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ABSTRACT Apache Flink is an open-source, soft real-time stream processing framework underlying
many modern systems dealing with cloud and real-time computing, data analytics, and the Internet of
Things, among others. As the complexity of stream-processing systems increase, the testing, debugging,
and verification tools supporting them should improve as well. However, Flink’s testing tools only include
a local cluster fake, which requires a great effort from the user to manually craft all those streams (and
their corresponding output) that are relevant for each particular function under test. Property-based testing
is an automatic, black-box testing technique that tests functions by generating random inputs and checking
whether the obtained outputs fulfill a given property. In this paper, we present FlinkCheck, a property-based
testing tool for Apache Flink. It uses a bounded temporal logic for both guiding how random streams are
generated and defining the properties. We illustrate how the tool works with an example of a collaborative
initiative against sexual harassment.

INDEX TERMS Apache Flink, stream processing, property-based testing, linear temporal logic (LTL).

I. INTRODUCTION
Apache Flink [1] is a soft real-time stream processing frame-
work supporting stateful computations over unbounded and
bounded data streams. Flink can be executed in a distributed
way in several popular cluster environments, and provides
good performance through features like operator pipelining,
efficient type aware serialization, and data locality. These
features make Flink suitable for a wide range of modern
systems requiring efficient soft real-time computation, such
as Amazon Kinesis Data Analytics [2], Alibaba Realtime
Compute [3], and Huawei Cloud Stream [4].

Stream processing is used in sophisticated use cases like
data analytics and anomaly detection, that lead to com-
plex systems where appropriate quality assurance procedures
are required. The strategy for testing streaming programs
described in Flink’s documentation [5] suggests using
classical unit testing frameworks [6] for testing individual
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operators, and a local cluster fake [6] to test a full pro-
gram, and also references some internal testing tooling with
unstable interfaces for testing checkpoints and state handling.
However, in all those cases the user is required to introduce
by hand the input stream and the expected output, which
might be huge in general, making these testing techniques
tedious and error-prone. Moreover, the documentation itself
indicates that state handling testing ‘‘could be tricky because
of time dependencies’’ [5], which emphasizes the need for
stream-oriented testing techniques.

In this paper, we present FlinkCheck, a property-based
testing (PBT) tool for Apache Flink. FlinkCheck provides a
bounded temporal logic for generating inputs for functions
and for stating properties. This logic, devised for streaming
systems in [7], allows users to define how streams vary with
time and what properties should verify the corresponding
output. FlinkCheck randomly generates a specified number
of finite input stream prefixes with the required structure and
evaluates the output streams produced by the Flink runtime.
This allows for using longer stream prefixes that exercise
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the test subject more thoroughly, leaving the user only the
creative tasks. Empirical studies [8], [9] have shown that PBT
techniques obtain good code coverage results in practice,
with smaller effort compared to manually writing tests that
cover all cases using xUnit frameworks. Besides this general
contribution, the presentation of the property-based testing
tool FlinkCheck, the specific contributions of the paper are:
• The instantiation of the logic for Apache Flink.
• The translation from mathematical notation to Flink.
• An example illustrating how to use FlinkCheck and how
to understand the results.

• Benchmarks to check the practicability and scalability
of FlinckCheck.

The rest of the paper is structured as follows: Sect. II
briefly describes the foundations of FlinkCheck. Sect. III
presents the design of the tool, while Sect. IV describes
how to use it and its performance with some benchmarks.
Sect. V discusses the relatedwork. Finally, Sect. VI concludes
and outlines some lines of future work. The source code
of FlinkCheck, examples, and more information is available
at https://github.com/demiourgoi/flink-check.

II. PRELIMINARIES
In this section, we present the main ideas underlying our
system: the Flink foundations, property-based testing, and
linear temporal logic.

A. FLINK
Flink is a distributed processing engine that supports both
stateful stream processing and batch processing, by treat-
ing the later as a particular case of the former where
the input streams are finite—bounded in Flink’s terminol-
ogy [10]. Flink’s main abstraction for stream processing
is the DataStream type, which corresponds to a poten-
tially infinite—unbounded—list of elements of a given type.
Streams are immutable, but derived streams are defined by
transforming an existing stream using operators inspired
by functional programming, such as map and filter
higher-order functions, or Hadoop [11] influenced operators
using key-value pairs, that allow for splitting streams into par-
titions that are materialized independently in different worker
processes running on a cluster. In order to incrementally
produce an output while processing an unbounded stream, the
programmer can use Flink’s API to define a policy to split
the stream into windows of finite size, that are aggregated to
produce intermediate results [12]. Windows can be defined
in terms of time (e.g. a tumbling window every 3 minutes,
or a sliding window of 3 minutes each minute), in terms of
elements (e.g. a window every 20 received elements), and
based on sessions (related events separated by less than a
configured gap of time).

Another remarkable feature of Flink is that it supports
different notions of time [12], namely processing, event, and
ingestion time. With event time, the timestamp for each ele-
ment of a stream is computed from the event using a specified
function, usually by selecting an element field. As a result,

the stream is dynamically reordered, which is useful for
situations where there are nondeterministic delays between
event generation and event ingestion, e.g. when sending data
from a set of IoT resources in different locations with lim-
ited networking capabilities. With processing time, when a
Flink operator processes a stream element, it uses the current
system clock time of the machine where it is running as
the element’s timestamp. With ingestion time elements are
assigned a processing time timestamp in the stream source
operator, that is kept for the remaining operators. Element
timestamps then determine how time-based windows are con-
structed. Event time leads to more predictable and determin-
istic programs and facilitates certain use cases, but it is more
costly because stream reordering is performed by buffering
events. Processing time is less expressive but also less costly,
and ingestion time lays in between.

