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ABSTRACT When the data of target domain are scarce, the established model will not be accurate enough
to analyze the target problem. For the abnormal condition identification modeling problem of electro-fused
magnesia smelting process, this paper proposes the new Bayesian network (BN) parameters transfer learning
method based on the expert knowledge from target domain to increase the accuracy of abnormal condition
identification. First of all, the electro-fusedmagnesia smelting process is introduced and the existing research
results on the abnormal condition identification are analyzed. The problem to solve in this paper is described.
Furthermore, the constraints from expert knowledge for the target model are shown in two forms. The new
BN parameters transfer learning method is proposed. Finally, the proposed method is verified by the Asia
network, and it is applied to establish the abnormal exhausting condition identification model for the electro-
fused magnesia smelting process. The simulation results demonstrate the effectiveness of proposed method
which owns the better performances.

INDEX TERMS Bayesian network, transfer learning, fused magnesium furnace, abnormal conditions
identification, expert knowledge.

I. INTRODUCTION
In the electro-fusedmagnesia smelting process, the rawmate-
rials are dumped into the fused magnesium furnace (FMF)
every ten to fifteen minutes. Because the raw materials come
from the different areas, the qualities of dumped raw materi-
als at the different instants of time may have a big difference.
The FMF completes the smelting process by the control
system tracking the different current setpoints based on the
different conditions. When the rawmaterial granule sizes and
impurity constituent change, and the setpoints of electrode
currents are not adjusted properly, the abnormal conditions
will happen. The process monitoring and abnormal condi-
tion identification problems have obtained broad attention
[1]–[3]. The occurrence of abnormal conditions will result in
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high energy consumption, performance deterioration or even
safety threat. Therefore, it is necessary to analyze and identify
the abnormal conditions, and avoid the serious consequences.
The occurrence of abnormal conditions shows a certain ran-
domness, which depends on the temporal quality of raw
material and operation condition. As the improvement of
control algorithm, the occurrence rate of abnormal conditions
is reduced. This condition is very good for the production of
fused magnesium, but it will result in that the collection of
abnormal conditions data becomes very difficult. Especially
for the single FMF, the abnormal condition data are very
limited. At the same time, it is impractical to collect the abnor-
mal conditions data by producing the abnormal conditions
deliberately. The shortage of abnormal condition data has a
strong impact on the accuracy of established model.

Some research results on the abnormal condition iden-
tification and safety control have been proposed for the
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electro-fused magnesia smelting process [4]–[8]. The
papers [7], [8] proposed the abnormal conditions identifi-
cation method based on Bayesian network (BN) by fus-
ing the related multi-source information including current,
image and sound. The degree of abnormal condition was
distinguished effectively. The existing research results are
based on the sufficient data information. However, when
the acquired information is not sufficient or it is hard to
collect information, it is difficult to establish the BN model
effectively. Under this situation, the abnormal conditions data
from the other FMFs in the same factory and/or other facto-
ries which produce fused magnesium provide the available
information. If the data are applied to establish the abnormal
condition model for the target FMF directly, the established
model might be inaccurate, because the underlying parame-
ters distributions for the different FMFs might be different.
To establish the effective abnormal condition identification
model for the target FMF, the transfer learning provides us a
new way.

Transfer learning is also known as domain adaptation,
which aims to significantly reduce data requirements by
leveraging data from the related sources. Transfer learn-
ing has been successfully applied in a variety of fields,
such as, classification [9], [10], filtering [11], recognition
[12], [13], fault diagnosis [14], prediction [15], [16] and
optimal control [17]. Transfer learning methods using com-
putational intelligence have been shown as a good survey
by [18]. Among the computational intelligence methods, BN
is an important knowledge expression and inference method,
which has attracted more and more attention. The meth-
ods mainly focus on the structure learning [19]–[22] and
parameters learning [23]–[25]. The paper [19] elicited expert
knowledge by the interpretive structural model method to
enhance the BN structure learning method (K2 algorithm).
The paper [21] proposed the approximate structure learning
algorithms for BNs and discussed the preparation of the
scores and structure optimization. The paper [22] proposed
a hybrid framework to combine a local structure learning
algorithm (either constraint-based or score-based) with a
data-driven symmetry correction method of the other type.
The paper [23] developed the MiniMax Fitness method to
avoid overfitting and improve the fitness between parame-
ters and data. The paper [25] proposed the weighted super
parameters of Dirichlet distribution algorithm to perform
probability learning. However, in the BN context, the trans-
fer learning studies are limited relatively [26]–[33]. For the
BN structure transfer learning, the paper [26] presented a
novel weighted sum method based on the conditional inde-
pendence measures. The papers [27], [28] proposed the BN
structure learning algorithm for the related tasks based on the
score-basedmethod. For the BN parameters transfer learning,
the paper [29] introduced the BN parameters transfer learning
algorithm based on both network and fragment (sub-graph)
relatedness. The paper [26] introduced the distance based lin-
ear pooling and local linear pooling probability aggregation
methods. However, the proposed method only considered the

