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ABSTRACT In recent years, the method of plant leaf classification by deep learning has gradually become
mature. However, training a leaf classifier based on deep learning requires a large number of samples for
supervised training. In this paper, a few-shot learning method based on the Siamese network framework is
proposed to solve a leaf classification problem with a small sample size. First, the features of two different
images are extracted by a parallel two-way convolutional neural network with weight sharing. Then, the
network uses a loss function to learn themetric space, inwhich similar leaf samples are close to each other and
different leaf samples are far away from each other. In addition, a spatial structure optimizer (SSO) method
for constructing the metric space is proposed, which will help to improve the accuracy of leaf classification.
Finally, a k-nearest neighbor (kNN) classifier is used to classify leaves in the learned metric space. The
average classification accuracy is used as a performance measure. The open access Flavia, Swedish and
Leafsnap datasets are used to evaluate the performance of the method. The experimental results show that
the proposed method can achieve a high classification accuracy with a small size of supervised samples.

INDEX TERMS Leaf classification, few-shot learning, convolutional neural network, Siamese network.

I. INTRODUCTION
Plants are widely distributed in the natural environment, par-
ticipate in the material cycle of the ecosystem, and play an
important role in protecting the earth’s ecosystem. At present,
the global climate is gradually changing, the natural environ-
ment is being destroyed by human beings and the continuous
expansion of human cities, resulting in a sharp decline in
plant species and numbers [1]. Therefore, it is particularly
important to protect the biodiversity of plants. Unfortunately,
the conservation of plant species requires the ability to artifi-
cially classify their species, a skill that comes from intensive
learning and experience [2]. It is almost impossible for ordi-
nary people to identify traditional plant species, and even for
practitioners who come into contact with plants every day,
such as horticulturists, farmers and landscape architects have
difficulty classifying plant species. This issue is called the
taxonomic crisis in the field of related research [3]. Therefore,
botanists believe that technological of plant image retrieval
can greatly reduce the gap in plant classification skills of
researchers from different fields [4].
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In past studies, features for plant identification were usu-
ally selected from plant organs such as leaves, flowers, fruits,
and stems, among which the leaves of plants are the most
representative and easiest to obtain. Generally, most plants
can be well identified by processing the image of plant leaves
with a semisupervised method [5] in machine learning, but
this method is time-consuming and laborious, which makes
it difficult to popularize and apply further. At present, with
the development of image technology, using computer tech-
nology to automatically classify leaf characters after feature
extraction has become the mainstream method [6]. In the
research of related fields, the characteristics of leaves are
usually extracted by hand, For example, leaves are often
classified by using the shape differences between different
leaves [7], [8], Leaf edges, as an important feature, are
often used as extraction targets [9], In addition, using the
technology of leaf vein texture feature detection [10], sin-
gular value decomposition (SVD) and sparse representation
(SR) are combined to process dimensionally reduced plant
images [11], the moment invariant method for multicompo-
nent shapes [12] and artificial neural network with support
vector machine [13] have also been successful to some extent.

However, it should be noted that the above methods
rely on feature selection and manual processing, while the
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processing of advanced features and multiscale features will
significantly increase the complexity and workload, which
leads to the problem of reduced generalizability of these
methods after increasing the number and types of identi-
fied plants. Recently, due to the excellent performance of
deep learning convolutional neural networks in the field
of computer vision, they has become the main means to
solve the problems of image classification, image recogni-
tion and semantic segmentation [14]–[16]. The application
of deep learning methods in plant classification has achieved
a good performance, and their comprehensive performance
is better than that of most manual feature extraction clas-
sification methods, especially their excellent generalization
performance [17]–[19].

However, the disadvantages of deep learning are also obvi-
ous. The premise of high classification accuracy is that the
network has sufficient supervised learning samples, which is
usually very difficult. In most cases, we can only obtain a
small number of learning samples, and general deep learning
neural networks perform extremely poorly when encoun-
tering a small number of learning samples. Therefore, the
concept of few-shot learning is proposed. It aims to learn
the classification methods of these samples from a small
number of supervised samples. Faced with the same prob-
lem, humans can quickly and accurately master classification
methods with few samples. When new samples are intro-
duced, humans can make accurate judgments by comparing
them through measurements. We expect to make them mas-
ter a measurement method through the training network so
that they can learn from small samples and apply it to the
automatic classification of leaves. Therefore, inspired by the
small-sample learning method and the metric space [20] in
the prototype network, we constructed a structure based on
a Siamese network [21]–[23] to extract the characteristics of
plant leaves and classify them.