In this paper, we focus on using Flink for stream process-
ing, and in writing tests using Flink’s Scala API, which allows
us to use the PBT tool ScalaCheck [13] as the basis for our
prototype. Scala [14] is a programming language that com-
bines object-oriented features and functional programming,
and it is a good fit due to Flink’s functional programming
influences.

FIGURE 1. HarassMap Flink program.

We illustrate these ideas with a simple collaborative exam-
ple inspired by HarassMap [15], [16], whose code can be
found in Fig. 1. HarassMap is an Egyptian mobile and web
application that collects information about sexual harass-
ment incidents from witnesses or victims to create a map
showing harassment hot spots. HarassMap manually verifies
the incidents and volunteers visit those neighborhoods to
raise awareness of sexual harassment behaviors. We will
assume that our Flink program receives an unbounded stream
of verified harassment incidents generated by people. Each
incident is represented as Incident objects, which contain a
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zone identifier zone_id (natural number) and a danger value
(real number between 0 and 10)—see the case class Incident
in Fig. 1. We aim to label each zone with a level depending on
themaximum perceived danger in a timewindow. Concretely,
we will consider that a zone with a maximum danger up to
1 is Safe, between 1 and 5 the level is Warning, between
5 and 8 the level is Danger, and above 8 is Extreme. These
levels are represented in Scala using an enumeration type
DangerLevel whose apply method translates values to levels.
Finally, our Flink program is implemented in the function
harass_max of Fig. 1. It processes an input stream of inci-
dents, with type DataFrame[Incident], and creates an output
stream of pairs DataStream[( Int , DangerLevel)] where the
first component is the zone identifier and the second one is
the danger level corresponding to the maximum perceived
danger in intervals of one hour: The function harass_max
first groups the incoming incidents by their zone identifier
(transformation keyBy) and creates one-hour windows (trans-
formation timeWindow) to process together all the incidents
within one hour. Then, it computes the maximum value for
each zone in the time window (using max) and transforms
this value into the appropriate danger level by using the
Flink DataStream transformation map. This transformation
accepts an anonymous function that given an Incident object
generates a pair with the zone_id and the level corresponding
to the danger value. The complete code can be found in the
file Harass. scala at https://git.io/fji9K.

B. PROPERTY-BASED TESTING
Property-based testing (PBT) [9], [13], [17]–[19] is a black-
box, automatic testing technique that consists of two ingre-
dients: (a) generators, which produce random values for the
input parameters of the test subject function, and (b) formu-
las, which are Boolean expressions that define a predicate that
relates the input and the output of a test subject function. We
combine generators and assertions under a universal quanti-
fier to form a property, that is a first-order logic formula about
the test subject that is checked during testing.

Our tool extends ScalaCheck [13], a Scala PBT library
that provides generators for built-in Scala types. Using
ScalaCheck we could define a simple property for the
list reverse function as:

where the forAll property first receives a generator (listOfN)
that produces lists of 10 positive numbers (produced in
turn with the built-in ScalaCheck posNum generator). Then,
the formula requires that applying reverse twice to any list
returns the same list.

For Flink streaming programs this kind of generators/prop-
erties is not enough because they do not take time into
account. For example, in the example in the previous section,
we would need to create finite streams and check the cor-
responding outputs. We would define first the generators

we want to use (e.g. a data stream with all windows con-
taining incidents with a danger value greater than 1, or a
data stream that alternates values corresponding to different
danger levels) and then state the properties the corresponding
output streams should fulfill (e.g. never Safe is returned or all
danger levels are generated). In the next section, we present
a logic to extend property-based testing to take time into
account.

C. LINEAR TEMPORAL LOGIC FOR STREAM
PROCESSING SYSTEMS
FlinkCheck uses the LTLss logic [7], an extension of propo-
sitional linear temporal logic (LTL) [20] with timeouts in
temporal operators, and atomic formulas constructed with
predicates applied to terms. LTLss is not first-order because
it just includes a simple variable binding construct instead
of the usual quantifiers. Judgments in this logic evalu-
ate a formula and a finite word that uses terms paired
with a timestamp as letters, to a three-valued truth value
v ∈ {>,⊥, ?}, where ? corresponds to inconclusive cases
where the word is too short to determine whether the formula
holds or not. It is important to note that, although the under-
lying logic is the same, the time model used in FlinkCheck
makes the corresponding instantiation of LTLss completely
independent of previous approaches.

Next, we present generators and formulas for LTLss.
Although the logic is general and hence it can be adapted to
any stream processing system, our presentation will directly
focus on Flink concepts and consider letters as windows and
words as streams. We will also present examples based on the
HarassMap example in the previous section to illustrate the
intuitive ideas. Then, in Sect. III we will see how FlinkCheck
implements these elements.

1) GENERATORS
We explain in this section how to generate values with
LTLss, using g1 and g2 as general generators. Generators are
defined as:

1) Basic generators correspond to regular ScalaCheck
generators. For the example above, we could define a
generator for random numbers, pairs of random num-
bers, and lists of pairs of random numbers. This list
of pairs would correspond to a Flink window, so time
is not involved in basic generators. In the rest of the
section, we assume we have defined the basic genera-
tors gs, gw, and gd , which generate lists of pairs (id, n)
with id a natural number and n ≤ 1, 1 < n ≤ 5, and
5 < n ≤ 8, respectively.

2) X g1 (next g1), which generates an empty window and
uses g1 for the second one. For example, the genera-
tor X gs would generate a stream with two windows,
the first one empty and the second one containing pairs
of numbers with the second component smaller than or
equal to 1.

