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ABSTRACT Electrical impedance tomography (EIT) calculates the internal conductivity distribution of
a body using electrical contact measurement and has become increasingly attractive in the biomedical
field. However, the design of optimal tomography image reconstruction algorithms has not achieved an
adequate level of progress and maturity. The spatial-temporal properties are crucial for the improvement
of reconstruction quality and efficiency in dynamic EIT reconstruction. However, these properties have not
been fully utilized in previous research. In this paper, a mathematical model for EIT reconstruction is built
upon a combination of the low-rank and the sparsity theories. In addition to the low-rank method based
on the nuclear norm constraint, the patch-based sparse method is also used to obtain the spatial features
of a reconstructed image, according to the characteristic of an irregular boundary for the EIT image. The
mathematical model of the new method is solved using the variable split (VS) algorithm. The imaging
results are compared with the reconstruction results of the traditional algorithms. The experimental results
demonstrate better performance of the newmethod compared with the traditional methods. The effectiveness
of the proposed scheme is verified.

INDEX TERMS Dynamic image reconstruction, electrical impedance tomography, low-rank, sparsely,
spatial-temporal.

I. INTRODUCTION
Electrical impedance tomography (EIT) has been investigated
extensively during past decades as a visualization and mea-
surement technique, which can be used to obtain the image
of the cross-sectional area without any interventions in the
object body. Based on the theory that different media have
different impedances, we can recover the interior impedance
from the simultaneous measurements of the voltage or cur-
rent on the boundary. EIT technology has the advantages
of portability, safety, low-cost, noninvasiveness and rapid
response [1], [2]. EIT is an attractive medical imaging tech-
nology with potential clinical application. However, main-
taining high resolution in space together with low costs is still
challenging [3], [4].

Due to the diffusive nature of EIT and the ill-posedness of
the inverse imaging problem, the quality of reconstruction is
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often modest in comparison with that of many other imaging
modalities [5]. Thus it is still of great interest to develop
improved reconstruction algorithms that capable of yielding
sufficiently useful information about the data. Recently, low-
rank matrix reconstruction has drawn more attention to the
image reconstruction area, which has also been used for
EIT dynamic reconstruction [6], [7]. It exploits the spatial-
temporal properties of dynamic reconstruction objects that
are crucial for the improvement of reconstruction quality.
Nuclear norm minimization has always been used to solve
low-rank problem [7]. However, the spatial characteristics of
each frame are not considered, so that partial feature informa-
tion loss may occur, which could degrade the image quality.
As a result, the final clinical diagnosis will be affected [4].
Thus, it is crucial to improve the low-rank method so that the
spatial resolution of the EIT image can be further improved.

Compared with the low-rank method, a sparse strategy
can resolve local features of the image [8]–[10]. The TV
method has always been used for sparse reconstruction in
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these methods [11]–[13]. Although better image quality can
be obtained, it is only suitable for an imaging field with a
regular shape, e.g., a square image. However, the object field
of EIT depends on the position of electrodes, which is always
irregular. These methods are also not suitable for EIT image
boundaries as the electrode position changes. Thus, how to
build rational and powerful EIT reconstruction models is still
a worthy research issue.

In this paper, we propose a low-rank plus sparse scheme for
EIT imaging. For the low-rank part, we use a nuclear norm
constraint. For the sparse part, we replace the global sparsity
method with the patch-based sparsity method to meet the
requirement of an irregular image boundary and to improve
the spatial resolution of reconstructed image.

The ADMM algorithm is used to solve the low-rank plus
sparse EIT model in this paper [14]–[16]. The simulation and
experimental results are both provided.

II. EIT RECONSTRUCTION
The dynamic EIT measurements correspond to the conduc-
tivity distribution can be approximated as

V = U (σ ; I ) = R(σ )I (1)

where U (·) is the forward model mapping the conductivity
distribution σ and injected current vector I to the bound-
ary voltage vector V and R(σ ) is the model mapping σ to
resistance.