influences of conditional probability tables (CPTs) entry size
and dataset size. When measuring the weights of different
sources, the fitness to the target domain was ignored. In addi-
tion, the expert knowledge plays the important role in the
process of BN parameters learning. For the evaluation of task-
relatedness in multitask BN structure learning, the paper [30]
incorporated the domain knowledge to relax assumption con-
dition. By integrating the knowledge transfer and expert
constraints, the paper [31] presented a new BN parameters
transfer learning method. The paper [34] provided the con-
strained maximum a posteriori (CMAP) method to learn
parameters by incorporating convex constraints derived from
expert judgments. To further improve this method, a type of
constrained Bayesian Dirichlet priors was presented, which
was compatible with the given constraints. Furthermore, for
the incomplete data, an improved expectationmaximum algo-
rithm was proposed by combining with the CMAP method.
The paper [35] proposed a constrained Bayesian estimation
approach to learn parameters by incorporating constraints
deduced from expert judgments and Dirichlet priors.

Inspired by the expert knowledge and transfer learning,
themotivation of this paper is to establish the abnormal condi-
tion identification BNmodel by applying the transfer learning
thought for the target FMF with scarce abnormal condition
data. Based on the research results in the papers [7], [8],
the modeling problem is transformed into the BN param-
eters transfer learning problem with the expert knowledge
constrains for the electro-fused magnesia smelting process.
By extracting the expert knowledge of the target domain as
the constraints, the alternative source information is chosen
and the similarity of source is distinguished. The new BN
parameters transfer learning method is proposed. To evaluate
the proposed method, the Asia network is used to show and
compare the effects before and after transfer learning. Finally,
taking the abnormal exhausting condition as the example,
the proposed method is applied to establish the abnormal
condition identification model for the electro-fused magnesia
smelting process. The simulation results demonstrate that the
proposed method owns the better identification performance
than the modeling method using the scarce abnormal condi-
tion data of single target FMF.

The contributions of this paper reflect two aspects. On the
one hand, this paper proposes the newBN parameters transfer
learning method by integrating the expert knowledge and
data information. On the other hand, when the target FMF is
with scarce abnormal condition data, the proposed method is
applied to solve the abnormal condition identification model-
ing problem for the electro-fused magnesia smelting process.

The remaining sections of this article are organized as
follows. The problem that needs to be solved in this paper
is described in the Section II. The new BN parameters trans-
fer learning method is proposed in the Section III. In the
Section IV, a set of simulation results are shown to evaluate
the proposed algorithm for the Asia network. Furthermore,
the proposed method is applied to establish the abnormal
exhausting condition identificationmodel in the electro-fused
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FIGURE 1. The electro-fused magnesia furnace smelting process.

magnesia smelting process. Finally, the Section V concludes
the paper.

II. PROBLEM DESCRIPTION
The simplified schematic diagram of electro-fused magne-
sia smelting process is shown in the Figure 1. The FMF
completes the smelting process by the control system track-
ing the different current setpoints based on the different
conditions. BN is a valuable tool to model the uncertainty
problem and obtain decisions in practice. For the abnormal
condition identification modeling of electro-fused magnesia
smelting process, BN is an effective method to solve the
target problem. The expert knowledge can be used to define
variables and determine the network structure in the absence
of data. Nevertheless, the parameters need to be learned from
the abnormal condition data. In the existing research results
[7], [8], the abnormal conditions have been analyzed deeply
and the corresponding BN model has been established. How-
ever, these models are established under the condition that the
abnormal conditions data are enough. When there are limited
abnormal condition data for the single target FMF, we attempt
to learn the CPTs of target FMF using the abnormal condition
information from other FMFs as sources. To improve the
performance of parameters learning, the expert can specify
the qualitative and quantitative relationships on the CPTs as
constraints for the target domain. Therefore, in this paper
we focus on the BN parameters transfer learning under the
constraints on CPTs from expert knowledge for the target
domain.