3) �n g1 (always g1 for n), which generates n consecutive
windows using g1. For example, �4 gw generates a

VOLUME 7, 2019 150371



C. V. Espinosa et al.: FlinkCheck: Property-Based Testing for Apache Flink

streamwith 4windows. Eachwindowwill contain pairs
of numbers with the second component of the pair a
number n with 1 < n ≤ 5.

4) ♦n g1 (eventually g1 for n), which generates between
1 and n − 1 empty windows and then a final window
using g1. For example, ♦4 gd generates a stream with
at most 4 windows; the last window will contain pairs
of numbers with the second component of the pair a
number n with 5 < n ≤ 8.

5) g1 Un g2 (g1 until g2 for n), which generates values
using g1 for less than nwindows and then uses g2 once.
For example, gd U6 gs might generate, among others,
a stream of 4 windows; all windows contain pairs of
numbers (id, n), but for the first three windows we have
5 < n ≤ 8 and for the last one n ≤ 1.

6) Finally, FlinkCheck provides composition operators
for generators. For example,+ can be used to combine
two basic generators to obtain a generator that produces
the union of the two windows generated by its argu-
ments.+ is also overloaded for combining general gen-
erators, so given g1 and g2 returns a generator g1 + g2
as the pairwise union. It first generates a pair of streams
(s1, s2) from g1 and g2, and then returns a stream where
each window at position i is the union of the windows
at position i in s1 and s2, filling up with empty windows
in case s1 is longer than s2, or vice versa.

2) FORMULAS
In this section, we present LTLss formulas, using f1 and f2
as general formulas. Formulas can be evaluated to either
true (>), false (⊥), or undefined result (?) if the given stream
does not contain enough windows to evaluate it. This con-
trasts with generators, that always generate a stream that
would make the formula corresponding to the generator eval-
uate to true. Formulas are defined as:

1) Basic formulas are Boolean functions and constants.
In the rest of the section, we assume a function
danger(s) that holds if there is a pair (id, n) in the set s
such that n is greater than 5, while warning(s) holds if
the pair (id, n) with the highest value in s for n satisfies
1 < n ≤ 5. Note that time is not involved in basic
formulas.

2) λt(i,o)f1, read consume i, o, and t to evaluate f1. This
expression evaluates the formula f1 after binding the
corresponding variables: i to the current input window,
o to the current output window, and t to the current
timestamp. In general, we will omit the timestamp
when not required. This operator allows us to apply
Boolean functions to the streams so, combined with the
temporal operators below, provides the full capacity of
the logic.

3) X f1, which holds if the formula f1 holds for the next
window.

4) �n f1, which holds if f1 holds for all of the first n
windows. For example, the formula�4λ(i,o)warning(i)
(a) holds for the stream �4 gw; (b) fails for the stream

�4 gs; and (c) returns ? for the stream�3 gw (although
it holds for the first three states the tool cannot tell what
will happen in the fourth one).

5) ♦n f1 holds if f1 holds for any of the first n windows.
For example, the formula ♦4λ(i,o)warning(i) (a) holds
for the streams�4 gw and�3 gw; (b) fails for the stream
�4 gs; and (c) returns ? for the stream �3 gs.

6) f1 Un f2 holds if f1 holds for the first k windows (0 ≤
k < n) and f2 holds for the k+1 window. For example,
(λ(i,o)warning(i)) U4 (λ(i′,o′)danger(i

′)) (a) holds for
the streams�2 gd (f1 holds for 0 windows and f2 holds
in the initial window) and �2 gw + X X gd (f1 stops
holding in the third window but then f2 holds); (b) fails
for the stream�2 gw+X X gs (in the third window we
reach a state where f1 stops holding but f2 does not hold
yet); and (c) returns ? for the stream �3 gw (f1 keeps
holding, so it might still be the case that f2 will hold
in the next window). Note how the logical operator +
is used in combination with two applications of the
next operator (X ) to require that, in the third window,
a particular set of elements is required; meanwhile,
the first two windows are populated by the �2 gw
generator.

III. FLINKCHECK DESIGN
In this section, we describe the implementation of
FlinkCheck, how it differs from our previous work on testing
Spark Streaming [7], and how the peculiarities and char-
acteristic features of Flink motivate those changes. Note
that the different time models used by these tools make the
corresponding instantiations different, although some low
level libraries are shared thanks to a careful design of the
whole project available at https://github.com/demiourgoi.

A. DESIGN OVERVIEW
FlinkCheck’s code is structured in two libraries: sscheck-core
and flink-check. sscheck-core is shared with Sscheck [7] and
implements LTLss as a set of ScalaCheck generators and as
a Scala Formula trait for specifying properties. sscheck-core
is agnostic from Flink or any particular computing engine.
As LTLss is a discrete time logic, in sscheck-core generators
produce streams represented as sequences of windows, where
each window is a multiset of elements that occur during
the time interval corresponding to the window —similarly
to the discrete representation of [21]. Those windows have
no associated timestamp, so we can interpret them using
different windowing policies for different computing engines.
On the other hand, Formula is a generic type parameterized by
a type for the letters, so properties see streams as sequences
of letters with an associated timestamp.

The flink-check library builds on top of sscheck-core,
and allows us to define ScalaCheck properties for Flink by
extending the trait DataStreamTLProperty, which includes
the forAllDataStream method shown in Fig. 2.1 This method

1Implicit parameters have been omitted for the sake of conciseness.

