iM i

Z2 =
N−1∑
i=0

w1iMT
i Ĵ1iŝi + w2iMT

i Ĵ2iŝi

Z3 =
N−1∑
i=0

w1iŝ
T
i Ĵ1iŝi + w2iŝ

T
i Ĵ2iŝi

(50)

where Ĵ1i = b̂ib̂Ti and Ĵ2i = ĉiĉTi , w1i = 1/(l2i σ
2
i + σ

2
si) and

w2i = 1/(ρ2i (d
2
i − σ

2
i l

2
i ) + σ

2
si) are the diagonal elements of

the weighting matrix W . Next we first calculate the value of

J1i and J2i without errors in bi and ci.

J1i =

 sin(θi)
− cos(θi)

0

[sin(θi) − cos(θi) 0
]

=

 sin2(θi) − sin(θi) cos(θi) 0
− sin(θi) cos(θi) cos2(θi) 0

0 0 0


=

x01i x02i 0
x02i x

0
3i 0

0 0 0

 (51)

J2i =

cos(θi) sin(ϕi)sin(θi) sin(ϕi)
− cos(ϕi)

cos(θi) sin(ϕi)sin(θi) sin(ϕi)
− cos(ϕi)

T

=

y01i y02i y03iy02i y
0
4i y

0
5i

y03i y
0
5i y

0
6i

 (52)

where 

y01i = cos2(θi) sin2(ϕi)

y02i =
1
2
sin(2θi) sin2(ϕi)

y03i = −
1
2
cos(θi) sin(2ϕi)

y04i = sin2(θi) sin2(ϕi)

y05i = −
1
2
sin(θi) sin(2ϕi)

y06i = cos2(ϕi)

(53)

Now let us calculate the value of Ĵ1i and Ĵ2i with errors in b̂i
and ĉi.

Ĵ1i =

 sin(θ̂i)
− cos(θ̂i)

0

[sin(θ̂i) − cos(θ̂i) 0
]

=

x ′1i x ′2i 0
x ′2i x

′

3i 0
0 0 0

 (54)

Ĵ2i =

cos(θ̂i) sin(ϕ̂i)sin(θ̂i) sin(ϕ̂i)
− cos(ϕ̂i)

cos(θ̂i) sin(ϕ̂i)sin(θ̂i) sin(ϕ̂i)
− cos(ϕ̂i)

T

=

y′1i y′2i y′3iy′2i y
′

4i y
′

5i
y′3i y

′

5i y
′

6i

 (55)

where
x ′1i = sin2(θi)+ cos(2θi) sin2(ni)+

1
2
sin(2θi) sin(ni)

x ′2i = − sin(θi) cos(θi)+ sin(2θi) sin2(ni)
− cos(2θi) sin(2ni)

x ′3i = cos2(θi)− cos(2θi) sin2(ni)−
1
2
sin(2θi) sin(ni)

(56)
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

y′1i = cos2(θ̂i) sin2(ϕ̂i)

= [cos2(θi)− cos(2θi) sin2(ni)−
1
2
sin(2θi) sin(ni)]·

[sin2(ϕi)+ cos(2ϕi) sin2(ωi)+
1
2
sin(2ϕi) sin(ωi)]

y′2i =
1
2
sin(2θ̂i) sin2(ϕ̂i)

= [
1
2
sin(2θi)− sin(2θi) sin2(ni)+ cos(2θi) sin(2ni)]·

[sin2(ϕi)+ cos(2ϕi) sin2(ωi)+
1
2
sin(2ϕi) sin(ωi)]

y03i = −
1
2
cos(θ̂i) sin(2ϕ̂i)

≈ [cos(θi)− sin(θi) sin(ni)]·

[−
1
2
sin(2θi)+ sin(2θi) sin2(ni)− cos(2θi) sin(2ni)]

y′4i = sin2(θ̂i) sin2(ϕ̂i)

= [sin2(θi)+ cos(2θi) sin2(ni)+
1
2
sin(2θi) sin(ni)]

[sin2(ϕi)+ cos(2ϕi) sin2(ωi)+
1
2
sin(2ϕi) sin(ωi)]

y′5i = −
1
2
sin(θ̂i) sin(2ϕ̂i)

≈ [sin(θi)+ cos(θi) sin(ni)]

[−
1
2
sin(2θi)+ sin(2θi) sin2(ni)− cos(2θi) sin(2ni)]

y′6i = cos2(ϕ̂i)

= [cos2(ϕi)− cos(2ϕi) sin2(ωi)−
1
2
sin(2ϕi) sin(ωi)]

(57)

The expectation of matrices Ĵ1i and Ĵ2i is equivalent to the
expectation of each element in matrices.