The main contributions of this paper are as follows.
1) A method based on the Siamese network structure is

proposed to construct a metric space for leaf classifica-
tion, where similar samples are close to each other and
dissimilar samples are far away from each other.

2) A spatial structure optimizer is proposed to improve
the speed and performance of measuring the spatial
formation process.

3) Experimental verification with the Flavia [24],
Swedish [25] and Leafsnap [26] datasets shows that
this method can effectively classify leaves with a small
number of supervised samples.

The rest of this article is structured as follows. The over-
all structure and algorithm of the method are presented in
section II. Section III shows the experimental method and
the principle of spatial structure optimization. The validation
results of this method in related data sets are presented in
section IV. Finally, we conclude and summarize the results in
section V.

TABLE 1. Performance measures comparison within the same training
environment.

FIGURE 1. Structure flow chart of training feature extraction.

II. PROPOSED CNN STRUCTURE
A. INITIAL CNN ANALYSIS
Generally, classification accuracy is an important perfor-
mance index for evaluating convolutional neural networks.
However, in practical applications, we need to consider the
complexity of the model and the number of calculations,
which are measured by floating-point operations (FLOPs)
and parameters (params), respectively. For example, for
ResNet and other networks, as the number of layers increases,
the classification accuracy will increase, but at the same time,
the complexity and computational complexity of the model
will also increase. Toomany parameters will lead to too many
computations of the metric function, making it difficult to
form the metric space.

When the output parameters of the model are close to
each other, reasonable layers are set for different CNNs, and
experiments were carried out on the Flavia datasets. The
results are shown in Table 1. According to the experimental
results, this paper proposes using the inception-v4 structure.
Although a deep DenseNet has better performance in model
complexity, DenseNet consumes much memory, which is not
conducive to the implementation of the project.

B. EXPERIMENTAL STRUCTURE AND ALGORITHMS
The training structure for each batch is shown in Fig. 1.
Inspired by the Siamese network structure, this paper pro-
poses a structure combining multilayer convolutional neural
networks and few-shot learning methods to classify plant leaf
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TABLE 2. Algorithm for the proposed work.

TABLE 3. Structure of the training dataset.

species. In the design of feature extractors, we refer to and
improve the Inception structure to increase the adaptability
of the network to the input image scale, and reduce the
phenomena of gradient disappearance and overfitting, thus
reducing the adverse impact caused by the sample itself.
The last part of the structure uses the logistic regression loss
function to measure the similarity between input image pairs.
Table 2 shows the proposed steps of the algorithm.

III. MATERIALS AND METHODS
A. DATASET
In the proposed work, it is necessary to select the appropriate
dataset in the training and evaluation stages to evaluate the
performance of the algorithm.We choose the Flavia, Swedish
and Leafsnap datasets for the training and test sets. Since
the main purpose of this paper is to solve the problem of
leaf classification in the case of small samples, the numbers
of training images for each supervised sample are different
(5-20, and the increment is 5). All other images that are not
selected as monitoring samples will constitute a verification
set to evaluate the algorithm. It is worth noting that a single
training sample consists of two pictures. If they belong to the
same category, it is called a positive sample, and the sample
is labeled with a 1; if they belong to different categories,
it is called a negative sample, and the sample is labeled with
a 0. Fig. 2 shows some samples of the Flavia, Swedish and
Leafsnap datasets. Table 3 shows the composition of the four
subsets required for each dataset experiment.

FIGURE 2. Samples of images.

B. PREPROCESSING OF IMAGES
To improve the performance of the convolutional neural net-
work in image feature extraction, image preprocessing is
required before training, and it is necessary to reconstruct
the image size. In this study, the sizes of all the images in
the dataset were uniformly adjusted to 112×112 pixels by
central clipping, which was automatically completed by the
computer through the OpenCV framework and Python script.
Eq. (1) gives the center square clipping method for image
scaling.

def SquareResize(Img,New_height,New_width) (1)