We denote the spatio-temporal conductivity signal σ (x, t),
where x is the spatial location and t denotes time. In dynamic
imaging applications, the temporal profiles of the pixels are
indicated by the n-dimensional vector

qi = [σ (xi, t0), σ (xi, t1), · · · , σ (xi, tl−1)]T ;

i = 0, · · · , n− 1 (2)

where n is the number of pixels in the reconstructed image
and l is the number of temporal samples. The spatial-temporal
signal σ (x, t) can be rearranged in amatrix form to exploit the
correlations

δσ =

 σ (x0, t0) · · · σ (x0, tl−1)
...

σ (xn−1, t0) σ (xn−1, tl−1)

 (3)

The columns of δσ ∈ Rn×l correspond to the pixels
of each two-dimensional image (conductivity distribution).
The inverse problem is also called image reconstruction.
If changes in conductivity are small, the inverse problem
can be solved with sufficient accuracy by considering the
linearized equation system

δU = U ′(σ0)δσ = Jδσ (4)

where δU ∈ Rm×l(m is the number of independent voltage
measurements) is the perturbation of boundary voltage due
to the change of σ and J ∈ Rm×n is the Jacobian matrix,
that is the partial derivatives of voltages with respect to the
conductivity.

III. PROBLEM FORMULATION
In this section, we present the proposed mathematical model
that is aimed to provide efficient accelerated EIT.

To exploit the sparsity and low-rank properties of the
matrix. We formulate the problem as

δσ ∗ = argmin
δσ
‖Jδσ − δU‖22

s.t rank(δσ ) ≤ r, ‖Dδσ‖1 ≤ K (5)

where r ≤ min(m, l) is the rank constraint, K is the sparsity
constraint defined by the number of nonzero entries in sparse
coefficients.

Rewriting the above constrained optimization problem
using Lagrange’s multipliers and relaxing the penalties, we
obtain

δσ ∗ = argmin
δσ
‖Jδσ − δU‖22 + λ1L(δσ )+ λ2S(δσ ) (6)

where L(δσ ) represents the low-rank penalty function and
S(δσ ) represents the sparse penalty function. λ1 and λ2 are
regularization parameters. We use nuclear norm function,
which is specified by

L(δσ ) = ‖δσ‖∗ =
min{m,n}∑
i=1

σi (7)

where δσ = U6V ∗ is the singular value decomposition of
δσ and 6 = diag([σ0, σ1, . . . σr−1]) [18]. The operator ‖·‖∗
is the nuclear norm.

In this paper, the patch-based sparse method is used for
sparse representation to obtain the local feature of recon-
structed image and to meet the requirement of the irregular
boundary problem of EIT [18]. The sparse penalty function
S(δσ ) in equation (6) can be represented as

S(δσ ) =
∥∥∥Dαi∥∥∥

1
(8)

min
D,0

∑
i

∥∥∥Piδσ − Diαi∥∥∥2
2

s.t.
∥∥∥αi∥∥∥

0
≤ T0 i = 1, . . . , k (9)

where Pi ∈ Rn×L defines the patch, and the i th patch
δσ i ∈ RL is expressed as δσ i = Piδσ . D is the sparse
dictionary, which is composed of different patches. The
K-SVD algorithm is used to learn the dictionary Di of the

i th patch. We define the combined dictionary D =


D1
D2
...