E{x ′1i} = sin2(θi)+ σ 2
i cos(2θi)

E{x ′2i} = − sin(θi) cos(θi)+ σ 2
i sin(2θi)

E{x ′3i} = cos2(θi)− σ 2
i cos(2θi)

(58)



E{y′1i} = cos2(θi) sin2(ϕi)− σ 2
i cos(2θi) sin

2(ϕi)
+ρ2i cos

2(θi) cos(2ϕi)

E{y′2i} =
1
2
sin(2θi) sin2(ϕi)− σ 2

i sin(2θi) sin
2(ϕi)

+
ρ2i
2 sin(2θi) cos(2ϕi)

E{y′3i} = −
1
2
cos(θi) sin(2ϕi)+

σ 2
i

4
cos(θi) sin(2ϕi)

+ρ2i cos(θi) sin(2ϕi)
E{y′4i} = sin2(θi) sin2(ϕi)+ σ 2

i cos(2θi) sin
2(ϕi)

+ρ2i sin
2(θi) cos(2ϕi)

E{y′5i} = −
1
2
sin(θi) sin(2ϕi)+

σ 2
i

4
sin(θi) sin(2ϕi)

+ρ2i sin(θi) sin(2ϕi)
E{y′6i} = cos2(ϕi)− ρ2i cos(2ϕi)

(59)

where • is the items that causes the bias. Obviously, we can
estimate the moving target parameters more accurately with-
out these items. In the above calculation, we ignored the
product terms of σ 2

i and ρ2i . And we used the following

approximation.

E{sin2(ni)} = σ 2
i

E{sin2(ωi)} = ρ2i

E{cos(ni)} ≈ 1−
σ 2
i

2

E{cos(ωi)} ≈ 1−
ρ2i

2
E{cos(2ni)} = 1− 2σ 2

i

E{cos(2ωi)} = 1− 2ρ2i
E{cos(2ni)} = 1− 2σ 2

i

E{cos(2ωi)} = 1− 2ρ2i
E{cos(2ϕi + 2ωi)} = cos(2ϕi)(1− 2ρ2i )

E{sin(2ϕi + 2ωi)} = sin(2ϕi)(1− 2ρ2i ) (60)

After the above analysis, we can easily get the equations

E{Ĵ1i} = J1i +1J1i
E{Ĵ2i} = J2i +1J2i (61)

where1J1i and1J2i are the bias terms. The bias terms of Z1
and Z2 are obtained as

1Z1 =
N−1∑
i=0

w1iMT
i 1J1iM i + w2iMT

i 1J2iM i

1Z2 =
N−1∑
i=0

w1iMT
i 1J1iSi + w2iMT

i 1J2isi

(62)

Since there are position errors, the bias term of Z3 cannot be
easily obtained in this way. If the joint effect of position error
and measurement error is ignored, it consists of two parts.

1Z3 =
N−1∑
i=0

w1isTi 1J1iSi + w2isTi 1J2isi

+

N−1∑
i=0

w1iσ
2
si + w2iσ

2
si (63)

E[9] can be expressed as

E[9] =
[
1Z1 −1Z2
−1ZT2 1Z3

]
(64)

APPENDIX C
The FIM of z is obtained as

�(z) = E{
[
(a− a0)TQ−1a

∂a0
∂zT
+ (ŝ− s)TQ−1s

∂s
∂zT

]T
[
(a− a0)TQ−1a

∂a0
∂zT
+ (ŝ− s)TQ−1s

∂s
∂zT

]
}

=

[
∂a0
∂zT

]T
Q−1a

∂a0
∂zT
+

[
∂s
∂zT

]T
Q−1s

∂s
∂zT

. (65)
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where ∂a0
∂zT =

[
∂a0
∂xT

∂a0
∂sT

]
= [Gx,Gs] and ∂s

∂zT =
[
∂s
∂xT

∂s
∂sT

]
=[

06N×3 I3N×3N
]
, where

Gx =
[
∂θ0

∂x
, · · · ,

∂θN−1

∂x
,
∂ϕ0

∂x
, · · · ,

∂ϕN−1

∂x

]T
Gs =

[
∂θ0

∂s
, · · · ,

∂θN−1

∂s
,
∂ϕ0

∂s
, · · · ,

∂ϕN−1

∂s

]T
, (66)

where ∂θi
∂x = [ ∂θi

∂p0
;
∂θi
∂v ],

∂ϕi
∂x = [ ∂ϕi

∂p0
;
∂ϕi
∂v ]