150372 VOLUME 7, 2019



C. V. Espinosa et al.: FlinkCheck: Property-Based Testing for Apache Flink

FIGURE 2. forAllDataStream method.

returns a ScalaCheck property that checks that for all test
cases obtained from the generator, the property holds when
using the test case as the input stream and the result of
applying the test subject as the output stream. That wraps
the propositional temporal formula formula —as LTLss is
a propositional logic— with a single universal quantifier.
As usual in ScalaCheck and PBT in general, the test will try to
refute this formula by generating a specified number of test
cases and checking formula for them, but no sophisticated
automated reasoning procedure is used to evaluate the prop-
erty. Here we use

case class TimedElement[T](timestamp: Long,
value : T)
to represent elements together with the time they occur in the
scenario simulated by the test case. Note that test subjects
are Flink stream transformations that can be defined using
any of the operations in the Flink API. Each generated test
case is executed in two stages. First, during the test case
exercise phase, the test case is transformed from a discrete
sequence of windows into a continuous Flink DataStream
(see Sect III-B), which is fed to the test subject to get an
output stream. The input and output streams are then stored
by Flink in its configured default file system. Later, during the
test case evaluation phase, the input and output streams are
read from the file system, and discretized using the specified
windowing policy (see Sect III-C), obtaining a sequence of
pairs of Flink DataSet corresponding to the timewise pairing
of the window sequences for the input and output streams.
That sequence is fed into the property formula, that uses those
windows pairs as letters, and checks whether the expected
relation between input and output streams holds.

Those conversions between continuous streams and dis-
crete window sequences allow us to use the discrete LTLss
logic, but we think that is also natural for Flink, where
splitting streams into windows and producing intermediate
aggregated results for each window is a basic programming
idiom [12]. This is the same idea, but evaluating assertions
on each pair of windows to incrementally evaluate the prop-
erty formula. Also, by splitting test case exercise and eval-
uation we can execute the test subject without interference
from the assertions, that can use arbitrary Flink API opera-
tions that perform potentially costly computations that could
slow down the test subject too much for stream processing
applications [22].

The current implementation of FlinkCheck, like other
existing testing tools included with Flink [5], only supports

execution in a single host. That is enough for testing the
functional correctness of Flink programs, by generating small
data streams that fit into a single host, but that exercise the
logic of the test subject. In fact, a testing tool that runs locally
in a single host is convenient for automating the execution of
the tests on continuous integration services like e.g. Travis
CI [23], AWS CodeBuild,2 or CircleCI,3 that only provide a
single Docker container for running the tests. As we will see
in Sect. IV-C, the current implementation achieves reasonable
times for running a suite of functional tests. Besides that,
in Sect. VI we will discuss possible future extensions for
using FlinkCheck with a cluster, and some use cases enabled
by that. Now let us see more details about FlinkCheck’s
generators and properties.

B. GENERATORS
The object FlinkGenerators (see https://git.io/fjPrp) in
flink-check takes care of converting the discrete window
sequence generators in sscheck-core into generators of
Seq[TimedElement[In]]. Its function tumblingTimeWindows
does that by interpreting the generated window sequences
as tumbling windows [12], assigning to each particular
window element a random timestamp uniformly distributed
between the start and the end of the window. For now
we only support tumbling windows, but the program-
mer can also directly pass a ScalaCheck generator for
Seq[TimedElement[In]] to forAllDataStream, as long as the
generated elements appear in increasing order of times-
tamp, and we plan to support other windowing policies
out of the box in the future. The generated sequence is
converted into a DataStream[In] by using Flink’s built-in
function StreamExecutionEnvironment.fromCollection, and
then assigning the timestamp to each element and just
keeping the values with stream.assignAscendingTimestamps
(_.timestamp).map(_.value). This shows howwe use Flink’s
event time as a key ingredient for making FlinkCheck
work. We made this choice to make tests repeatable
and deterministic, as event time is not dependent on
the performance of the hardware where tests are run-
ning. Test subjects do not need to be aware of event
time, that is configured by default by FlinkCheck, but for
test subjects where event time is relevant, the function
FlinkGenerators .eventTimeToFieldAssigner can be used to
modify the generated elements so their relevant fields are con-
sistent with the generated timestamps. Note this design based
on fromCollection currently limits FlinkCheck to generating
test cases that fit in the memory of a single host.

In turn, tumblingTimeWindows can be used to adapt any
of the generators defined by sscheck-core’s WindowGen (see
https://git.io/fjPoI), which covers every generator presented
in Sect. II-C1, as can be seen in Table 1. Here, the parameters
g are generators of one sequence of elements, e.g. the contents
of a window. As before, WindowGen provides the helper

2https://aws.amazon.com/codebuild/
3https://circleci.com
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TABLE 1. LTLss generators and their FlinckCheck counterparts.

functions ofN(n,ge) and ofNtoM(n,m,ge) to easily create one
sequence of exactly n elements or between n and m elements
generated by ge. Generators ge create exactly one element,
and can be defined in Scala using the standard ScalaCheck
generators in the Genmodule. For example, the generator of a
DataStream containing 24 windows of 1 hour with 10 random
integer numbers between 0 and 1000 each window would be
defined as:

Finally, sscheck-core’s PStreamGen also defines functions
next, always. . . for combining generators of sequences of
windows like those returned e.g. by WindowGen.always.