Dk

,
D ∈ Rd×d , where the sample is d dimension, the sparse rep-
resentation is i dimension and the k variable refers to k block.
0 is used to denote the set {αi}i of sparse representations of all
patches. In problem (9), an initial dictionaryD0 is required for
K-SVD learning [19]. Available initializations involve ana-
lytical dictionaries, such as wavelets and the discrete cosine
transformation (DCT)matrix, or the training data themselves.
In the paper, the DCT matrix is selected.
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A. OPTIMIZATION ALGORITHM
We introduce a novel variable splitting algorithm for the
efficient recovery of the matrix using (6). We pose the regu-
larizedmatrix recovery scheme as a constrainedminimization
problem using variable splitting [17]

δσ ∗ = argmin
δσ
‖Jδσ − δU‖22 + λ1L(R)+ λ2 ‖S‖1

s.t δσ = R, S = δσ ; (10)

where, R and S are auxiliary variables, which are also deter-
mined during the optimization process. We solve (11) using
the penalty method, in which we minimize

G(η1, η2)(δσ,R, S) = argmin
δσ
‖Jδσ − δU‖22 + λ1L(R)

+ λ2 ‖S‖1 +
η1

2
‖δσ − R‖22

+
η2

2
‖δσ − S‖22 (11)

where η1 and η2 are regularization parameters. Problem (11)
is solved using an alternating minimization procedure.

δσ c+1 = argmin
δσ
‖Jδσ − δU‖22 +

η1

2
‖δσ − R‖22

+
η2

2
‖δσ − S‖22 (12)

Rc+1 = argmin
R

∥∥∥δσ c+1 − R∥∥∥2
2
+

2λ1
η1

L(R) (13)

Sc+1 = argmin
S
‖δσ − S‖22 +

2λ2
η2
‖S‖1 (14)

Similar alternating directions methods are widely used in
compressed sensing and TV minimization [11], [12]. The
first subproblem (12) is quadratic and hence can be solved
analytically as

δσ c+1 = (JT J +
η1

2
QTQ)−1 × (JT δU +

η1

2
R+

η2

2
S)

= T(R, S) (15)

where the operator Q is defined as Q(δσ ) = D∗δσ . This
step can be solved efficiently by the conjugate gradient
algorithm [20].

The second subproblem (13) is of a similar form of stan-
dard nuclear norm minimization problems. The iterative sin-
gular value thresholding (IST) scheme that is used in nuclear
norm minimization can be generalized to the case that has
nonconvex spectral penalties [20]. We would lead to obtain
Rc+1 as a singular value thresholding of δσ c+1, as specified
by Sλ1/η1

Rc+1 = (Sλ1/η1 ◦ T)(R
c, Sc) (16)

The singular value shrinkage is applied to the singular
values contained on the diagonal of S as

Sλ1/η1 (δσ
c+1) =

min(m,n)∑
i=0

(γi − µγi/η1)+uiv
∗
i (17)

here, ui, vi and γi are the singular vectors and values of

(γ )+ =

{
γ, if γ ≥ 0
0, else

(18)

δσ c+1, respectively. The thresholding function is defined as:
The solution to the third subproblem (14) requires the joint

processing of all terms Q(δσ c+1), such that the magnitude is
reduced

Sc+1 =
Q(δσ c+1)∥∥Q(δσ c+1)∥∥22 ·

(∥∥∥Q(δσ c+1)∥∥∥2
2
−
λ2

η2

)
+

= kλ2/η2 (δσ
c+1) (19)

The convergence of the above three-step alternating min-
imization scheme as the penalty parameters η1, η2 → ∞ is
well known [17].

To summarize, regularized matrix recovery schemes as a
constrained minimization problem using a variable splitting
framework involves the following three step algorithm with a
continuation strategy, as show in Table 1:

TABLE 1. Variable splitting algorithm for solving low-rank plus sparse
problem of EIT reconstruction.

IV. NUMERICAL EXPERIMENTS NUMERICAL
SIMULATION
A. SIMULATION MODEL
In this section, numerical simulations are implemented to
evaluate the feasibility and effectiveness of the low-rank
plus sparse algorithm. A mesh of adaptive first-order trian-
gular elements produced in COMSOL Multiphysics is used
for the forward calculation. The reconstructed images pre-
senting conductivity distribution for inverse problem uses
another mesh with 812 square elements to avoid the so-called
‘‘inverse crime’’ [2]. A 16-electrode round EIT sensor is used
for simulations, and each frame is presented in 812 pixels.
All algorithms are implemented using the MATLAB 2012
software on a PC with a 2.4 GHz CPU and 4 GB memory.