∂θi

∂p0
= [− sin(θi), cos(θi), 0]T /li

∂ϕi

∂p0
= [− cos(θi) sin(ϕi),− sin(θi) sin(ϕi), cos(ϕi)]T /di

∂θi

∂v
= (i− 1)T

∂θi

∂p0
∂ϕi

∂v
= (i− 1)T

∂ϕi

∂p0
∂θi

∂s
= [01×3i, sin(θi),− cos(θi), 0,01×3(N−i−1)]T /li

∂θi

∂s
= [01×3i, cos(θi) sin(ϕi), sin(θi)sin(ϕi),

−cos(ϕi),01×3(N−i−1)]T /di
(67)

Rewritten Eq.(65) as

�(z) =
[
Y1 Y2

YT2 Y3

]
, (68)

where Y1 = Gx
TQ−1a Gx, Y2 = Gx

TQ−1a Gs and Y3 =

Gs
TQ−1a Gs + Q−1s , where Gx =

∂a0
∂xT and Gs =

∂a0
∂sT .

REFERENCES
[1] X. Wu, W.-P. Zhu, and J. Yan, ‘‘A high-resolution DOA estimation method

with a family of nonconvex penalties,’’ IEEE Trans. Veh. Technol., vol. 67,
no. 6, pp. 4925–4938, Jun. 2018.

[2] X.Wang, L.Wan,M.Huang, C. Shen, andK. Zhang, ‘‘Polarization channel
estimation for circular and non-circular signals in massive MIMO sys-
tems,’’ IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 1001–1016,
Sep. 2019.

[3] X. Wang, W. Wang, J. Liu, X. Li, and J. Wang, ‘‘A sparse representation
scheme for angle estimation in monostatic MIMO radar,’’ Signal Process.,
vol. 104, pp. 258–263, Nov. 2014.

[4] B. Yao, W. Wang, W. Han, and Q. Yin, ‘‘Distributed angle estimation
by multiple frequencies synthetic array in wireless sensor localization
system,’’ IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 876–887,
Feb. 2014.

[5] W. Zhang, Q. Yin, H. Chen, F. Gao, and N. Ansari, ‘‘Distributed angle
estimation for localization in wireless sensor networks,’’ IEEE Trans.
Wireless Commun., vol. 12, no. 2, pp. 527–537, Feb. 2013.

[6] Q. Zhou and Z. Duan, ‘‘Weighted intersections of bearing lines for AOA
based localization,’’ in Proc. 17th Int. Conf. Inf. Fusion, Jul. 2014, pp. 1–8.

[7] A. N. Bishop, B. D. O. Anderson, B. Fidan, P. N. Pathirana, and G. Mao,
‘‘Bearing-only localization using geometrically constrained optimization,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp. 308–320, Jan. 2009.

[8] X. Wang, L. Wang, X. Li, and G. Bi, ‘‘Nuclear norm minimization frame-
work for DOA estimation in MIMO radar,’’ Signal Process., vol. 135,
pp. 147–152, Jun. 2017.

[9] E. Tzoreff and A. J. Weiss, ‘‘Path design for best emitter location using
two mobile sensors,’’ IEEE Trans. Signal Process., vol. 65, no. 19,
pp. 5249–5261, Oct. 2017.

[10] J. Ousingsawat and M. E. Campbell, ‘‘On-line estimation and path plan-
ning for multiple vehicles in an uncertain environment,’’ Int. J. Robust
Nonlinear Control, vol. 14, no. 8, pp. 741–766, May 2004.

[11] J. E. L. Cadre andC. Jauffret, ‘‘Discrete-time observability and estimability
analysis for bearings-only target motion analysis,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 33, no. 1, pp. 178–201, Jan. 1997.

[12] F. Wen, X. Xiong, J. Su, and Z. Zhang, ‘‘Angle estimation for bistatic
MIMO radar in the presence of spatial colored noise,’’ Signal Process.,
vol. 134, pp. 261–267, May 2017.

[13] W. Ding, Z. Li, and Y. Wu, ‘‘Constrained total least squares algorithm for
passive location based on bearing-only measurements,’’ Sci. China F, Inf.
Sci., vol. 50, no. 4, pp. 576–586, 2007.