C. LTLss FORMULAS
Similarly to generators, flink-check’s class FlinkFormula
wraps a sscheck-core Formula together with a StreamDis-
cretizer that implements a windowing policy for splitting
a DataSet[TimedElement[T]] into a sequence of windows
represented by value of the type TimedWindow:

During test exercise, the input and output data streams are
stored pairing each element with its timestamp, so when
we read the serialized streams we can reconstruct not only
the window start timestamp but also the timestamp of each
individual element. The stream discretizer aligns with the
start of the first window generated by tumblingTimeWindows
by using the same optional start time parameter for both (with
the same default value). That alignment allows FlinkCheck to
use empty windows safely. Currently, discretizers for tum-
bling windows and sliding windows are available. A dif-
ferent windowing policy can be used for the generator and
the property formula, as we will see in Sect IV-B. sscheck-
core’s Formula (https://git.io/fjP6I) provides functions for
every LTLss formula operator presented in Sect. II-C2, as can
be seen in Table 2. Any Boolean expression is promoted to
an LTLss formula with Solved. The formulas next, always,
eventually, and until are represented with the corresponding
functions. The major difference is that the number of win-
dows n is not part of the function but is added by the decorator
during. Finally, the consume operation is represented by the
function consume(f). In its simplest case, the parameter fr is

TABLE 2. LTLss formulas and their FlinkCheck counterparts.

a function that receives a pair (i, o) and returns a Specs2 [24]
Result. The parameter passing of the function fr performs
the binding of the current letter, and the Result value is the
outcome of an assertion. This enables using Specs2 matchers
in the properties, like the additional Flink specific matchers
included with FlinkCheck: e.g. foreachElement is a matcher
that checks whether all elements in a DataSet fulfill a predi-
cate (see Sect. IV-A later). consume can also take a function
that returns a new formula, for building complex properties
with nested temporal operators.

Once a Formula is defined, the groupBy decorator is
used to specify the window policy for the stream discretizer,
obtaining a FlinkFormula. For example, always(f) dur-
ing 3 groupBy TumblingTimeWindows(Time.minutes(15))
expresses that the formula f must be satisfied for the next
3 tumbling windows of 15 minutes. Finally, the Formula
object also contains several variants for these functions so
that programmers can define the properties more concisely.
For example, the eventually function has a version eventuallyF
that instead of a formula accepts a function from a pair (i, o)
to a formula. This version simplifies formulas like♦n(λt(i,o) f )
where consume is inside eventually.

IV. USING FLINKCHECK
In this section, we describe how to define generators and
properties in FlinkCheck, and how to use them to test
a function that transforms a Flink stream. In particular,
we use the collaborative example in Sect. II-A to present
how safety (something incorrect never happens) and live-
ness (it is always the case, given a premise, that something
good eventually happens) properties can be defined. We also
show benchmarks using the mentioned properties to show
the scalability and practicability of the tool. More complex
examples can be found in the flink-check-examples subproject
(https://git.io/JeOnn), including FlinkCheck properties for
the Flink training from Ververica [25], a company founded
by the creators of Flink that is devoted to its commercial
development.

A. WRITING A SAFETY PROPERTY
The safety property we want to test states that, given a stream
of incidents where all danger values are greater than 1, then
the level Safe should never be generated. We first define a
‘‘timeless’’ generator of Incident , which uses the built-in
ScalaCheck function Gen.chooseNum to generate an integer
number between 0 and num_zones − 1 for the zone identifier
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FIGURE 3. FlinkCheck safety property for HarassMap.

and a Double between min_danger and max_danger for the
danger value—see function incidentGen in line 8 of Fig. 3.

Based on incidentGen, we use FlinkCheck generators to
create a stream of timed events organized in 20 tumbling win-
dows of 1 hour, each of them containing between 15 and 50
Incident elements generated by incidentGen. These inci-
dents will have zone identifiers in the range [0–10) and danger
values in [1.1–10.0]. The definition of this generator can be
found in line 20 of Fig. 3. Note that we store the generator
in the variable gen because we will use it later when defining
the property to check.

Once we have created the generator, we need to define
the property that the stream must satisfy. As the generator
creates 20 1-hour-windows of incidents with a danger value
greater than 1, the property must express that always in 20
windows (�20) the current window contains only danger lev-
els different from safe (λt(i,o)not_safe(o), where not_safe(o)

is the formula that checks every element in the current output
window o is not Safe). In summary, the LTLss formula we
want to check is �20(λt(i,o)not_safe(o)), which is defined in
line 28 of Fig. 3. For the operator �n f we use the function
Formula.always specifying the number of windows, and com-
plete the property formula with a windowing policy (in this
case a tumbling window of 1 hour). The operator λt(i,o)f is
provided by several variants of Formula.consume, in this case
the variant that accepts an anonymous function that receives
an input window and output window for the present instant,
and asserts the expected behavior. Note how assertions use the
operator should from Specs2 to express in natural language
that the output window must satisfy a property. FlinkCheck’s
foreachElement matcher accepts a Boolean function and uses
Flink’s operators to efficiently check that all the elements in
the specified Flink DataSet satisfy that function (in this case
stating that every element in output must have a danger level
different from Safe). The elements in the output window are
TimedElement objects containing a timestamp and a value,
so we first need to extract the value object that will be a
( Int , DangerLevel) pair and access the second component
with the pattern _. value ._2.

Finally, we combine the generator, the test subject, and the
LTLss property to check using the forAllDataStream func-
tion described in Sect. III to get a ScalaCheck property that
employs a universal quantifier ∀e ∈ gen. prop(fun(e)) to
relate them: for every element e generated by gen, the result
fun(e) must satisfy the property prop. The property can be
found in line 38 of Fig. 3, where gen, harass_max, and property
are the generator, function to test, and property previously
defined. The result is a ScalaCheck Prop object that can be
used with any compatible testing library. For example, we
can include this property in a Specs2 specification [24], as
shown in Fig. 3. The complete code of this specification can
be found in the file Safety_harass_ok at https://git.io/fjiQE.
The trait Specification indicates that this is a Specs2
test class—called specification in Specs2 terminology—and
the trait ScalaCheck adds compatibility with ScalaCheck.
Specs2’s is function is the entry point of the specifica-
tion, and indicates the test functions to run, in this case
just highDangerNotSafe—see line 5. Note the Prop object
returned by the function highDangerNotSafe in lines 18–41 is
modified with minTestsOk = 5 to express that at least 5 gen-
erated test cases must satisfy the property formula for the
property execution to be considered correct. We can launch
this test using Specs2’s integrationwith the build tool sbt [26],
with the command test:testOnly *Safety_harass_ok*.

