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ABSTRACT In this paper, we are concerned with a class of Clifford-valued neutral high-order Hopfield
neural networks with leakage delays. Although the multiplication of Clifford numbers does not satisfy the
commutativity, which brings great difficulties to the study of Clifford-valued systems, we have found a
method that does not decompose Clifford-valued systems into real-valued systems to study the existence
and global exponential stability of pseudo-almost periodic solutions of this class of neural networks. Our
results are completely new. Finally, two examples are given to illustrate the effectiveness and feasibility of
our main results.

INDEX TERMS Clifford-valued neural network, neutral high-order Hopfield neural network, pseudo almost
periodic solution, global exponential stability, leakage delay.

I. INTRODUCTION

It is well known that time delays always exist in real systems.
Therefore, in the past decades, neural networks with various
types of time delays and their dynamic characteristics have
been extensively studied, and many excellent results related
to the subject have been obtained. It is worth mentioning that
high-order Hopfield neural networks have better performance
than low-order Hopfield neural networks in approximation,
convergence speed, storage capacity, fault tolerance and so
on. Therefore, they have attracted more and more attention.
Their dynamics have been extensively studied [1]-[12].

On the one hand, in recent years, it has been found that
complex-valued and quaternion-valued neural networks have
more advantages than real-valued neural networks in some
practical applications. Therefore, there have been many stud-
ies on complex-valued and quaternion-valued neural net-
works [13]-[26]. Clifford algebra is a generalization of real
number, complex number and quaternion, which has impor-
tant and extensive application fields. In particular, in recent
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years, Clifford-valued neural networks have been found to
be superior to real-valued, complex-valued and quaternion-
valued neural networks in dealing with high-dimensional spa-
tial data and problems involving spatial transformation [27].
Therefore, the research of Clifford-valued neural networks
has become a hot topic. However, due to the noncommu-
tativity of the Clifford numbers’ multiplication, the known
results on Clifford-valued neural networks are very few [12],
[28]-[31]. In particular, there are fewer results about their
dynamics. Moreover, most of the existing results are obtained
by decomposing Clifford-valued neural networks into real-
valued neural networks. However, the results obtained by
decomposition method often need to know the explicit
expressions of coefficients and activation functions in the
network, which brings many difficulties to practical appli-
cation. Therefore, it is of great theoretical and practical sig-
nificance to study the dynamics of Clifford-valued neural
networks and to explore non-decomposition methods to study
Clifford-valued neural networks. At the same time, it is a
challenging job.

On the other hand, for autonomous neural networks,
the existence and stability of equilibrium points are very
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important dynamics. For non-autonomous systems, the exis-
tence and stability of periodic solutions, almost periodic
solutions and almost automorphic solutions are as important
as the existence and stability of the equilibrium points of
autonomous neural networks. At present, there is no direct
method to study the almost periodicity of Clifford-valued
neutral high-order Hopfield neural networks. In addition,
pseudo almost periodicity is a nature generalization of almost
periodicity. Besides, as we all know, both the leakage delays
and neutral type terms in a system may change the dynamic
characteristics of the system [7], [12], [25], [32]-[36], so the
main purpose of this paper is to study the existence and global
exponential stability of almost periodic solutions for a class of
Clifford-valued neutral high-order Hopfield neural networks
with leakage delays by direct method. Our results obtained
in this paper are new and our methods proposed in this paper
can be used to study the problem of almost periodic solutions
and almost automorphic solutions for other types of Clifford-
valued neural networks.

This paper is organized as follows. In Section 2, we intro-
duce some definitions, lemmas and give a model description.
In Section 3, we study the existence of pseudo almost periodic
solutions. In Section 4, we discuss the global exponential
stability of pseudo almost periodic solutions. In Section 5,
an example is given to demonstrate the proposed results.
A brief conclusion is drawn in Section 6.

Il. PRELIMINARIES AND MODEL DESCRIPTION
The real Clifford algebra over R™ is defined as

AZ{ Z aAeA,aAER},
AC{1,2,....,m}

where eq = ey ep, -+ ep, WithA = hihy---hy, 1 < by <

hy < --- < hy, < m. Moreover, eg = ¢y = 1 and ¢y,
h=1,2,..., mare said to be Clifford generators and satisfy
61272 I,p= 1,2,...,s,e§=—1,p=s+1,s+2,...,m,

wheres < m,and epe;+ese, =0,p #q,p,g=1,2,...,m
Letl1=1{0,1,2,...,A,...,12-.-m}, then it is easy to see
that A= { Y, a’es, as € R}, where }_, is short for }_, .y
and dim A = 2™,

ZerA e

A

For x =
A _ T
mjx{|x [} and for x = (x1,x2,...,%p)

llxll .4 = max {[lxpll.4}.
1<p=<n

A, we define |x||4 =

e A", we define

The derivative of x(r) = ) 4, xA(t)ey is given by
x(t) = Y4 #A(t)es. For more knowledge about Clifford
algebra, we refer the reader to [37].

In this paper, we are concerned with the following
Clifford-valued neutral high-order Hopfield neural network
with delays in the leakage term:

Xi(1) = —ai®)xi(t — ni(1)) + Z bij(1)fj(x;(1))

J=1

150214

+ ) cngi(xt — TN + Y D i)

j=1 j=1 k=1

X hj(xj(t — o (O (e (8 — v (1))
+ ) e — pit) + Ji(t), ey
j=1
where i = 1,2,...,n,xi(t) € A corresponds to the state

of the ith unit at time ¢, a;(t) € R represents the rate with
which the ith unit will reset its potential to the resting state
when disconnected from the network and external inputs at
time ¢, b;j(t) € A denotes the strength of the jth unit on the
ith unit at time ¢, d;j(t) € A is the second-order synaptic
weight of the neural network, ¢;;(t) € Arepresents the neutral
delayed strength of connectivity between cells i and j at time 7,
fi®), hi(t), I;(t) € A denote activation functions, J;(t) € A is
the external input at time ¢, 1;(t), ok (1), vk (1), wij(t) € R*
denote the transmission delays.