To evaluate the proposed reconstruction method, this paper
takes the conductivity distribution shown in Fig.1 to obtain
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FIGURE 1. Simulated conductivity distribution. (a) T-shaped object,
(b) Synthetic lung object (Unit of the color bar is conductivity value).

FIGURE 2. Decay of singular values of EIT data.

FIGURE 3. Sorted magnitude values of coefficients in transform domain.

simulation data for image reconstruction. Two conductivity
variation phantoms, i.e. phantoms (a)-(b), are established.
According to the noise level of the real system, the measured
data with SNR = 42 dB are used for simulation.

FIGURE 4. The relationship between the PSNR of reconstructed image
and the number of iterations for the low-rank plus sparse method.

The new method is first tested on simulation data collected
with T-shaped object. An illustration is produced in Fig. 1 (a)
to help explain the scheme. The example presents the recon-
struction of images of a T-shaped object subject to transla-
tional displacements.

Another simulation is of the synthetic lung object, which
is illustrated in Fig. 1 (b). The example extends the first
simulation to the EIT images formed by ellipsoids of varying
volume, which emulates the imaging of a breathing thorax.

B. EVALUATION OF LOW RANK AND SPARSITY PROPERTY
FOR EIT IMAGE
Since the low rank and sparse assumption are used this paper,
the low-rankness and sparseness of the target process are
proved first.

Firstly, the spatial-temporal conductivity matrix δσ is
assumed to be low rank. In order to show the validity of this
assumption, we plot the sorted singular values of EIT spatial-
temporal conductivity matrix δσ corresponding to the con-
ductivity distribution of synthetic lung object in Figure 1(b).
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FIGURE 5. The relationship between the PSNR of reconstructed image and the regularization parameters for the low-rank plus sparse method.

The rapid decay of sorted singular values in Fig. 2 indeed
confirms the low rank nature of dynamic EIT data.

Although the sparse property cannot be guaranteed by EIT
image, it could be imposed on the transform domain data.
Since the patch-based sparsity based on dictionary learning
is used in this paper, we plot the sorted sparse coefficients of
conductivity distribution corresponding to the middle phan-
tom of Figure 1(b), as shown in Fig. 3. 7× 7 square patch is
used for sparse representation in this paper. We could observe
that the EIT image is sparse under the condition of patch-
based sparsity.

C. EVALUATION PROCEDURE
To evaluate the properties of the low-rank plus sparse method,
strategies for parameter choice are discussed based on the
simulation results. The peak signal-to-noise ratio (PSNR)
and the average structural similarity (MSSIM) parameters are
selected for evaluation of image quality [21]–[24].

a) The quality of the reconstruction is quantified by using
the peak signal-to-noise ratio (PSNR):

PSNR = 10∗ log10

(
(2n − I )2

MSE

)
(21)

where

MSE =
1
n

n−1∑
i=0

‖I (i)− K (i)‖22 (22)

represents the mean square error. I and K represent real
image I (i) and reconstructed image K (i) respectively. i is the
index of a pixel in each image.

b) The structural similarity index (SSIM) evaluation mod-
els is used to obtain the comprehensive evaluation index
of the image quality by comparing the difference between
the original image and the distortion images in the three
categories of brightness, contrast and structure.

SSIM (x, y) = [w(x, y)]α[c(x, y)]β [s(x, y)]γ (23)
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TABLE 2. Dimensions of nylon rods tested at different times.