The output generated by the execution of the test is
shown in Fig. 4. The system also shows additional log-
ging information about the different tested cases and the
generated windows of the input and output streams, which
we have omitted for conciseness. The summary shows
that the property highDangerNotSafe in the specification
Safety_harass_ok has passed after successfully checking
5 generated test cases (5 expectations). Any number of
required test cases can be specified—see Sect IV-C for
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FIGURE 4. Execution of the Safety_harass_ok property.

FIGURE 5. Failing FlinkCheck safety property for HarassMap.

performance results. By default test cases are executed
sequentially, but we can optionally set the workers property
of the Prop to specify the number of test cases to execute in
parallel, in different threads.

The informative messages that FlinkCheck shows when
processing tests are useful to detect what has failed. Sup-
pose we want to check the following safety property about
harass_max: if the stream of incidents contains only danger
values between 0.5 and 10, then no zone can have a Safe dan-
ger level. This property must be falsified with the implemen-
tation of harass_max presented in Fig. 1, as any maximum
danger value between 0.5 and 1 (both included) will generate

a Safe danger level. This test is shown in Fig. 5, and the
complete code can be found in the file Safety_harass_fail
at https://git.io/fjiQg.

FIGURE 6. Execution of the Safety_harass_fail property.

The main difference with the class Safety_harass_ok
in Fig. 3 is the generator gen2 that creates windows with
between 2 and 5 incidents of values in [0.5–10] (we have
decreased the number of incidents per window to 2–5 to
obtain a more concise and clear output). If we execute
this new test as before, FlinkCheck will find with a high
probability a stream that falsifies the property, as we can
see in Fig. 6. Note that FlinckCheck has generated 3 win-
dows satisfying the property (see lines 6, 9, and 12), but
the window #3 starting in line 15 with starting timestamp
10800000 has falsified the property. Concretely, this window
contains 3 incidents with their corresponding timestamps:
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Incident(5,0.5), Incident(7,1.522592), and Incident (0,1.0) ,
see lines 19–21. Considering our Flink program harass_max,
the zones 0 and 5 would generate a danger level of Safe,
as shown in the output of lines 25–27: (0, Safe), (5, Safe),
and (7,Warning). At this point FlinkCheck detects the fail-
ure of the property and finishes the first test (test 0),
showing the complete list of events in the stream (see
the lines 33–37, where many elements have been omit-
ted) and also the complete name of the test class that fails
(es.ucm.fdi.sscheck.flink.collaborative.Safety_harass_fail in
line 44). Note that the test Safety_harass_fail was config-
ured to be tested 5 times (minTestOK = 5) but FlinkCheck
has finished the testing process with the first generated stream
(test 0) because it already falsified the property.

B. WRITING A LIVENESS PROPERTY
In this section, we present a more complex liveness property
that uses an interesting feature of FlinkCheck: employing a
different window size for the generator, the Flink program,
and the LTLss property. This way, programmers and testers
can use whichever windowing policies are best suited to their
needs. Concretely in this example:
• The generator creates 4 windows of 30 minutes,
i.e., 2 hours of incidents.

• The Flink program is the harass_max presented in
Sect. II-A, so it processes the incidents each hour.

• The property consumes the original events and
those generated by harass_max considering windows
of 15 minutes.

Therefore, if at some 15-minute-window we detect an inci-
dent with a danger value greater than 8 then that zone must
appear as Extreme in the output of the current window or
the output of some of the next 3 windows. This situation is
graphically shown in Fig. 7, where original events are rep-
resented as squares, the events produced by harass_max are
represented as circles, and these events are generated at the
last instant of the 1-hour-window considered by harass_max.
The mentioned liveness property is expressed in LTLss as
�5(λt(i,o) highest(i)→ (extreme(o) ∨ ♦3λ

t ′
(i′,o′) extreme(o

′))).
For every evaluation window if it contains zones with a
danger value greater than 8—highest(i)—then that zone must
appear as extreme in the current output—extreme(o)—or
eventually—♦3—the output o′ of some of those future win-
dows must contain that zone as extreme—extreme(o′).
Fig. 8 shows the definition of the generator genL (line 1)

of 4 windows of 30 minutes containing 4 random Incidents .
In this case, we have used the function WindowGen.ofN to
generate windows with exactly 4 incidents. We have also
modified the invocation to incidentGen to generate incidents
with danger values in the complete range [0.0–10.0]. More
complex generators, alternating high and low values, could
be easily defined using generators like WindowGen.until.

For the liveness property propertyL (line 7 in Fig. 8) we
have defined some auxiliary data sets and formulas to clarify
and simplify the code. First, we have defined the data set
of zone identifiers extremeZones (line 8) to represent those

FIGURE 7. Example of different window sizes in the generator
(30 minutes), the Flink program (1 hour) and the LTLss property
(15 minutes).