We will adopt the following notation:
l

- —infa + "
a; = infai(t), by = sup 1D A

d+ +

k=S IdiOlla & = sup g0l

N = supni(t), oy = sup o,,ka) Vi = sup ay(1),

teR teR teR
nt = max {(n}, 7" = max sup i), M,, Sup wij(),
1<i<n 1<t<n teR
™ = max{sup 7;(t), sup 6y (t), sup Vi (1), sup m,(r)}
teR teR teR teR

The initial value of system (1) is given by
xi(s) = ¢i(s) € A, Xi(s) = @i(s) € A, s € [-§,0],
where ¢; € C1([—£, 0], A) and

§=  max {Sup{m(t)} SUP{UUk(t)}

=ij=n | teR

SUP{V,/k(t)} SUP{Mz/(f)}}
teR

Throughout the rest of this paper, BC(R, A") denotes the
set of all bounded continuous functions from R to A". Note
that (BC(R, A™), || - |lo) is a Banach space with the norm

Ifllo = max {Sup IIﬁ(t)IIA},
I<isn | teR

where f = (fi, o, ....f)T € BC(R, A™).

Definition 1: A function f € BC(R, .A") is said to be
almost periodic, if for every ¢ > 0, it is possible to find a
real number k = k(¢) > 0, for each interval with length k(¢),
there is a number T = 7(¢) in this interval such that
If(t + t) — f(@®)||an < € for all t € R. The collection of
all such functions will be denoted by AP(R, A™).

Let

PAPy(R, A")
T

hm —

= {f € BC(R, A" 5T

Ilf(t)llAdf =0}~
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Definition 2: A function f € BC(R, .A") is said to be
pseudo almost periodic if it can be expressed as f = f1 + fo,
where f; € AP(R, A") and fy € PAPy(R, A™). The collection
of all such functions will be denoted by PAP(R, A™).

From the above definition, similar to the proofs of the
corresponding results in [38], one can prove the following two
lemmas.

Lemma3: If « € R,f,g € PAPR,A"), then of,
f +g.fg € PAPR, A™).

Lemma 4: Letf € C(A, A") satisty the Lipschitz condi-
tion and ¢ € PAP(R, A), then f(¢(-)) € PAP(R, A").

Lemma 5: If x € PAP(R, A"), v € AP(R, R) N C1(R, R)
with [v(#)] < vt and V(1) < VT < 1, then x(- — v(-)) €
PAP(R, A™).

Proof: Since x € PAP(R, A"), we can write x =
x1 + xg, where x; € AP(R, A") and xyg € PAPy(R, A").
Consequently, we have

x(r = () = x1(t = v(1)) + x0(r — v(1)).

From x1(- — v(-)) € AP(R, A") it follows that x; is uniformly
continuous. Therefore, for each ¢ > 0, there exists a positive
constant ¢ € (0, %) such thatforany ¢, s € R with |t —s] < ¢,

&
lxi () — x1()lla» < 3 (2
Since v and x; are almost periodic, for this ¢ > 0, there exists
a k(¢) > 0 such that in every interval with length k(¢), there
is a § satisfying
@ +8)—v)l <g, Ixit+3)—x1lla <g, 3)
for all r € R. It follows from (2) and (3) that
llx1(t + 6 — v(t +8)) — x1(t — v(1))[| An
< lxi@+68 —v(t+3)) —x1(t + 6 — v(®)] 4
+x1(t + 38 — v(1)) — x1(t — v(©))] an

e ¢
< E + 57
which implies that x;(- — v(-)) € AP(R, A").
Moreover, let s = ¢t — v(¢t) and noticing that xp €
PAPy(R, A") c BC(R, A"), we find
T
TETOO 7, lxo(t — v(0))ll andt

IA

1 1 T—v(T)
li _ nd,
Jm s [ Toleds
1 1 —T+v(T)
= lim — — /
T—+oo 1 — vt 2T —T—v(-T)

T—w(T)
+/ >||X0(S)||A"d5

—T+v(T)
s ] —W(T) 1
Tt It T 2T —w(D))
T—wv(T)
X / llxo(s)ll ands = 0,
—T+v(T)
which implies that xo(- — v(-)) € PAPy(R, A"). Hence,
x(- —v(-)) € PAP(R, A™). The proof is complete. [ |
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Throughout this paper, we make the following

assumptions:
(Hy) Fori,jk = 1,2,...,n, a; € APR,RY), by, ¢,
dijk, eij, Ji € PAPR, A), ni, tij, Oijk, Vijk, lij €

C'(R,R*) N PAP(R,R), min { infa;(t)} > 0 and
. 1<i<n " teR
1—£t>0.
(Hy) Forj = 1,2,...,n, fj,hj,I; € C(A, A) and there

exist positive constants Lf , L]g , L]h, L]I , M; h such that
for any x,y € A,

16 = fONla < LL1x = ylla,

llgj(x) — giMll.a < LEllx = ylla,
1) = Byl < L]1x = yll 4.
il a< ML, 1) =GO A< L |1x ]| 4.
and f;(0) = g;(0) = h;(0) = [;(0) =0
(H3) r := 1I£fl<xn{a_ <1 + > )U,'} < 1, where U; =

n n
arnt + Z biLl + Z ciLE + 2](2 (MLl +
J= =1

Mth)+Ze+L1 i=1,2,...,n

gy’

Ill. THE EXISTENCE OF PSEUDO ALMOST PERIODIC
SOLUTIONS

Let
X={peC'(R AY: ¢, ¢ € PAAR, A")}.