The problem to solve can be described as the following
form. The target domain is the single FMF with scarce abnor-
mal condition data. The source domains include the abnormal
condition data from the other FMFs in the same factory and/or
other factories which produce fused magnesium. In this back-
ground, the tasks of target and sources are the same, so the tar-
get and sources own the same variables and the BN structures
own the same graphs. Only the parameters have different
distribution relationships. Therefore, the abnormal condition
identification modeling problem is transformed into the BN
parameters transfer learning problem. We concentrate on

learning the target network parameters from multiple related
sources. We need to judge whether to transfer the parame-
ter or not, evaluate the similarity of parameters from multiple
sources and determine the weight to avoid negative transfer.
We need to propose the transfer learning scheme to fuse the
parameters of sources and target to improve the performance
of parameters learning.

In the BN parameters learning setting, a domain D =
{V, G, Da} includes three components: the variables V =
{X1,X2,X3, . . . ,Xn} represent the BN nodes, Da represents
the associated data, and G represents a directed acyclic graph
which encodes the statistical dependencies among the vari-
ables. The CPTs specify the probability p(Xi|pa(Xi)) of every
variable given its parents as defined by graph G. The goal
of parameters learning is to determine all p(Xi|pa(Xi)). The
parameters can be obtained by maximum likelihood estima-
tion (MLE). In this paper, we have one target domain Dt ,
and a set of sources {Ds1,D

s
2, . . . ,D

s
L} (L ≥ 1). The target

domain and each source domain have training data Dat =
{d t1, d

t
2, . . . , d

t
N } and Dasi = {d

s
1, d

s
2, . . . , d

s
M } i ≥ 1. For

transfer learning, we are interested in the case where target
domain data are relatively scarce 0 < N � M , and/or N
is small relative to the dimensionality of target problem. BN
parameters transfer learning aims to improve the parameters
learning accuracy of BN in Dt using the information in
{Ds1,D

s
2, . . . ,D

s
L} (L ≥ 1) [29]. Therefore, BN parameters

transfer learning is defined as:
Given a set of source domains {Ds1,D

s
2, . . . ,D

s
L} (L ≥ 1)

and a target domain Dt , the target domain parameters θ t are
estimated by

θ̂ t = argmax
θ t

p(Dt , {Ds1,D
s
2, . . . ,D

s
L}|θ

t ) (1)

The following conditions are assumed: Vt
= Vs, Gt

= Gs,
{Ds1,D

s
2, . . . ,D

s
L} (L ≥ 1) and Dt own different distribution

properties.

III. A NEW BN PARAMETERS TRANSFER
LEARNING METHOD
A. THE PARAMETERS CONSTRAINTS FROM
EXPERT KNOWLEDGE
Two forms of constraints from expert knowledge are used
to express the parameters information of target domain. One
kind is the qualitative form which is the relationship expres-
sion between the different parameters. The expert knowledge
of this form is comparatively accurate, which can be used to
judge whether the parameter information is transferred or not.
Another kind is the quantitative formwhich is the range value
of parameter. This kind of expert knowledge is suitable to
determine the role of source in the transfer learning. The
specific forms can be expressed as follows.
Form one: The probabilistic relationship of the same node

at the different states can be expressed as the following
form

θ tijk ′ > θ tijk ′′ (2)
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where 1 ≤ i ≤ n, n represents the number of nodes in BN
model; 1 ≤ j ≤ qi, qi represents the number of candidate
combination states of father nodes of ith node;k ′ (1 ≤ k ′ ≤ ri)
and k ′′(1 ≤ k ′′ ≤ ri) are the different states of ith node and
ri represents the number of candidate states of ith node; θ tijk ′
represents the real parameter of target domain, which satisfies
the condition that the ith node is in the k ′th state and its father
node set is in the jth state; θ tijk ′′ represents the real parameter of
target domain, which satisfies the condition that the ith node
is in the k ′′th state and its father node set is in the jth state.
Form two: The value range of one node at single state can

be expressed as the following form

ak < θ tijk < bk (3)

where θ tijk represents the real parameter of target domain,
which satisfies the condition that the ith node is in the kth
state and its father node set is in the jth state; ak (0 ≤ ak ≤ 1)
and bk (0 ≤ bk ≤ 1) are the constants, which need to be set
in advance. They can be obtained by the expert knowledge,
operation experiences and statistical analysis of historical
dataset.