[14] K. C. Ho and Y. T. Chan, ‘‘An asymptotically unbiased estimator for
bearings-only and Doppler-bearing target motion analysis,’’ IEEE Trans.
Signal Process., vol. 54, no. 3, pp. 809–822, Mar. 2006.

[15] K. Doğançay, ‘‘On the bias of linear least squares algorithms for pas-
sive target localization,’’ Signal Process., vol. 84, no. 3, pp. 475–486,
Mar. 2004.

[16] X. Wu, W.-P. Zhu, J. Yan, and Z. Zhang, ‘‘Two sparse-based methods
for off-grid direction-of-arrival estimation,’’ Signal Process., vol. 142,
pp. 87–95, Jan. 2018.

[17] W.H. Foy, ‘‘Position-location solutions by Taylor-series estimation,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. AES-12, no. 2, pp. 187–194, Mar. 1976.

[18] A. G. Lingren and K. F. Gong, ‘‘Position and velocity estimation via
bearing observations,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-14,
no. 4, pp. 564–577, Jul. 1978.

[19] Y. T. Chan and S.W. Rudnicki, ‘‘Bearings-only and Doppler-bearing track-
ing using instrumental variables,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 4, pp. 1076–1083, Oct. 1992.

[20] S. Nardone, A. Lindgren, and K. Gong, ‘‘Fundamental properties and
performance of conventional bearings-only target motion analysis,’’ IEEE
Trans. Autom. Control, vol. AC-29, no. 9, pp. 775–787, Sep. 1984.

[21] V. J. Aidala and S. C. Nardone, ‘‘Biased estimation properties of the pseu-
dolinear tracking filter,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-18,
no. 4, pp. 432–441, Jul. 1982.

[22] K. Doğançay, ‘‘Passive emitter localization using weighted instrumental
variables,’’ Signal Process., vol. 84, no. 3, pp. 487–497, Mar. 2004.

[23] K. Dogancay and G. Ibal, ‘‘Instrumental variable estimator for 3D
bearings-only emitter localization,’’ in Proc. Int. Conf. Intell. Sensors,
Sensor Netw. Inf. Process., Dec. 2005, pp. 63–68.

[24] L. Badriasl and K. Dogancay, ‘‘Three-dimensional target motion analysis
using azimuth/elevation angles,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 50, no. 4, pp. 3178–3194, Oct. 2014.

[25] H.Wang, L.Wan,M. Dong, K. Ota, and X.Wang, ‘‘Assistant vehicle local-
ization based on three collaborative base stations via SBL-based robust
DOA estimation,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 5766–5777,
Jun. 2019.

[26] Y. Wang and K. C. Ho, ‘‘An asymptotically efficient estimator in closed-
form for 3-D AOA localization using a sensor network,’’ IEEE Trans.
Wireless Commun., vol. 14, no. 12, pp. 6524–6535, Dec. 2015.

[27] B. R. Geiger, J. F. Horn, A. M. Delullo, L. N. Long, and A. F. Niessner,
‘‘Optimal path planning of UAVs using direct collocation with nonlinear
programming,’’ in Proc. AIAA Guid., Navigat., Control Conf. Exhibit,
Aug. 2006, p. 6199.

[28] K. Doğançay and H. Hmam, ‘‘Optimal angular sensor separation for AOA
localization,’’ Signal Process., vol. 88, pp. 1248–1260, May 2008.

[29] K. Doğançay and H. Hmam, ‘‘On optimal sensor placement for time-
difference-of-arrival localization utilizing uncertainty minimization,’’ in
Proc. 17th Eur. Signal Process. Conf., Aug. 2009, pp. 1136–1140.

[30] S. M. Kay, ‘‘Fundamentals of statistical signal processing: Estimation
theory,’’ Technometrics, vol. 37, no. 4, pp. 465–466, 1993.

[31] J. M. Passerieux and D. Van Cappel, ‘‘Optimal observer maneuver for
bearings-only tracking,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 3,
pp. 777–788, Jul. 1998.

[32] Y. Oshman and P. Davidson, ‘‘Optimization of observer trajectories for
bearings-only target localization,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 35, no. 3, pp. 892–902, Jul. 1999.

[33] M. L. Hernandez, ‘‘Optimal sensor trajectories in bearings-only tracking,’’
in Proc. 7th Int. Conf. Inf. Fusion, vol. 2, 2004, pp. 893–900.

[34] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, ‘‘Information-
theoretic coordinated control of multiple sensor platforms,’’ in Proc. IEEE
Int. Conf. Robot. Autom., vol. 1, Sep. 2003, pp. 1521–1526.