For any ¢ € X, we define the norm of ¢ as |¢|x =

max{|l¢llo. [l¢’llo}-
Let

1 t
po(t) = ( f e~ s a1du g (s)ds,
—00

t
/ e~ I axdu g, (5)ds, ...,
—00

t , T
/ e Is “”(“)d“Jn(s)ds>
—00

and take a positive constant R > ||¢g||x. Define

R
Xo = {(0 e Xl —gollx < —}

1

Then, for every ¢ € Xo, we have

rR
lellx <l —@ollx + lleollx < —— +R= .
1—r 1—r

Lemma 6: If G(t) = fioo e awdu g (5)ds, where a €
APR, RT) with inig a(t) > 0,and F € PAP(R, A), then
re

G € PAPR, A).

150215
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Proof: Since F € PAP(R, A), it can be expressed as
F = F' + FO, where F' € AP(R, A), F* € PAPy(R, A).
As a consequent,

t 't
G(r) = / = [y atdu g1 (g) g
—00

! 't
~|—f e Js awdu (0, ) gg
—0Q
= Gl(t) + G°r).

First, we will prove G' € AP(R, A). Since a € AP(R, R),
F' € AP(R, A), for any ¢ > 0, we can find a number [(¢)
such that in every interval of length / there is a number t such
that

lat + 1) —at) <&, ||Ft+1)—F'(0)|l4 <e.
Hence, we have
IG'¢ + 1) = G0l a
1+t t+t ! !
_ / o ST awdu g (o g _/ o Ji awdu (g ¢
—0 —00

t
: / e s B (s 4 1) — F(5)) ads
—0Q0
1
+/ ||(e— f: a(u+t)du __ e~ _/: a(u)dM)Fl(s)“Ads
—0o0

& & 1
— + —z sup|[[F (]| 4,
a (@)* er

which implies that G! € AP(R, A).
Next, we will prove that G® € PAPy(R, A). Let

=

1 T t .

AT) = — / e~ Iy awdup0oyacl dr,
2T J-r —00 A
1 T pt /

AN(T) = — / / lle™ I @ pO ()| qdisd,
T /) 1)1
1 T -T "

M) = o / / e & a0y 4 dsdr.

T J—o0

Then
A(T) = A(T) + Ao (T).
By Fubini’s theorem, we have

A1<T>
< — / / e FO(s) || gdsdt

_ —¢a” gO0cs _

= 2T</T/o e |\F(t C)IIAdC)dt
1 T +00 B 0

< ﬁ</ / e tF (t—C)IIAdC)dt

oo T+¢ 1 ™+ o
fo . (T ey B <u>||Adu>dc.

Since FU € PAPy(R, A),

IA

T+¢
lim —/ IFO(u)|| adu = 0.
Tto00 2(T +¢) J_7_¢

150216

Consequently, by the Lebesgue dominated convergence the-
orem, we obtain

lim A(T)=0.
T—+o0

On the other hand, we have

lim Ax(T)
T—+o00

li 7(t s)a~ 0
< lim o / / 1FO(s) | adsds
= —¢a FO(r — dcdt
Jim o [ [ e i o
Sup IIFO(t)IIA
< lim / / et dedr = 0.
T—+o00 T+

Hence, we have ; lim A(T) = 0, which implies that GY e

PAPy(R, A). Ther;)ﬂ_)ig, G € PAPR, A™). The proof is
complete. [ ]
Theorem 7: Assume that (H})-(H3) hold. Then system (1)
has at least one pseudo almost periodic solution in Xg.
Proof: Ttis easy to check thatif x = (x1, x2, ..., x,)] €
Xis a solution of the integral equation

xi(t) t . s
= / e~ Iy aitwdu [a,-(s) x;(w)du
_OO S n;i(s)

+ Z bi(s)fi(xi(9)) + Z cij(5)gj(xj(s — Ti(5)))

] 1 j=1
+ Z Z dijk () (xi(s — oije(5)))
j=1 k=1
x hy (e (s — vije (s))) + Ze,,(sﬂ (i(s — pij(s)))
j=1

+Ji(s)i|ds, i=12,...,n,

then x is also a solution of system (1).
Define an operator T : X — BC(R, A") by

To =(T1g, Tag, -+, Tup),
where
(Tip)(1)
= / o~ Iy aitidu [ai(S) @i(u)du
_OO S ni(s)
+ Z bi(s)f(gi(s)) + Z cij(5)gj(i(s — Tyi(5))
j=1 j=1
+ D0 dig(hi(i(s — oyx(5))
j=1 k=1
Xy (g (s — vijr(5))) + Z eij(Hi(@j(s — wij(s)))
j=1
+J,~(s)]ds

t
= / e_fst”i(”)d”Fi(s)ds, peX,i=12,---,n
—00
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Then by Lemmas 3-5, we have F; € PAPR, A),
i = 1,2,...,n. Therefore, by Lemma 6, we obtain that
Ty € PAP(R, A™). In order to prove this theorem, we divide

it into the following two steps.