zones with a danger value greater than 8 in the current
input window. Similarly, nowExtremeZones (line 15) con-
tains those zones with Extreme levels in the current output
window, and the data set futExtremeZones (line 25) con-
tains the Extreme zones in some future output window fut .
These data sets are computed using standard Flink trans-
formations: filter (to select those elements with extreme
values from a DataSet) and map (to extract the danger val-
ue/level from Incident objects or standard tuples). Relying
on extremeZones, we define the formula anyExtremeZones
(line 12) that checks whether there is any zone with dan-
ger value greater than 8 in the current window, i.e., if
extremeZones is not empty. Similarly, we create the formula
nowExtreme (line 19) that checks whether extremeZones are
a subset of nowExtremeZones, i.e., if the zones with a danger
greater than 8 are detected as Extreme in the current output
window. We also define the formula eventuallyExtreme that
checks in the next three 15-minute-windows if extremeZones
is a subset of the zones with Extreme level in those future
windows (data set futExtremeZones). Note that in this case,
we have used the function Formula.eventuallyR with 3 win-
dows to concisely represent the two operators♦3 λ

t
(i′,o′) of the

LTLss formula. Finally, with these simpler properties, we can
define the complete property as Formula.alwaysF containing
anyExtremeZones ==> (nowExtreme or eventuallyExtreme).
Formula.alwaysF receives an anonymous function from a
letter to an LTLss formula, and as before represents two
operators: �5λ

t
(i,o). The function is configured to consider
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FIGURE 8. Generator and property for the liveness test.

5 windows of 15 minutes using the decorations during and
groupBy.

Finally, the liveness FlinkCheck property is defined as in
the safety case by using the forAllDataStream function as
follows:

The complete code can be found in Liveness_harass_ok
at https://git.io/fjPCV. As in the previous case, the liveness
FlinkCheck property can be included in a Specs2 specifi-
cation and automate its verification as Scala tests using the
standard sbt tool—see Liveness_harass_ok for more details.

C. BENCHMARKS
In order to check the practicability and scalability of our test-
ing framework, we havemeasured the time required to test the
safety and liveness properties presented before using different
numbers of windows and events per window—considering
the windowing policy of the LTLss property.
We have used the following methodology for the bench-

marks: for each combination of a number of windows and

TABLE 3. Time (seconds) required for executing 100 tests of the safety
property (Sect. IV-A) varying the number of windows and the number of
incidents per window (window size).

TABLE 4. Time (seconds) required for executing 100 tests of the liveness
property (Sect. IV-B) varying the number of windows and the number of
incidents per window (window size).

window size, we have launched 100 tests (ScalaCheck’s
default value) using the local test execution environments
included in Flink, that runs the program using the Flink
runtime in a single Java Virtual Machine—but using multiple
threads and partitioning the data sets and streams across
them. We have set workers = 5 to have up to 5 tests running
concurrently. The machine used for benchmarks is an 8-core
Intel i7 CPU at 3.60GHz with 16GB of memory running
Ubuntu 18.04 LTS. Regarding the software, we have used
Scala 2.11.8 and JavaOpenJDK64-Bit 1.8.0_222. The results
can be found in Tables 3 and 4 for safety and liveness proper-
ties, respectively. The main conclusion extracted from these
results is that the number of windows has a great impact on
the required time, with linear growth. However, increasing
the number of events per window (window size) increments
very slightly the overall time used for testing the property,
although these increments are bigger as the number of win-
dows increases. Fig. 9 shows graphically the growth of testing
time w.r.t. the number of windows for the two properties.
As the variability caused by the window size is very small
w.r.t. the overall time (< 11%), we have used the median
time considering all windows sizes (50–350) for plotting the
line and represented the minimum and maximum times using
error bars. As can be seen, the growth is almost perfectly
linear, with best line fits of ŷ = 83.2x + 97.7 for the safety
property and ŷ = 104.8x − 26.9 for the liveness property.
Therefore, increasing by one the number of windows would
require approximately 1 minute and 30 seconds of additional
time. As a final remark, all the running times are under
50 minutes, which is a reasonable time for an integration test,
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FIGURE 9. Time required for testing 100 cases of the safety and liveness
properties using a different number of windows. Points represent the
median time for testing the property with different window sizes, and
error bars represent the minimum and maximum time for that number of
windows.

as it is below the default 50 minutes limit for public projects
on the popular continuous integration service Travis CI [23].

V. RELATED WORK
As indicated in the introduction and further developed in [12],
the built-in testing features provided by Flink are limited:
only unit testing of individual operators, integration testing
with a local cluster fake, and some experimental tools for
testing checkpointing and state handling [5]. A strong limi-
tation of these testing techniques is that they require the user
to manually introduce the input and output streams, hence
greatly limiting the number of tested streams and their size.
These limitations are found in other stream-processing sys-
tems; for example, Apache Spark [27] supports unit testing
via the Spark Testing Base library [28]. This library integrates
ScalaCheck for Spark but it is only available for Spark core,
so it cannot be used with Spark Streaming. Regarding Apache
Kafka [29], the documentation [30] indicates that only unit
tests are supported, so they are also limited to those inputs
that can be created and processed manually by the user.

Beyond the built-in libraries, some other frameworks for
particular systems have been proposed. For example, in [31]
the authors present a platform for testing automation sys-
tems. However, this platform is more focused on testing the
underlying network rather than the software properties. In the
same line, we find stream generation for multimedia con-
tent [32], [33], which deals with the quality of service of the
underlying hardware, while the software properties are not
checked. In this way, these approaches are complementary to
ours and each one will be used in different contexts. Finally,
TraceContract [34] is a Scala library that implements a logic
for analyzing sequences of events (traces). That logic is a
hybrid between state machines and temporal logic, that is able
to express both past time and future time temporal logic for-
mulas, and that supports a form of first-order quantification
over events. Although it can be used for online monitoring

of a running system and for evaluating recorded execution
traces, it cannot be used to generate test cases and it is not
integrated with any standard testing library like Specs2.