B. THE PROPOSED PARAMETERS TRANSFER
LEARNING STRATEGY
Central two challenges for the transfer learning are how
to measure the similarity between the multiple sources and
target to distinguish the relatedness and how to transfer the
information from the multiple sources to learn the target
model. In this section, the new BN parameters transfer learn-
ing strategy is proposed to solve the above problems. The
specific process is depicted in the Figure 2, and the steps are
shown as follows:
Step 1: The expert knowledge Form one is used to decide

that the parameter information of which source is applied to
transfer learning.

If the parameter in one source conforms to the expert
knowledge Form one in the target domain, this parameter
is regarded as the alternative information for the transfer
learning. Otherwise, it is not considered as the alternative
information for the transfer learning. Above operation is
implemented on each group of parameters for ith node whose
father node set is in the jth state. Each group of parameters of
the same source is evaluated separately to determine whether
the information is used to transfer learning or not. Therefore,
it is possible that some parameters are used to transfer and
other parameters are not used to transfer for the same source.
Step 2: The similarities of alternative sources are distin-

guished based on the expert knowledge Form two.
In the process of transfer learning, the negative trans-

fer problem needs to be focused. The motivation of dis-
tinguishing the similarities of multiple sources is to avoid
the ‘negative transfer’ risk and ensure the effectiveness of
transfer learning. The similarity of alternative source is cal-
culated based on the expert knowledge Form two. If the
source satisfies more constraints from expert knowledge, it is
more likely to own the similar probability distribution to the

target domain. When the corresponding parameter of alterna-
tive source satisfies one constraint from the expert knowledge
Form two, the similarity score for this source is added one.
For the more important constraints, the bigger score is added
to the similarity score. By this kind of scoring way, the simi-
larities of multiple sources are distinguished.
Step 3: The weights of alternative sources for the fusion

algorithm are calculated.
The weights of alternative sources for the fusion algorithm

are calculated by the following equality:

ωlijk = scorel

/
L ′∑
l=1

scorel (4)

where ωlijk represents the weight of lth source; scorel repre-
sents the similarity score of lth source; L ′(L ′ ≤ L) represents
the number of alternative sources.
Step 4:Before transfer learning, the parameters θ̃ t of target

domain are obtained by the target data Dat based on MLE.

θ̃ t = argmax
θ t

p(Dt |θ t ) (5)

Step 5: Judge whether the parameters θ̃ t conform to the
expert knowledge Form one or not; If the answer is ‘Yes’,
shift to Step 6; If the answer is ‘No’, shift to Step 7.
Step 6:The final parameters of target domain are calculated

by the fusion algorithm (6).
The partial matched parameters θ̃ t are used to obtain the

final target parameters. The fusion function is shown in the
following form:

θ̂ tijk = (1− η)θ̃ tijk + η
L ′∑
l=1

ωlijkθ
l
ijk (6)

where η (0 ≤ η < 1) represents the weight of parameters
obtained by the source data, which is determined by the
expert knowledge; θ lijk represents the obtained parameters by
the lth alternative source; θ̂ tijk represents the final obtained
parameters of target by the alternative sources and target
information.
Step 7:The final parameters of target domain are calculated

by the weighted sum of obtained parameters by the alternative
sources.