C. FEW-SHOT LEARNING AND DISTANCE
TRAINING STRATEGY
Generally, when the number of features is insufficient, the use
of neural network classifiers for optimization will lead to
serious overfitting because the neural network classifier has
a large number of parameters to be optimized. It is neces-
sary to construct a nonparametric optimization method and
construct a classifier suitable for few-shot learning under the
framework of meta-learning. The Siamese network structure
can map the similarity relationship between different images
into a metric space so that the samples belonging to the same
category can be as close as possible, and the samples belong-
ing to different categories can be as far away as possible. The
method used in this paper is trained in a supervised way, and
the samples are extracted by a two-way convolution neural
network. Then, the Euclidean distance between features is
calculated by a metric-based method: the closer the distance
is, the more similar the samples are. However, errors may
occur in the formation of the measurement space, as shown in
the large fluctuation in the loss function and the slow conver-
gence rate. The reason is that there are several similar types
of leaves in the training samples, which makes it difficult
to form a relatively stable measurement space. For example,
three similar samples will be in the metric space mapping
plane and form a stable distribution of an equilateral triangle,
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FIGURE 3. Reasons for plane errors.

FIGURE 4. Principle of the tetrahedron structure.

but the four similar samples will endanger the stability of
the original mapping plane, causing its distribution to be a
square, which can force the distances between samples in
the diagonal positions to increase, as shown in Fig. 3 (the
red dotted line represents the average distance between the
sample classes). This situation will cause the oscillation of
the loss function in the training process, whichwill slow down
the convergence process and eventually lead to a decrease in
precision.

Therefore, we propose the SSO that acts on the process of
metric space formation. The spatial distribution of the dis-
tance is achieved by using the stability of the spatial structure
of a regular tetrahedron to accelerate the training convergence
speed and improve the accuracy, as shown in Fig. 4. The β
plane is independent of the α plane. Under normal circum-
stances, the metric space plane mapping of the distance is
distributed in the α plane. When sample D meets the SSO
condition, the distance of sample D will be mapped into the β
plane. In the subsequent training, only the distances between
samples A, B and C related to it will be trained. In the k-
nearest neighbor classifier, the distance between sample D
and other unassociated samples E is replaced by formula
eq. (2).

distance(DE) = mean(distance(AE)+ distance(BE)

+distance(CE)) (2)

It should be noted that when multiple SSO conditions are
triggered, the distance is not calculated between all samples
distributed in the beta plane during training.

The trigger condition of the SSO structure is calculated by
eq. (3). The formula only works for four samples satisfying
the conditions: SSO does not trigger when there are more

than four different samples, this is because, in the early stage
of network training, a large number of samples meets the
requirements of sufficient samples. Note that to distinguish
samples in different planes, it is necessary to mark the map-
ping plane of the samples in the training process, which is
expressed as eq. (4) in the program.

k∑
i=0

fi(d, a)

k
≈

k∑
i=0

fi(d, b)

k
≈

k∑
i=0

fi(d, c)

k
� P (3)

where k denotes the minimum number of sample distances
calculations to be met, f (d, a), f (d, b), and f (d, c) are the
Euclidean distance functions between samples, and P is the
Euclidean distance value that satisfies the trigger condition

fy = (Distance, n) (4)

where Distance is the Euclidean distance function of the
samples, and n is the distribution plane.
With the Euclidean distance, stochastic gradient descent

training can be used to motivate the loss function. The logistic
regression loss function does not have a perfect predictive
functional performance, but here, it is very good for generat-
ing a metric space, making similar samples, close to the same
sample. The loss function is shown in eq. (5).

L = −[f × log(fy)+ (1− y)× log(1− fy)] (5)

where L is the loss function and f is the label of the input
pair., if the input images are from the same class, f = 1,;
otherwise, f = 0,; fy is the European distance for the training
pair.

D. CONVOLUTIONAL NEURAL NETWORKS
After AlexNet [27], proposed by Alex Krizhevsky et al, won
the ImageNet competition in 2012 by an absolute majority,
deep learning models have gradually become a major force
in various fields such as computer vision and natural lan-
guage processing. Moreover, with the rapid development of
high-performance computing devices dominated by graphics
processing units (GPUs), deep learning networks with deeper
layers and wider widths continue to emerge. Active in the
field of computer vision, convolutional neural networks play
an important role in target detection, image classification,
image segmentation, and other fields. Convolutional neural
networks can extract target features on a large scale and
conduct complex calculations.