FIGURE 6. Comprehensive quantitative image quality evaluation of
reconstruction of the T-shaped model with different SNRs.

wherew(x, y) = 2uxuy+C1

u2x+u2y+C1
, c(x, y) = 2σxσy+C2

σ 2x +σ
2
y +C2

and s(x, y) =
σxy+C3
σxσy+C3

are brightness message information, contrast mes-
sage information and structure message information of the
image, respectively. x and y represent the standard image
and the image to be evaluated, respectively. ux and uy denote
the mean value of the image. σx and σy denote the standard
deviation of the image. σxy denotes the covariance of the
image. C1 = (k1 ∗ L)2, C2 = (k2 ∗ L)2 and C3 = C2/2

FIGURE 7. Comprehensive quantitative image quality evaluation of
reconstruction of the synthetic lung model with different SNRs.

are constant to keep the denominator from being zero (In this
paper, k1 = 0.01, k2 = 0.03, L = 255).The choice are α = 1,
β = 1 and γ = 1.

The obtained SSIM values were accumulatively averaged,
and the average structural similarity MSSIM of the two
images was defined as:

MSSIM =
1
M

M∑
i=1

SSIM (xi, yi) (24)
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where M represents the number of local window openings.
xi and yi represent the i local image of the standard image
and the image to be evaluated, respectively.

1) ITERATION NUMBER SELECTION
The variable splitting algorithm, which is an iterative algo-
rithm, is used to solve the low-rank plus sparse method. The
two conductivity distributions in Fig. 1 were reconstructed
by the low-rank plus sparse method with 45 iterations. The
plots of the PSNR defined in equation (21) versus iterative
steps are calculated and shown in Fig.2. For the low-rank
plus sparse method, the regularization parameter λ1 and λ2
are both selected as 0.1, respectively. The initial value of δσ
is 0.

It can be seen from Fig. 4 that the PSNR parameter
increases slowly after 20 iterative steps for both models.
Considering both the image quality and the computing effi-
ciency, the iteration number is selected as 20 in this paper.

2) REGULARIZATION PARAMETER
The regularization parameter λ1 and λ2 are important to
determine the weight of the regularization.

The influence of different regularization parameters on
PSNR of the reconstructed image is shown in Fig. 5. It can be
seen from Fig. 5 that the quality of the reconstructed images
does not obviously changes in the regularization parameters
λ1 and λ2, which indicates that the selection of the regular-
ization parameter λ1 and λ2 has little effect on the image
quality.

3) EVALUATION OF THE NEW METHOD CONSIDERING
SYSTEM NOISE
In actual measurements, the detected data contain a large
number of noise signals. To test the noise robustness of
the low-rank plus sparse method, different levels of White
Gaussian noise are added to the measured data. The proposed
method is compared with traditional methods, using both the
evaluation parameters and reconstructed images.

In Figs. 6 and 7, both PSNR and MSSIM were used to
evaluate the reconstruction results of different methods for
a variety of system SNRs. As shown in Fig. 4 and 5, the low-
rank plus sparse method is particularly robust to noise pollu-
tion, even at a high noise level and when the SNR is below
20 dB.

Reconstructed images of the measured data under practical
system noise conditions (SNR = 42 dB) are shown in Fig. 8.
For the convenience of comparison, the gray levels of the
reconstructed images are normalized to the range of 1 to 3.
As shown in Fig. 8, the quality of reconstructed images
based on low rank and sparse algorithms are similar. This
is because the spatial and temporal noise are not considered
very well in traditional methods. Hence the artifacts with sim-
ilar characteristics according to system noise are introduced.
However, the performance of reconstruction is significantly
improved after combination of both low rank and sparse
constraint.

FIGURE 8. Reconstructed images based on the three methods fort the
two simulation models (Unit of the color bar is conductivity value).