The fusion function is shown in the following form:

θ̂ tijk =

L ′∑
l=1

ωlijkθ
l
ijk (7)

Remark 1: In the proposed BN parameters transfer learning
strategy, only the available expert knowledge in two forms are
used to determine whether the parameter is transferred or not
and the weights of alternative sources for transfer learning.
It is not the necessary condition that all the constraints for
all the parameters of target domain are all known. Every
parameter of target domain is calculated in the proposed strat-
egy separately, because the alternative sources for different
parameters may be different. In the proposed BN parameters
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FIGURE 2. The BN parameters transfer learning strategy.

transfer learning strategy, although all source domains are
executed sequentially, this algorithm is not related with the
sequence. If the sequence of source domains is changed,
the final result does not be affected.
Remark 2: Compared with the latest related research

result [31], the advantages of proposed method reflect in the
following aspects:

(a) In the proposed method, the constrains from the expert
knowledge are expressed in two forms: qualitative form and
quantitative form. This expression way is simpler and more
intuitionistic. Although there is a degree of similarity for
the expert constraints in form between the paper [31] and
the proposed method, the specific meaning and function are
different.
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In this paper, the expert knowledge is divided into two
types. When the experts only know the qualitative relation-
ship among the variables or parameters, the knowledge is
expressed in the qualitative form. When the experts know
the quantitative values or range for the variables or param-
eters, the knowledge is expressed in the quantitative form.
The qualitative expert knowledge is used to judge which
source is applied to transfer learning. The quantitative expert
knowledge is used to distinguish the similarities of alternative
sources and determine the weights of sources.

(b) In this paper, the expert constraints are used to judge
which source parameter is chosen to transfer learning and the
weights of alternative sources. In the paper [31], the expert
constraints only are used as the nodes in the extended multi-
nomial parameter learning model.

(c) In this paper, the information of alternative sources
which satisfy the expert constraints are all used to transfer
learning. After distinguishing the similarities of alternative
sources, the parameters of target are obtained by the fusion
function (6) or (7). The method is easy to operate. In the
paper [31], the transfer learning is exploited by measuring
the relatedness of every source fragment. The best source
fragment is chosen as parameter priors in the target model.
Therefore, only the information of one source is applied
in the transfer learning. The final parameters of target are
determined by inference based on the given target data, target
constraints and source networks.

(d) In this paper, to guarantee the effectiveness of transfer
learning for the electro-fused magnesia smelting process,
we regard other FMFs in the same factory and/or other fac-
tories which produce fused magnesium as the sources. The
backgrounds and researched problems are the same, there-
fore, Vt

= Vs, and Gt
= Gs. {Ds1,D

s
2, . . . ,D

s
L} (L ≥ 1) and

Dt may own different distribution properties. These chosen
sources avoid the negative transfer in some degree. In the
paper [31], in the process of transfer learning, the method
allows the heterogeneity V t

6= V s and Gt 6= Gs, and the
fragment needs to satisfy the fragment compatibility. The
possibility of negative transfer is bigger relatively.

IV. EXPERIMENTAL RESULTS
At first, we evaluate the proposed BN parameters transfer
learning method on the well-known Asia network [36], [37].
The Asia network is a diagnostic demonstrative BN, which
is used to represent the relationships among the relevant
variables for medical knowledge related to the shortness of
breath (Chest Clinic). Furthermore, the proposed method is
used to establish the abnormal exhausting condition model in
the electro-fused magnesia smelting process to identify the
abnormal condition, which is compared with the parameters
learning method only using limited abnormal condition data
of target FMF to verify the superiority.

A. SIMULATION RESULTS ON THE ASIA NETWORK
The network structure of Asia network is shown in the
Figure 3. The CPTs of Asia network are shown in the
Tables 1-7.

FIGURE 3. The structure of Asia network.

TABLE 1. The CPTs of nodes A and S.

TABLE 2. The CPT of node T.

TABLE 3. The CPT of node L.

TABLE 4. The CPT of node B.

The dataset with 300 samples from the true Asia network
is used as the target data information. Four sources networks
with the same structure and different probability distribution
characteristics are constructed. The expert knowledge Form
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TABLE 5. The CPT of node E.

TABLE 6. The CPT of node X.

TABLE 7. The CPT of node D.

TABLE 8. The expert knowledge form two for Asia network.

one includes θ t1_1 > θ t1_2 and θ t641 < θ t642. The expert
knowledge Form two is shown in the Table 8.

For the BN parameters learning, the Kullback-Leibler (KL)
divergence is used to measure how closely the learned param-
eters with the true parameters and evaluate the performance
of parameters learning. The specific form of KL divergence
is shown as follow.

DKL(θ tijk ||θ̂
t
ijk ) =

n∑
i=1

qi∑
j=1

ri∑
k=1

θ tijk ∗ (log θ
t
ijk − log θ̂ tijk )

The smaller the value of KL divergence is, the better the
learned parameter is.