Generally, this architecture is composed of five parts: the
input layer, convolution layer, pooling layer, full connection
layer, and output layer. In some systems, the convolution layer
is used to replace the pooling layer. Through the flexible
design of the convolutional layer and pooling layer structure,
modification of the linear and nonlinear activation functions,
the addition of auxiliary structures or parameters, etc., the
convolutional neural network models such as GoogLeNet,
ResNet, and DenseNet, are formed. Fig. 5 shows our pro-
posed CNNmodel for extracting and processing leaf features.
This model is inspired by the structure of GoogLeNet.
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FIGURE 5. The architecture of the proposed CNN.

GoogLeNet can allocate computing resources better and
extract more features than other models under the same
computation amount, and GoogLeNet can solve the gradi-
ent disappearance, gradient explosion and other problems
caused by the ultradeep network. GoogLeNet introduced
the concept of the ‘‘Inception module’’, the idea of which
is to use relatively dense components to approximate the
optimal local sparse structure. In this paper, the structure
consists of six convolution layers and one pooling layer,
followed by six ‘‘Inception modules’’. Finally, the charac-
teristic parameters are transferred through a fully connected
layer. A random gradient descent method was used to train
the CNN. A ReLU nonlinear activation function is added in
each layer to reduce the probability of gradient disappearance
and improve the speed of the backpropagation calculation.
Moreover, the ReLU function increases the sparsity of the
model. The maximum pooling layer and the average pooling
layer are introduced to reduce the number of calculations
and optimize the calculation space. The maximum pooling
layer can reduce the error of the estimated mean deviation
caused by the parameter error of the convolution layer and
retain more texture features. The average pooling layer can
reduce the error caused by the increase in the estimated
variance caused by the limitation of the neighborhood size
and retain more background features. The ‘‘Inception mod-
ule’’ uses an asymmetric convolution kernel to replace the
conventional convolution kernel to reduce the computational
burden. Details of the proposed convolutional neural network
are as follows:

1) This model is a one-way transmission, the input layer
is responsible for extracting the training images of a
special standard size (112× 112 in this paper), and the
function of each layer is to extract more image features
from the previous layer and pass them to the next layer
for processing.

2) The 1st layer reduces the images and increases the
number of features through 32 convolution kernels of
size 3×3 and sets the step size. The no-padding filling
method is adopted to reduce the edge feature quantity.

3) Compared with the previous layer, the step size is set
to 1 to further reduce the edge feature quantity.

4) The number of convolution kernels in the 3 layers is
increased to 64; starting with this layer, the padding

filling method is selected to better preserve the edge
features

5) Layers 4 to 6 are adjusted by the above method.
6) The 7th layer is the maximum pooling layer with a step

size of 2, and the size will be reduced to half of the
original onewhen the number of feature graphs remains
unchanged.

7) The ‘‘Inception module’’ of layers 8 and 9 have the
same structure, with 4 parallel convolution channels
and feature combinations at the end of the module,
among them, channel 2 contains a convolution kernel of
size 5× 5, channel 3 contains two convolution kernels
of size 3×3, and channel 4 contains an average pooling
layer.

8) The third ‘‘Inception module’’ reduces a parallel con-
volution channel. Channel 3 selects themaximumpool-
ing layer.

9) The fourth ‘‘Inception module’’ readopts the 4-channel
pattern, where the 2nd and 3rd channels start to use
an asymmetric convolution kernel, and the 4th channel
uses an average pooling layer.

10) The last two ‘‘Inception modules’’ restore the 3 chan-
nels: channel 2 uses a symmetric convolution kernel,
and channel 3 uses an averaging pooling.

11) The last layer is the fully connected layer and involves
weight sharing, which is responsible for integrating
all the extracted characteristics and passing them onto
other structures for processing.

E. NEAREST NEIGHBOR CLASSIFICATION
Beforemaking predictions, we first need to build a supervised
sample. It has been suggested that 50% of the training sam-
ples be randomly selected as supervised samples when the
number of training samples for each type of image is greater
than 10 and label them according to the type of samples.
As shown in Fig. 7, during the test phase, the tested sample
and the supervised sample are extracted by the convolutional
neural network.

Then, the Euclidean distance between them is calculated.
After training, the network will keep similar samples close to
each other and dissimilar samples far away from each other.
The correlation method [28] proves that the kNN classifier is
essential when there are few supervised samples. Therefore,
through a simple kNN classifier, the classification task can
be completed by comparing and analyzing the Euclidean
distance between the samples to be tested and different kinds
of supervised samples, as shown in Fig. 8.