Step 1. We will prove that the mapping T is a self-mapping

from Xy to Xy. In fact, for each ¢ € Xy, we have
IT¢ — ¢ollo
t
< max { sup |:/ e~ f; ai(u)du(
I<i=n | teR —00

[ ]+ 3 16
s—ni(s) A =1

+ ) lley)gipils — Tis)) A

j=1
+ 0 ldie()hi(gis — oije(s)

=1 k=1
X i (@i (s — Vi ()l 4

+ ) lleg)(gi(s — sz(s)))||A>dS:| }

J=1

t 1
max { sup |:/ e s “f(")d“ds<cz;L||g0’||077;r
I<izn | teR 00

+Zb+Lf||<P||0 + Zc+Lg||¢||o
+ZZd,,+kM Lh||</>||o+z +L’||¢/||o>“
j=1 k=1

o (o (e Zb*-Lf Z L
n
+ZZ ,,kMé’Lh+Z ;,*L,’)}ngonx
j=1

a;(s)

IA

IA

j=1 k=1
R
<
“1-r
and
[(We — o) llo

t

ai(r) @i(uw)du
t— m(t)

< max { sup
I<izn | teR

+ Z bii(Df (i) + Z cij(0gj(pj(t — (1))

j=1 j=1
+ Z D di(Ohi(gj(t — o))
j=1 k=1

X hi (@i (s — thk(t))) + Z ey(t)] (%(I - sz(t))) H

j=1

H / aie “*“”’”(a (s) Gi(u)du
§— 771(3)
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+ Z bii()fj(@i(s)) + Z cif($)8j(9i(s — T(5))

j=1 j=1
+ Z Z diji ($)hi(pi(s — ok (s)))
j=1 k=1

th((ﬂk(s — Vijk(s)))

Z ei()Ij(¢j(s — m,(s)))) ds

> J

+ +7f +78

mx | (ar zb Y z

+zzd,,kM:Lh+ze:L;)um
j=1

j=1 k=1
<a n; +ijLf +Zc+Lg
l
+ZZd,,k £L"+ZejL,’)||¢||x}
j=1 k=1

— 4 +rf
= o {1+ ) e+ Lo
+Zc+Lg+ZZduk L”+Ze;jL,’>}ll<pllx

j=1 k=1

A

rR

< .
~1-r

Thus, we obtain

1Ty = go)llx = max 1T — @o)llo, 1(Te — ¢0)'llo}

rR

1—r’

IA

which implies that ¢(Xg) C Xj.

Step 2. We will prove that T is a contracting mapping.

In fact, for any ¢, ¥ € X, we have that

ITe =T llo
4 g
< max { sup [f e'/S’ —ai(u)du
I<izn teR —00

N
X<
n

ai(s) [@i(u) — ri(u) | du

s—1i(s)
+ ) Ik [fitei() = £AN] | 4
j=1
+ ) lle()[gj(pils — Ti(s))
j=1

—&i(Wis — TiM] | 4
+ 373 i) [Aieis — o))

=1 k=1
X i (@i (s — vijr(s)))

150217
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—hj(@j(s — ok (i (Pr(s — vk (D] 4

+ ) e[ I(gi(s — i)

j=1

— (s — i) | A)ds} }

t
max {sup[/ —a; (1= s)ds(a T g — vjllo
I<izn | reR 00

n
+ Zb;quw, illo + Zc+Lg||<p,- —Yjllo

IA

j=1
+ZZd,,+k [MI'Lille — ¥ llo
j=1 k=1
+MPL] lp — ¥ o] +Ze Lill¢; — xz'fjno)]
j=1
_— +7f +78
< s e + L0+ 2ep
+ Z Zd,jk(M,th + ML + Ze;L]’] le — ¥lix
j 1 k=1 Jj= 1
< rlp — ¥lix
and
IKTe — T4 llo

+

a.
< VM atnt 2: 4 §:+g
< g?sxn <l+a._)|:a’ n; b L L

hyh hrh +rl
+ZZd,,k<MkL,- + ML+ § UL,}IIQO—WIX
j=1

j=1 k=1
<rle —vlx.

Hence,

(T =TY)lx <rlle - ¥lx.

Noticing that » < 1, T is a contraction mapping. Therefore,
T has a unique fixed point in X, that is, system (1) has a
pseudo almost periodic solution in Xg. The proof is complete.

|

IV. GLOBAL EXPONENTIAL STABILITY

In this section, we investigate the global exponential stability
of pseudo almost periodic solutions of system (1) by using
reduction to absurdity.

Definition 8: Let x = (x1,x2,...,x,)] be a pseudo
almost periodic solution of system (1) with the initial value
¢ = (pren....o0’ € C(—£0], A" and y =
(1,2, ..., yo)' be an arbitrary solution of system (1) with
the initial value ¥ = (Y1, ¥2, ..., ¥)! € C([—&,0], AY),
respectively. If there exist positive constants A and M such

that
Ix(®) =yl < Mllg — ¥llse™, Vit >0,

150218

where
(1) =yl = max{|lx(r) — y(O)ll an, (x(@) — y())' || an},

sup max [[¢;(t) — (D)l 4,
te[—£,0] 1<i<n

lle —¥lls = max {

sup max I(i(®) — ¥i())ll.4 }

re[—&,0] L=i

Then the pseudo almost periodic solution x of system (1) is
said to be globally exponentially stable.

Theorem 9: Assume that (H1)-(H3) hold. Then system (1)
has a pseudo almost periodic solution that is globally expo-
nentially stable.