V. EXPERIMENTAL RESULT
An experimental study is performed using a measurement
setup, as shown in Fig. 9. Sixteen composite electrodes
are evenly distributed on the inner surface of the container.
Consistent with the simulation study in section IV, the
16-electrode sensor is used in the experiment. The adjacent
current injection and voltage measurement strategy is
adopted, and the amplitude data of the boundary voltage

FIGURE 9. Experimental equipment for thoracic cavity model imaging.
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FIGURE 10. Experimental configurations representing human body lung ventilation.

measurement strategy is the voltage that is acquired for image
reconstruction. In the data acquisition and control system, the
AC-based sensing electronics are composed of a resistor volt-
age (R/V) converter and an AC programmable gain amplifier
(AC-PGA). The digital signals are captured and processed
by the FPGA (Xilinx Spartan-3XC3S400), including digital
phase sensitive demodulation (digital PSD) and first-in, first-
out (FIFO). The maximum current amplitude of the adjacent
electrode current excitation mode is 0.2 mA. All measure-
ments are made at 3 kHZ. The SNR of the system is 42 dB.
The data acquisition speed of the system is approximately
30 frames/s.

To simulate the changes of pulmonary ventilation during
the process of breathing, four sizes of well-trimmed rods are
positioned in a chest model, as shown in Fig. 10. The top
surface of the chest model is 28.9 cm in length and 9 cm
in width; the bottom surface of the chest model is 20cm
in length and 13.5 cm in width. We fill the model with
saline water with conductivity of 0.3Sm−1, according to the
conductivity of tissue fluid. In addition, we include nylon
rods in large, medium and small sizes so that we can simulate
the size change during lung ventilation. The conductivity of
nylon rods is 0.1Sm−1, according to the conductivity of the
lung tissue. Detail information on these sizes of nylon rods
is shown in Table 2. Each space-time volume in a specific
time window contains 8 frames, i.e., δ6 ∈ R812×8 and
δU ∈ R208×8.
The experimental imaging results based on the low-rank

method, sparsity method and low-rank plus sparse method
are shown in Fig. 11. The gray levels of the reconstructed
images are normalized to the range of 1 to 3 for convenient
comparison. Both the PSNR and MSSIM parameters of the
reconstructed images are calculated. Although the low-rank
method and sparsity method capture the main motion feature,
they lose some local contrast. As we can see, the proposed
method achieves the highest PSNR among the three methods.
This proves that we achieved a better sparsity constraint for
EIT reconstruction with the patch-based sparse representa-
tion based on dictionary learning.

FIGURE 11. Reconstruction results for the 2D lung phantom experiment.

According to theMSSIMparameters for the change of lung
ventilation during the breathing process, the proposedmethod
achieves better structural similarity to ground truth than do
other methods.

The edge features of image reconstructed by different
algorithms are tested and compared. The comparison of
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FIGURE 12. Conductivity distribution of the1D profiles diagonally through the reference images and
reconstructed versions generated by the low-rank plus sparse method, low-rank method and
sparsity method.
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reconstructed conductivity profile of the solid black line
in Fig.9 (t1-t4) is shown in Fig.12. Compared with other
methods, the low-rank plus sparse method based on patch-
based sparsity shows similarly good retention of the mutation
features and edge definition. The image artifacts of the new
method are also reduced. The advantage is further confirmed
by the 1D profiles diagonally through the reference and
reconstructed images. It can be observed that the low-rank
plus sparse method yields reconstructions with 1D diagonal
files that are more structurally similar to the reference image
than those of the other methods.

VI. CONCLUSION
A low-rank plus sparse scheme is proposed for dynamic
EIT reconstruction. The patch-based sparse strategy is used
for sparse representation of an EIT image with an irreg-
ular boundary. The strategies for parameter selection and
the robustness of the new method are discussed. Both the
simulation and experimental results shown that the low-rank
plus sparse method provides obviously superior quality of
the reconstructed images comparedwith the low-rankmethod
and the sparse method and has the potential for use to monitor
the pulmonary ventilation process.

In future work, 3D EIT images will be reconstructed under
the framework of compressive sensing to improve real-time
performance for dynamic EIT reconstruction. Furthermore,
the fusion of EIT and CT reconstruction will be studied as
an approach to combine functional and structural information
for the promotion of medical imaging technology.
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