F. OVERALL EXPERIMENTAL PROCEDURE
The overall experimental procedure is shown in Fig. 6. First,
combined with the training image pairs constructed in the
data set, the constructed two-way convolution neural network
is used for feature extraction, and then the contrast loss func-
tion is used to form the metric space with the SSO. When the
image is input, the network calculates the Euclidean distance
between the sample to be tested and the known species in
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FIGURE 6. Overall experimental procedure based on a Siamese network framework.

FIGURE 7. Flowchart of leaf classification for the test dataset.

FIGURE 8. KNN classification of the test samples(five labeled samples
per class, dotted lines represent European distances).

the metric space, and outputs the similarity score through the
kNN classifier: the higher the similarity between samples,
the higher the score is. The highest score category is the
prediction result.

IV. EXPERIMENTS AND RESULTS
All the experiments were conducted on a laptop with an Intel
Core i7-6700HQ processor (2.6 GHz) and an Nvidia Geforce
GTX 1060 6 GB graphics card. The laptop has 16 GB of
memory. The training and testing work was implemented
using the open-source software framework TensorFlow. The
recommended parameters for the CNN were set as follows:
the learning rate was set to 0.001, the dropout rate was set to
0.5, the training step length was set to 30000, and the batch
size was set to 8.

A. EXPERIMENTAL DATASET AND SSO VERIFICATION
Initially, four subsets of the training sets were generated
from the three datasets. According to the Siamese network

TABLE 4. The number of positive samples and negative samples.

FIGURE 9. Images of four plant samples. (a) Big-fruited holly. (b) Crepe
myrtle. (c) Wintersweet. (d) Japanese flowering cherry.

structure, the input image training pair is constructed. Train-
ing samples from the same type constitute positive training
samples, while training samples from different types consti-
tute negative training samples. It should be noted that the
number of negative training samples is larger than that of the
positive ones, so we need to randomly remove some negative
training samples. Table 4 shows the number of positive sam-
ples and negative samples in the four subsets of the Flavia,
Swedish and Leafsnap datasets.

In addition, to prove the positive effect of the SSO, we set
up two special training sets, which are composed of samples
satisfying the trigger condition of the SSO by observing sev-
eral training results of subset C (n=10) of the Flavia training
dataset. Fig. 9 shows four leaves that meet the requirements
of a particular training set: in some ways, it is difficult for
nonprofessionals to classify these leaves accurately.

Fig. 10 shows the variation in the loss curve with the SSO
and without the SSO. The average value of the 100 steps
of loss training is calculated, and the b-spline curve is used
for drawing. As shown in the figure, the SSO loss curve
converges faster and the descent process is smoother before
the 20000 steps. In addition, at the end of training, the stability
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FIGURE 10. Curves of the loss function from the same test dataset.

FIGURE 11. Overall accuracy (%) from the same test dataset.

of the SSO loss curve is better. Fig. 11 shows the classification
accuracy results of the kNN classifier on the same test dataset
with and without the SSO. According to the curve analy-
sis, as the number of training steps increases, the network
advantages of SSO training gradually emerge, and a high
classification accuracy is maintained in the later stages.

To more intuitively compare the difference between the
measurement space formed by using the SSO and by not
using the SSO, we extracted the output layer of the CNN,
the last layer of the special training set, and used PCA
method for visualization. Fig. 12 is a metric space without
the SSO. It can be seen from the graph that the leaves are
densely distributed around big-fruited holly, and the distribu-
tion distances between some species with higher similarity
are close. Even the phenomenon of staggering distribution
exists, which leads to a low fault tolerance rate in the pro-
cess of kNN classification, which leads to a decline in the
accuracy. Fig. 13 is a metric space formed using the SSO.
Although big-fruited holly’s distribution is scattered, it is well
separated from the similar Japanese flowering cherry, crepe
myrtle and wintersweet samples. After ignoring big-fruited

FIGURE 12. Metric spaces formed without SSO on special training
datasets.

FIGURE 13. Metric spaces formed by the SSO on special training datasets.

holly, the distribution of the metric space tends to be more
reasonable, the distributions of the same kind of leaves is
more concentrated, and the fault-tolerance rate is higher in the
process of kNN classification, so the classification accuracy
is higher.