Proof: By Theorem 7, system (1) has a pseudo almost
periodic solution, let x(¢#) be the pseudo almost periodic
solution with the initial value ¢(¢) and y(¢) be an arbitrary
solution with the initial value y(¢). Taking z(¢) = x(¢) — y(¢),
¢(1) = (1) — ¥ (1), we have

zi(t)
= —ai()zi(t — i) + Y _ by()fi(z(1))
j=1
+ Y e — 7))
j=1
+ D0 di(Ohi(zi(t — oy ONhy(i( — vik(2)))
j=1 k=1
+ ) eOGGE — ), i=1,2,....n, (4
j=1
where

Fz(®) = fixi(@) — [05(0),
bargj(zj(t — 7;j(1))) = gi(xj(t — 7;j(1))) — gi(yj(t — T;(1))),

hi(i(t — oy (O)hi(Zj(t — vy (D))
= hj(x;(t — ok (ONhi(x(E — vijr(1)))
—hj(yj(t — oy ONh (Y — vy (1)),
Lzt — (1) = LG — wij(0) — LGt — wig)).

Let ®; and A; be defined, respectively, by

Oiw) =a; —w-— < n+ew”t Zb+Lf @

DTSRI

j=1 k=1
Lh wvljk)_’_z +L1 wuu>
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and

Alw) =a; —w— (a;r + ai)<ai+ ;“e“’”?
+Zb+Lf (1) Z +Lg wr

+ +

j—l k=1
Z +L1 CUHU>

wherei =1,2,...,n. When v = 0, we get

®;0) >0 and A;0) > 0.

Since w € [0, +00), B;(w), Aj(w) are continuous on [0, +00)
and O;(w), Aj(w) — —o0 as w — —+o00, there exist g;,
ef > 0 such that ®;(¢;) = A(ef) = 0 and O;(¢) > 0 for
e € (0,8), A(gf) > Ofore € (0,&f),i = 1,2,...,n
Take @ = min{ey, 2, ..., &4, 6], &5, ..., &}, then we have
Qi) > 0,Aj(e) = 0,i = 1,2,...,n. Hence, for every
fixed positive constant A € (0, min{c, ay,ay, ..., Ao})
we have ®;(A) > 0 and A;(A) > Ofori = 1,2,.
Therefore,

1

(ot S g

di—

i +
+ Z Z dj (MPL}'¢”%i% + ML ")
j=1 k=1

+Ze+L’ “‘u) <1, 5)
+
(1+ a; ><a+ + I Zb+Lf A
— i '
a, — A
N
LT+ Y st

j=1 k=1

+Mth wvlfk)—f—ze-‘rlzl MU) < 1’ (6)
j=1

n. Let M = max {i}, then by (H3),

wherei =1,2,..., o
1<i<n

we have M > 1 and
1 1
M — a —X

( r;+”’z+ZbLfA+Zc+Lg“U
+y Z A (MELEE + M LR
j=lk=

+Ze+L1 “‘u) i=1,2....n
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By (4), we have

zi(0) + ai(1)zi(t)
t n
zi(s)ds + ) by)fi(z(1)

1—=n;(t) j=1

= a;(t)
+ ) izt — (1)
j=1

+ D0 die(Ohi(zi(t — oy ONhy(i(t — vik(£)))

j=1 k=1

+ ) e(hi(g(t — p))),

j=1

i=1,2,....,n. (1)

Multiplying both sides of (7) by elo aiwdu ypq integrating
on [0, ¢], we have

t 1
2i0) = oy oy [l atws

0

x [m(s) | |, o+ 3 by
s—n;(s

j=1

+ ) cii(9gi(g(s — ()

J=1

+ D0 dip(hi(zi(s — oy (s)))

j=1 k=1

xhi(zj(s — vij(s)))

+ > e — uij(s)))i|ds, i=1,2,....n

j=1
®)
It is easy to see that
Izl = gl < Idlls < Mlillze™, 1€ (=&, 0],
We claim that
Izl < M @llee™, 1 € [0, 400). ©))

To prove (9) holds, we show that for any 8 > 1, the fol-
lowing inequality holds

Izl < BM l|gpllge™,

If (10) does not hold, then there must be some #; > 0 such
that

lz(Dllr =

t>0. (10)

max{llzl(tl)llo,IIZz(tl)Ilo} BMIlgllee™" (1)

and
€[-&, n). (12)

150219
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By (5), (8), (11), (12), we have

llzi(t)llo

_ 1
< llgllee14 +;3M||¢>||5/0 ¢

+ Z biLl + Z crLEe

—(t1=8)a;” |:a{r + o
l 1

+ZZ Uk M]?Lh )»(7

j=1 k=1

+Mth )‘Ut}k + Ze+L1 }»,LLU} 7)hgds
j=1

At eA—an 1 +o+ M)
M e M =+ a i
Ml [ o a,.—_x<l

-+ Z biLl + Z L

IA

x +
i Z Z d’ﬁ (1 Ljhekgi"k + Aljhlz]? ¢t ik )
j—l k=1
+ Z €+L1 ”"J > e()'iaii)tl )]
1 1

< BM e M| pA—an [ — _ atprern
BM||9|l& [ M oa -\

n
+Zbi4j—Lf +ZC+Lg Arl]
j=1

+ h ok hyh Ak
LY a0 PRy

Jj=1 k=1

+ Z eiLleM )