First of all, the transfer learning method is not applied,
and the parameters of target are learned only using target
data. The KL divergence value is 41.4487. This value is
very big and it is obvious that the performance of param-
eters learning is very bad when only using the target data.
What’s more, to show the performance of proposed method
in the Section III, the parameters of target are learned by

FIGURE 4. The values of KL divergence under the different weights η.

the proposed BN parameters transfer learning method. The
values of KL divergence under the different weights η are
shown in the Figure 4. From the Figure 4, it can obtain
that as the weight η increases, the role of alternative sources
for transfer learning increases, the value of KL divergence
is smaller and the learned parameters are closer to the true
parameters. Therefore, the proposed BN parameters transfer
learning method is feasible to obtain good parameters and
the learned parameters are better than the parameters learning
only using target data.

To verify the necessity of distinguishing the similarities
of sources, the values of KL divergence under the different
weights η are shown in the Figure 4 when the similarities of
sources are not distinguished.

Comparing the results in the Figure 4, when the similarities
of sources are not distinguished, the obtained values of KL
divergence are all bigger than the proposed method for all
the weights η. It can conclude that the proposed similarity
measure method of sources is effective and can avoid the
influence of bad information for transfer learning.

The numerical experimental results on the Asia network
show that our proposed BN parameters transfer learning
method is effective to learn the parameters of target and
owns the better performance than the method only using tar-
get data. The proposed similarity measure method of sources
avoids the influence of negative transfer.

B. SIMULATION RESULTS ON THE ELECTRO-FUSED
MAGNESIA SMELTING PROCESS
The previous section demonstrates the effectiveness of our
proposed BN parameters transfer learning method. In this
section we explore its application on the abnormal exhausting
condition modeling for the electro-fused magnesia smelting
process. The simulation is carried out by the hardware in
the loop simulation platform for the electro-fused magnesia
smelting process. The simulation platform is designed and

149770 VOLUME 7, 2019



P. Yuan et al.: Abnormal Condition Identification Modeling Method Based on BN Parameters Transfer Learning

FIGURE 5. The hardware in the loop simulation platform for the electro-fused magnesia smelting process.

FIGURE 6. The established BN structure for the abnormal exhausting condition.

constructed in my research team during the past few years,
which is shown in the Figure 5.

We can research and validate the proposed algorithm
on this platform. The simulation platform can simulate the
electro-fused magnesia smelting process based on mecha-
nism analysis and actual data, which can complete opti-
mal control, abnormal condition identification and safety
control for this process. The platform includes the follow-
ing equipment: a number of computers with different func-
tions, embedded process control systems, data sever, sensing
devices and transferring devices. The sensing devices include
current measurement instrument, image measurement instru-
ment and sound measurement instrument. On site, the multi-
source information is collected by the sensing devices and
stored in the data sever. The transferring devices transfer the

information to the simulation area by the Ethernet in a certain
time interval. Because the data which are used to verify the
proposedmethod are based on the simulation of practical pro-
duction process, if the proposed method is verified, it could
be considered to apply in the practical production process.

Based on the research results on the abnormal condition
identification for the abnormal exhausting condition [7], [8],
the established BN structure for the abnormal exhausting
condition is shown in the Figure 6. The practical meanings
of nodes are shown in the Table 9. The numbers of nodes
‘‘A-K’’ in the Figure 6 are ‘‘1-11’’. In the established BN
model, the current, image and sound characteristics are used
as the nodes. These characteristics are related with the abnor-
mal exhausting condition. As the further research, if other
kinds of sensor source information are discovered that they
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TABLE 9. The characteristics for the abnormal exhausting condition.

TABLE 10. The parameters expression of node A.

TABLE 11. The parameters expression of node B.

TABLE 12. The expert knowledge Form one for the abnormal exhausting
condition model.

are also related with the abnormal exhausting condition, the
new characteristics could be extracted as the new BN nodes.
To express the constraints from the expert knowledge for the
target FMF, the examples of parameters expression for nodes
A and B are shown in the Tables 10 and 11. The parameters
expression for other nodes is similar to nodes A and B, which
is omitted. The expert knowledge Form one and two for
the abnormal exhausting condition model are shown in the
Tables 12 and 13 respectively.