[35] K. Doğançay, ‘‘UAV path planning for passive emitter localization,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1150–1166, Apr. 2012.

[36] D.-C. Chang and M.-W. Fang, ‘‘Bearing-only maneuvering mobile track-
ing with nonlinear filtering algorithms in wireless sensor networks,’’ IEEE
Syst. J., vol. 8, no. 1, pp. 160–170, Mar. 2014.

VOLUME 7, 2019 153603



L. He et al.: Bearing-Only Target localization via the Single UAV

[37] Z. Ma and K. C. Ho, ‘‘A study on the effects of sensor position error and
the placement of calibration emitter for source localization,’’ IEEE Trans.
Wireless Commun., vol. 13, no. 10, pp. 5440–5452, Oct. 2014.

LANG HE received the B.S. degree from the
Electronic Engineering Department, Nanjing Uni-
versity of Aeronautics and Astronautics, China,
in 2017, where he is currently pursuing the
M.S. degree. His research interests include signal
and information processing and radiation source
localization.

PAN GONG received the M.S. degree from
Yunnan Minzu University, Yunnan, China,
in 2016. She is currently pursuing the Ph.D. degree
with the Electronic Engineering Department,
Nanjing University of Aeronautics and Astronau-
tics. Her research interests include array signal
processing and communication signal processing.

XIAOFEI ZHANG received the M.S. degree from
Wuhan University, Wuhan, China, in 2001, and the
Ph.D. degree in communication and information
systems from the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, in 2005.

He is currently a Full Professor with the
Electronic Engineering Department, Nanjing Uni-
versity of Aeronautics and Astronautics, and a
member of the Key Laboratory of Dynamic Cog-
nitive System of Electromagnetic Spectrum Space,

Ministry of Industry and Information Technology, Nanjing University of
Aeronautics and Astronautics. His research interests include array signal
processing and communication signal processing.

Prof. Zhang serves on the Technical Program Committees of The IEEE
2010 International Conference on Wireless Communications and Signal
Processing (WCSP 2010), The IEEE 2011 International Conference on
Wireless Communications and Signal Processing (WCSP 2011), ssme2010,
and 2011 International Workshop on Computation Theory and Information
Technology. He also serves as an Editor for the International Journal of
Digital Content Technology and its Applications (JDCTA), the International
Journal of Technology and Applied Science (IJTAS), the Journal of Com-
munications and Information Sciences, the Scientific Journal of Microelec-
tronics, and the International Journal of Information Engineering (IJIE).
He also serves regularly as a peer-reviewer for the IEEE TRANSACTIONS ON

WIRELESSCOMMUNICATION, the IEEETRANSACTIONSONVEHICULARTECHNOLOGY,
the Journal on Advances in Signal Processing (EURASIP), the IEEE
COMMUNICATIONS LETTERS, Signal Processing, the International Journal of
Electronics, the International Journal of Communication Systems, andWire-
less Communications and Mobile Computing.

ZHENG WANG received the B.S. degree in
electronic and information engineering from the
Nanjing University of Aeronautics and Astronau-
tics (NUAA), Nanjing, China, in 2009, the M.S.
degree in communications from the Department of
Electrical and Electronic Engineering, University
of Manchester, Manchester, U.K., in 2010, and the
Ph.D. degree in communication engineering from
the Imperial College London, U.K., in 2015.

From 2015 to 2016, he served as a Research
Associate with the Imperial College London. From 2016 to 2017, he was a
Senior Engineer with the Radio Access Network Research and Development
Division, Huawei Technologies Company. He is currently an Assistant Pro-
fessor with the College of Electronic and Information Engineering, NUAA.
His current research interests include lattice methods for wireless communi-
cations, cognitive radio, and physical layer security.

153604 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	RELATED WORK
	CONTRIBUTIONS
	ORGANIZATION

	SYSTEM MODEL FOR 3D MOVING TARGET
	THE BIAS REDUCED CLOSED-FORM SOLUTION OF THE 3D MOVING TARGET
	THE BIAS REDUCED CLOSED-FORM SOLUTION
	THE IMPROVED WEIGHTING MATRIX
	THE CALCULATION OF THE BIASED TERM WITH HIGHER PRECISION

	IMPROVING THE ACCURACY OF LOCALIZATION BY THE UAV PATH PLANNING
	SIMULATION RESULTS
	CONCLUSION
	 
	
	
	REFERENCES
	Biographies
	LANG HE
	PAN GONG
	XIAOFEI ZHANG
	ZHENG WANG