1

(oo S

n n

Z +Lg M,] +ZZ t/k M,?Lh A(f

j=1 k=1

L + Z )|

_ 1
BM e “l[a_ _A(a; + i +Zb+Lf

i

Z +Lg Ar,j _’_szl;{ M Lhe)‘"fﬁ

Jj=1 k=1

ML) +Zd+LI Mﬂ
j=1

< BM|pllse™™, i=1,2,...,n

IA

150220

Differentiating (8), and by (6), (11) and (12), we have

lzi(t)llo ) .
< aflplze™ % +anfe D BM||¢| e
n

+BMIplls Y biL] e

j 1
N
+ﬂM”¢”§Z +Lg —Mn—7))
j=1
n n N N
+BMplle DY dfh (ML)
j=1 k=1
N
SMILETHO) 4 gl 3 el D)

Jj=1

1
- —(s—n
Mgl [ ate [ajnje o)

+
+ Z b+ Lf —hs 4 Z C+ Lg —As=7)

E :E : hyh = s=0) hyh —Ms—v})
+ dj (M{Lj'e )+ MLl 2)
j=1 k=1

n Z eiLle A(s—u,j)]ds

+e()n a;

< BM|pllce™" {“ﬂ—M

t
+<1+0?L / 1 g(n—sxx—a;)ds)[ ottt
0

+rf +78 0Tt + h Aok
TR LA W

+MILL ) +Ze+y Ma,]}
j=1
+ e

— —At a
= M| ¢llce [—,BM

a’ -
+<1 + —L—(1 = Pan ))
T

g

< n+e)‘"' +Zb+Lf~l—Zc+Lg e

+ +
+ Z Z dljk Mlﬁl Ljhem"j" + M;L] e“iik)
]—1 k=1

+ Z 6+LI M >i|
1 1

< BMIgllce™ [aje@—aim (M RS

1

< 77+ At Zb+Lf Z+Lg MU
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> +
+ Z Z dl,k M,ﬁ'Ljhe“z:fk + %Lgekvijk)
j=1 k=1

+
A +71 aq;
+e JZdULJ>+<1+a__ /\)

Jj=1 i
( ke +Zb+Lf+Zc+Lg ref

+ +
L3S (L )
Jj=1 k=1

+Ze+L’ “uﬂ

aF
< BM|pllge " (1 +— ’
1

+oh +7f
J)(“ nyen +§:b L
.
+§ cfLE + § § djy (MPL) e

j=1 k=1

+M Lh )”Vljk + Ze-‘rL[ I'L,J>
j=1

i=1,2,...,n

< M ||pllse™",
Hence,

Izl < BM ||gllge™",

which contradicts the equality (11), and so (10) holds. Letting
B — 1, then (9) holds. Hence, the pseudo almost periodic
solution of (1) is globally exponentially stable. The proof is
complete. ]

Remark 10: When system (1) degenerates into real-
valued, complex-valued or quaternion-valued system, Theo-
rems 7 and 9 remain new.

V. EXAMPLES
In this section, we present two examples to show the feasibil-
ity of our main results of this paper.

Example 11: Insystem (1),letn =m = 2,s = 1, and for
i,j=1,2, take

xi(t) = x2(t)eo + x} (er + xF(D)er + x2()ern € A,

1 1
fitx) = 6680 sm(x + x; )+ @el s1n(x —i—xlz)
1 . 1
+@e2 sm(xj(.) — sz) + aelz arctan(le + lez),
1 . 1 .
gi(xj) = ﬂeo sm(xj1 — lez) + 4_()81 sm(x]Q + sz)

1
—i—Eez arctan(x + xlz)

1 0 2
—1—5—4e12 arctan(xj — X ),

1 12 1
—ep sm(x + x; )+ —eq s1n(x —x)

hix) =
509 = 78 40

iez s1n(x + xlz) + ielz s1n(x + xz),
30 36
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eosmx + —ey sm(x —Xx:7)

fitg) = 48 j

1
+m82 sm(x +x )+ 5—2612 sm)cj1

ar(t) 1+0.151n\/_t
(az(t))z 1.2+ 0.2cos/3t )’

n1(1) 0.15 + 0.02 sin /2¢
m@) ] — \0.16 +0.012cos /3t | °

b b))
bo1(t)  bx(t)
B 0.1eg sin /61 + 0.2¢ sin /61
B 0.15¢p + 0.1e cos /57 + 0.2e17 cos /21
0.13eg + 0.1e12 sin /7t
0.11eg + 0.2¢; sin +/3t
(Cu(t) Clz(l))
c21(t)  c2(t)
_ 0.16¢( sin V3t + 0.12¢; sin /3t
~ N 0.15¢p + 0.13¢; cos /51 + 0.12¢1 cos 4t
0.12¢9 + 0.1e2 sin +/7t
0.12¢0 + 0.12¢5 sin +/3t
din@ din@)
di1(t)  din(t)

_ 0.21eq sin +/6¢ + 0.12¢ sin /3¢
0.14¢g + 0.11e; cos /5t + 0.12¢15 cos 2+/5¢

0.11eg + 0.12¢12 sin +/2¢
0.12¢( + 0.12¢5 sin +/3t

(dzn(l)

dzlz(t))
d1(t)

dxn(t)
_ 0.11eg sin+/6¢ + 0.12¢ sin +/5¢
“ \ 0.14¢p + 0.11¢e; cos /51 + 0.12e12 cos 2+/3¢

0.11ep + 0.12¢15 sin +/7t
0.12¢( + 0.12e5 sin +/31

(ell(t) 612(1))

ex(t)  exn(r)