By analyzing the practical situations of the abnormal
exhausting condition, some possible abnormal scenarios are

TABLE 13. The expert knowledge Form two for the abnormal exhausting
condition model.

extracted and shown in the Table 14. In the Table 14, every
abnormal scenario includes seven characteristics with differ-
ent degrees. The characteristics are divided into three (or four)
degrees. The numbers 1-3 (or 1-4) are used to represent the
different degrees. The characteristics E-J are divided into
three degrees: small, medium and large; the characteristic
K is divided into four degrees: very small, small, large and
very large. Taking the abnormal scenario 18 as the example,
the physical meaning is that the states of characteristics E-F
are small; the states of characteristics G-I are medium; the
states of characteristics J-K are very large. Not all scenarios
are included in the Table 14. Only typical scenarios are
considered and other similar scenarios can be analyzed in the
same way.

Firstly, the parameters of abnormal exhausting condition
model are learned by the scarce data of target FMF, and the
model is represented as Model one. Furthermore, we col-
lect the abnormal exhausting condition data from other four
groups FMFs in the same factory. The parameters of abnor-
mal exhausting condition model are learned by the proposed
BN parameters transfer learning method in the Section III
based on the constraints from the expert knowledge in the
Tables 12 and 13, and the model is represented as Model two.

The possible abnormal scenarios in the Table 14 are used
as the evidences to infer by the established Models one and
two. The exhausting condition node A is divided into four
degrees: normal, sight abnormal, moderate abnormal and
serious abnormal, which are represented by numbers 1-4.
The reasoning results are shown in the Tables 15 and 16
respectively, which owns the largest posterior probability
is regarded as the identification result. The corresponding
identification results are in bold. Based on the practical oper-
ational experience, by comparing the identification results in
the Tables 15 and 16, it can obtain that the accuracy rate of
identification for Model one is 50% and the accuracy rate of
identification for Model two is 100%. The proposed transfer
learningmethod canmake the abnormal exhausting condition
model own the higher accuracy rate when the data of target
FMF is very limited.
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TABLE 14. Some possible abnormal scenarios for the abnormal exhausting condition.

TABLE 15. The identification results of abnormal scenarios in the
TABLE 14 for model one.

TABLE 16. The identification results of abnormal scenarios in the
TABLE 14 for model two.

To show the influence of data size of target FMF on transfer
learning, the abnormal exhausting condition data of target
FMF are increased to establish the Model three, but the used
data of target FMF are still less than the data in the source
domain. Furthermore, based on the increased target FMF
data, the established model is represented as Model four
by the proposed BN parameters transfer learning method.
The reasoning results are shown in the Tables 17 and 18
respectively. By comparing the identification results in the
Tables 17 and 18, it can obtain that as the data size increases
in the target FMF, two methods all can obtain true identi-
fication results which conform to the practical operational
experience. However, for the most abnormal scenarios in
the Table 14, the identification results by the proposed BN
parameters transfer learning method own the better discrimi-
nation, that is to say, the true degree of identification result

TABLE 17. The identification results of abnormal scenarios in the
TABLE 14 for model three.

TABLE 18. The identification results of abnormal scenarios in the
TABLE 14 for model four.

owns the bigger probability. The difference of probability
between the true degree and the wrong degree is bigger.
Therefore, by the above analysis and comparison, it can con-
clude that the obtained abnormal exhausting condition model
by the proposed BN parameters transfer learning method
owns the better performance than the method only using the
data of target FMF.

V. CONCLUSION
This paper develops the new BN parameters transfer learn-
ing method for the electro-fused magnesia smelting process.
First of all, the electro-fused magnesia smelting process is
analyzed. Based on the existing research results, the problem
to solve in this paper is described. Furthermore, the new
BN parameters transfer learning method is proposed based
on the constraints from expert knowledge in two forms.
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Finally, the experimental results demonstrate that the pro-
posed BN parameters transfer learning method is effective
and owns the better performances than the method only using
the scarce data from target. It is beneficial to the estab-
lishment of abnormal condition identification model in the
electro-fused magnesia smelting process when the abnormal
condition data are scarce for the target FMF. The proposed
similarity measure method avoids the influence of negative
transfer in some degree.
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