B. COMPARISON WITH OTHER CNN FRAMEWORKS
In this section, the performance of Siamese network with
other convolutive neural network frameworks, such as VGG,
ResNet, ResNeXt, SENet and DenseNet, is tested. Note that
for a fair comparison, it is necessary to uniformly input
images of the same size and to fine-tune these networks,
especially the number of layers in the network. Table 5,
Table 6 and Table 7 lists the test results. Compared with
other CNN frameworks, the adjusted Siamese + Incep-
tion (S-Inception) network can provide competitive results,
and the results show that the S-Inception combination can
achieve good accuracy when the training sample settings
are appropriate. This finding is attributed to the advantages
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TABLE 5. Overall accuracy (%) of the different CNN methods for the
Flavia dataset.

TABLE 6. Overall accuracy (%) of the different CNN methods for the
Swedish dataset.

TABLE 7. Overall accuracy (%) of the different CNN methods for the
Leafsnap dataset.

of the Inception structure. When the number of samples is
insufficient, the deep network gradient disappears seriously,
and serious overfitting will occur. The Inception structure
increases the utilization of parameters and uses smaller con-
volution blocks instead of larger ones, thus increasing the
nonlinear expression ability of the model and effectively
alleviating these two phenomena. It is noteworthy that in
these test datasets, when the number of training samples is
small (n = 5,10), S-DenseNet achieves the highest accuracy
and performs better in other monitoring samples, as deter-
mined by DenseNet’s structural characteristics. When there
are fewer samples, the dense connection can preserve the
feature maps of each layer well and reduce overfitting, which

TABLE 8. Overall accuracy (%) of the different semisupervised methods
for the Flavia dataset.

TABLE 9. Overall accuracy (%) of the different semisupervised methods
for the Swedish dataset.

is similar to the auxiliary classifiers in Inception structure.
The S-DenseNet combination after precise optimization may
exceed the S-Inception combination. Although it performs
well, the extremely high operation cost and poor operation
efficiency are not suitable for few-shot learning. Overall,
the test results show that it is good to combine the Siamese
network structure with different CNN frameworks to realize
the few-shot learning classification method of leaves, which
further proves the effectiveness of the method. The accuracy
is computed by eq. (6).

Accuracy=
number of correctly classified samples

total number of samples
×100%

(6)

C. COMPARISON WITH SEMISUPERVISED METHODS
In this section, the proposed method is compared with several
semisupervised methods, including SSLDP [29], SFFD [30],
SS-HCNN [31], and the unified use of the kNN classifier.
Additionally, L is set to a maximum of 6 in SSLDP for
maximum performance. Table 8, Table 9 and Table 10 show
the results of the comparative tests. As we can see from
the table, all the methods improve the accuracy when the
number of supervised samples increases, but the S-Inception
method improves faster, because the generalization ability
of the S-Inception structure is better, and the width of the
structure makes it possible to extract more features when the
number of samples increases. The proposed method performs
well when the supervisory sample is small (n=5). When
the number of training samples increases, the accuracy of
SS-HCNN improves rapidly. This is because when the total
number of training samples is small, there is a serious overfit-
ting phenomenon. The increase in the training samples will be
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TABLE 10. Overall accuracy (%) of the different semisupervised methods
for the Leafsnap dataset.

alleviated. At the same time, the multiscale characteristics of
SS-HCNN increase the utilization of features, so the accuracy
improves. The experimental results show that this method
performs better than some semisupervised methods.

V. CONCLUSION AND FUTURE WORK
In this paper, an improved convolutional neural network
structure is proposed to solve the problem of leaf classifica-
tion in the case of small samples, which is of great signifi-
cance for solving the problem of sparse samples or various
types of classification tasks. The key to this method is to
extract image features by using a convolutional neural net-
work and construct the metric space by using the concept of
similarity between different image features. The quality of
the metric space and the selection of the supervised samples
determine the classification accuracy of the nearest neighbor
classifier. Moreover, through the loss function curve and
accuracy, it is proven that a structure optimization device
that acts on the metric space is effective. The experimental
results also show that when the number of training samples
is 20, the classification accuracy of this method is the high-
est, 95.32%, 91.37% and 91.75% accuracies are obtained
from the Flavia, Swedish and Leafsnap datasets, respectively.
These results are competitive in the deep learning classifica-
tion field.

Although this method has achieved good results on Flavia,
Swedish and Leafsnap datasets, further research is needed to
improve the generalization ability of the model. In the future,
our method will be applied to more datasets and few-shot
classification tasks.
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