_ 0.1ey sin /3t + 0.02e sin /2t

- <0.13e1 cos /5t 4 0.11ep + 0.08¢15 cos 4t

0.11e; + 0.1ey2 sin /5t
0.02e; + 0.12¢ep sin~/11¢

(Tu(l) le(t))

1) m20(t)
~(0.001sin+/3t +0.1
N ( 0.2cos /2t + 1

0112(1))

o122(t)
~(0.002sin +/6¢+0.01
- ( 0.1cost+1

0.3sint + 1
0.001 cost + 0.01

(Glll(l)
0121(1)

0.2sinz+1
0.001 sin ﬁz+0.01> ’

150221
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0211(t)  0212(7)
o01(t)  0222(2)
_ (0.0125in+/3r40.02  0.25in+/240.8
- 0.3sin2t +3  0.01sin+/67+0.011
vin@) @)
vi2i(t)  vioa(t)
_ (0.02sin+/5¢t +0.03  0.01cost +0.2
- 03sint+1  0.001sin~/7¢ + 0.01
v11(t)  vaa(t)
v21(f)  vaa(t)
_ (0.002sin4/3t+0.02  —0.1cost + 1
- 0.2sin2t+3 0.01 sin+/8¢40.015
pmi(@)  p)
w21(t) ()

_ (0.01sin+/5t +0.12  0.1sin~/3r + 0.7
- 0.1cos2t+1  0.01sin~/2r +0.11
Ji\ _
Jo()

1
%el sin /3t

1 1 .
(15 sin2+/3t + 1+12)eo + T3¢ sin /6t

1
(15 sin2+/5t + 1+12)eo+

1
%62 cos /3t + Eelz sin +/7¢
+
1
11—062 cos /7t + Z—Oeu sin? /3t

By computing, forj = 1,2, we have L{ = 31_0’ng = 21—0,
ho_ I no_ 1 =7 -
Lj = 15,L M = 354 = 0.9,a2 = 1,
a = lla = 14 ny = 017,75 = 0.172,
L s + + +

bi, = 0.2,b), = 0.13,b;; = 0.2,b;, = 0.2, ¢]; = 0.16,
¢ = 012, = 015, ¢, = 0.12, 4}, = 0.1,
di;, = 0.12, d1+21 = 0.14, d1+22 = 012 dj;, = 012
+

dy}, :012 d21 _014 d22 = 0.12, e11 = 0.1, e12 =
0.11, e21 =0.13, 622 = 0.12. So (H;) and (H») are satisfied.
Besides, we can get Uy =~ 0.22, U ~ 0.28 and

1 a’
r=max {—U;, 1+~ |U;} =0.672 < 1.
a;

7

1<i<n .
1
Therefore, all of the conditions of Theorem 9 are satisfied.
Hence, system (1) has a pseudo almost periodic solution that
is globally exponentially stable (see Figures 1-3).
Example 12: In system (1), letn = 2,m = 3,s = 1, and
fori,j =1, 2, take
xi(1) = xX(D)eo + x} (t)er + xF (e + x}2()ern
+X136’13 +xPex +x1Pein; € A,

|x,-2+x |

filxp) = —eoe 200|x +x Zley

1 1
+—0e tanhx + —e3 sm(x

1
150 68 )

1 3
+r.6€12s1nx —i—ﬁelglx +x |

1 1
+280€23 tanhx + 15—2e123 s1n()c123 + x23)

150222

x12()
o

0 01 01 O

o
«2(1)
o

0 0.1 041

OO o 20 X

(D)

FIGURE 3. Curves of xO(t), x1(t), x2(t) and x'2(t) in 3-dimensional space
for stable case.

1 1
gi(x) = geotanh(x —x12)+ el|x +x |

1 1
—i—@ez arctan(x + x3) + aeg sm(x — xz)

1 . 13 12
+ 7 e sm(xj

1 .
—}—le) + 5613 sin x;

1 1
+a€23 tanhx + —e123 Sln(x123 23)

82

ey L0 3, | 2
hi(xj) = &eosm(xj xj)—l—Eel cos(x;j” —x;)

ieg sm(x + xlz) + ie3 sm(x + xz)
30 36
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1
+—e12 sm(x + xlzz)

41

3 1
—i—% sin()cj3 + xj13)e13 + 3—7e23 tanh xj23

1
%eln sm()c123 -23)
1 1
Li(x) = leosm(x —x123)+&e1 sm(x —x12)
+ : oY + )+ : tanh
——ej sin — n
112ezs X +x; 5663 a x
—i—il)o23 13|e13 + i623 sinx?
50/ 37 J

1
+5—29123 sm()c123 — x3)

ai(t)\ _ {094 0.1cos /3t

a®)) ~ \1.14+0.1cos/2t )’
m@®\ _ ( 0.13+0.02cos /2t
m() ) — \ 0.14 +0.012 sin /3¢

(bn(t) blz(f)>
by (1) bxn(1)
_ <0.1e0 sin /61 + 0.2¢; sin +/6¢ + 0.03e3 sin

0.15¢9 + 0.1e13 cos /5t + 0.14e123 sin /2t

0.13¢9+0.1e12 sin v/7t —0.08¢23 cos /7t
0.11eg+0.2¢; sin «/§t—0.076123 cos~/5t

ci2(t)
c(t)
_(8.1662 cos v/31+0.12e3 sin /31 +0.15¢3sin ¢

15e140.13e12cosv/ 2t +0.12¢ 505 2t —0.1leas

0.11ep+0.11e12 sin /7t 4+0.09¢53 sin 2¢
0.12¢9+0.12¢5 sin /3t —0.11e23 sint
(dm(t) dnz(ﬂ)
dini®)  din(t)
_( 0.11eg + 0.1eq sin Jeor + 0.02¢173 sin V3t
T\ 0.14¢; + 0.11e3 cos /51 + 0.12e33 sin /5t
0.11eg + 0.12¢15 sin /2t 40.08¢3 cos /7t
0.12¢; + 0.12¢12 sin /3t —0.1¢123 cos ¢
da12(2)
dao(t)
_ (0.11essiny/3t +0.12e125in+/5¢ +0.07¢23 sin 2¢
T 0.11e3 cosv/5t+0.12¢12c08 20/31+0.1e23 cos ¢

0.11eg + 0.12e12 sin v/7t4+0.11e23 sin +/37
0.12¢; + 0.12¢; sin/3t+0.11e33 sin ¢

elz(t))
exn(t)
_ ( 0.1ey sin +/3¢ + 0.02¢ sin /2t —0.03e23 sin ¢

0.11ez + 0.13e12 cos /57 + 0.08¢123 cos 4t
0.11e; + 0.1ea3 sin v/5¢+0.06e23 cos ¢ >

<611(t)
c21(1)

<d211(t)
d1(t)

<€11(t)
e21(t)

0.02¢e1 4+ 0.12¢5 sin+/11¢4+0.07¢e53 sin 2t
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i

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
t

T

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
t

FIGURE 4. Curves of x?(t) and x] (£),i =1,2.

(Tn(t) le(t)>
1)  1™22()

_(0.02cos /3 + 0.1
B 0.1cos /21 + 1

<6111(t) 0112(0)
o121(t) o122(2)

0.3sint + 1
0.009 cost + 0.01

_ (0.002cosv/2¢4+0.02  0.3sinz+1

- 0.2cost + 1 0.008 sin +/2¢+0.02
o211(t)  0212(8)
021(t)  0222(2)

0.015sin+/37 +0.03 0.2cosv/2 + 0.7
0.3sin2t+3  0.01sin~/37 + 0.02

vin@) @)
vi21(t)  viaa(t)

_ (0.02sin+/5t +0.04  0.01sint +0.2

- 0.2cost+1  0.001cos+/5t +0.01

<v211(t) v212(t))

v21(t)  vaa(t)

_ (0.002sin /2t +0.02  —0.1cost+1

- 0.2sin3¢+3 0.01 sin +/5¢40.015
1) p@)
m21(t)  uaa(t)

_ (0.01cos~/3t +0.12 0.1sin~/2¢ +0.8
- 0.1cos2t+1  0.01sin+/2r+0.16 )’

1 1 '
(Jl(t)) _ (ECOSZ“/_I"F l_Hz)eO‘f‘Eé'l Sln«/gt
Jo(t) - 1 1
(2 2 sin 2+/51 + 1+t2)€0 + qpercos V2t
1
532 cos \/gl + 5612 sin «/it

+
1 1
—ez cos /3t + —elz sin? V11t
1 1
—e3 Cos x/_t + —ep3 sin \/_t
+ 11 22

1
ﬁ623COS\/ t+—e123s1n2v 3t
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T
E0) X307

2(1) i=1,2

WJ\/\A/\/\/\/\/\/\/VWW

. o
X300 X300

= AAAAAAAMAAAAAAMAAAAAAAAN

T
X120 x20 |7

T
xP X330

r/WW\/\/\/\/\/\N\/\/\/\

0.1 L L I I L L I I I
0 10 20 30 40 50 60 70 80 %0 100

t

FIGURE 6. Curves of x]2(t) and x]3(¢), i = 1, 2.

01F T
X2 21(l)

(\/V\/\/\/\/\/\ AVAVAVIVAVAY) \/‘u“/\/\A/V\/

(1), i=1,2.
o

X2
i
s

0 10 20 30 40 50 60 70 80 90 100

FIGURE 7. Curves of x23(£) and x]23(t),i =1,2.

BZ computi[ng, for j :h 1,2, we have Lf = 21—0,Lf+: 31—2
Lj = 15,L = 24,M = 30,a1 _08 a, = l,a] =1,
ai =12, =0.15, 9 = 0.152, b}, = 0.2,b}, = 0.13,

by, = 0.15b}, = 02, ¢/, = 0.16,¢/, = 0.11,
+ _ + +

¢y = 0.15, 33 = 0.12, d/;, = 0.11,d{}, = 0.12,
fél = 0.14,d = 0.12, dy;, = 0.12,d,;, = 0.12,
dyy, = 0.12,d35, = 0.12, ¢f; = 0.1,¢f, = 0.11,¢5, =
0.13, 6‘22 = 0.12. So (Hy) and (H») are satisfied. Besides,
we can get Uy ~ 0.1772, U, ~ 0.2198 and

1 ar
r=max { —U;, |1+ -+ |U;} ~0.484 < 1.
1<i<n a; a.

1

150224

Therefore, all of the conditions of Theorem 9 are satisfied.
Hence, system (1) has a pseudo almost periodic solution that
is globally exponentially stable (see Figures 4-7).

VI. CONCLUSION

In this paper, without decomposing the Clifford-valued sys-
tems into real-valued systems, we obtained the existence
and global exponential stability of pseudo almost periodic
solutions for a class of Clifford-valued neutral high-order
Hopfield neural networks with leakage delays. Two examples
were given to illustrate the effectiveness and feasibility of our
main results. Our results are new and our methods can be used
to study the almost periodicity and pseudo almost periodicity
for other types of Clifford-valued neural networks.
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