To the best of our knowledge, only StreamData [35]
for Elixir [36] provides property-based testing for stream-
processing systems. StreamData generators return in general
a potentially infinite stream that is lazily produced; properties
are just Boolean functions that specify, among other values,
the maximum size to be extracted from the generator and the
number of times the test is executed. This approach is simpler
than FlinkCheck because it does not deal with time. On the
one hand it might be easier to use because it just works like
previous PBT approaches; however, on the other hand, it lacks
expressivity for both generators and formulas, hence making
it difficult to check complex properties.

It might be argued that FlinkCheck is an evolution of the
data-flow approaches for the verification of reactive systems
developed in the past decades, exemplified by systems like
Lustre [37] and Lutin [38]. In fact, there are some simi-
larities: (a) both process a potentially infinite input stream
while generating an output stream and (b) both work with
formulas considering both the current state and the previous
ones. However, we also find several differences, as explained
below.

Lustre is a language for verifying safety properties in
reactive systems using random input streams. The random
generation provided by FlinkCheck is more refined because
it is possible to define particular patterns in the stream in
order to verify some behaviors that can be omitted by purely
random generators.Moreover, Lustre specializes in the verifi-
cation of critical systems and hence it has features for dealing
with this kind of systems but lacks other general features as
complex data-structures that FlinkCheck provides, because it
supports all Scala features. Lutin is a specification language
for reactive systems that combines constraints with tempo-
ral operators. Moreover, it is also possible to generate test
cases that depend on the previous values that the system has
generated. First, these constraints provide more expressive
power than the atomic formulas presented here, and thus the
properties stated in Lutin are more expressive than the ones in
FlinkCheck. Although supporting more expressive formulas
would be an interesting subject of future work, in this work
we have focused on providing a framework where the proper-
ties are ‘‘natural’’; once we have examined the success of this
approach we will try to move into more complex properties.
Second, our framework completely separates the input from
the output, and hence it is not possible to share information
between these streams. Although sharing this information is
indeed very important for control systems, we consider that
stream processing systems usually deal with external data
and hence this relation is not so relevant for the present tool.
Finally, note that an advantage of FlinkCheck consists of
using the same language for both programming and defining
the properties, so an extra specification is not required.

We can also consider runtime monitoring of synchronous
systems like Lola [39], a specification language that allows
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the user to define properties in both past and future LTL.
Lola guarantees bounded memory for monitoring and allows
the user to collect statistics at runtime. On the other hand,
as indicated above, FlinkCheck allows to implement both the
programs and the test in the same language and provides PBT,
which simplifies the testing phase, although actual programs
cannot be traced.

Regarding previous work, in [7] we presented sscheck, a
PBT tool for Spark Streaming [21]. Spark Streaming is based
on the notion of Discretized Streams, that are the result of
splitting a continuous stream into time-based windows of the
same size, called batches, which fits easily with LTLss logic,
which uses discrete time. However, we need a bigger effort
to adequate the discrete nature of LTLss to the continuous
nature of Flink while preserving its essential features and sup-
porting the richness of its windows, as discussed in Sect III.
Currently, we support time-based windows, both tumbling
and sliding [1] for test case evaluation, and just tumbling
for generators. For this reason and other particular features
of Flink, FlinkCheck implementation is completely novel,
although we do not need to modify the underlying theory.

Finally, because of the random nature of property-based
testing, this kind of tools generate in some cases useless
inputs, in the sense that (i) they do not fulfill some semantics
restrictions and hence they do not really falsify the given
properties or (ii) most of the examples are part of the same
‘‘equivalence class’’, while those inputs that are more likely
to falsify the property are barely generated. In the first case,
there are different techniques [40]–[42] that take into account
semantic restrictions to generate better test cases. In the
second case, for some programs it is possible to direct the
generation towards those values that have a higher probability
of falsifying the property [43]. We discuss in the next section
how these improvements could be applied to our work.

VI. CONCLUDING REMARKS AND ONGOING WORK
The main contribution of this paper is FlinkCheck,
a property-based testing tool for Apache Flink. We have pre-
sented the underlying logic and its instantiation for Apache
Flink, the commands implementing this logic, and one
example illustrating how to use the tool; more tests based
in Apache Flink examples are available in our repository.
Finally, some benchmarks analyzing how the tool behaves
have been presented. FlinkCheck complements unit testing
by providing a framework where key functionality can be
tested via properties in bounded temporal logic. This kind
of testing can be easily integrated into the quality assur-
ance stage of the software development life cycle, working
together with unit and integration testing to provide higher
confidence on critical functions. This confidence is essential
for modern real-time systems, which take critical decisions
that affect human lives.

From the implementation point of view, the current version
of FlinkCheck generates the complete input before testing
it, so it only supports test cases that fit in the memory of
the host that is running the test. Also, FlinkCheck can only

run on local mode so some changes would be required for
running it on a cluster. As future work, we plan to adapt
FlinkCheck to run on a cluster, and also to redesign our
generation process so it runs lazily and distributed across
the operator subtasks that Flink uses to partition operations,
similarly to what Spark Testing Base [28] does for Spark
core. That way we could explore running FlinkCheck on a
distributed cluster, generating massive data streams, and use
FlinkCheck not only for testing the functional correctness
of Flink streaming programs, like we do now, but also for
performance testing. For example, FlinkCheck could be used
to generate synthetic traffic to stress test a deployment of a
Flink program, and experimentally estimate how many hosts
are required to handle the expected traffic. These performance
tests could also be used to ensure Flink streaming programs
are fast enough to handle the expected traffic in production,
which is an important concern for stream processing applica-
tions [22], and should be checked each time the program is
modified. Finally, this kind of performance tests could also
be used to perform experimental cost analysis [44].

We can also consider combining our input generator with
passive testing frameworks [45]–[47], hence providing traces
that would be later analyzed.

Another possible interesting extension would be generat-
ing streams by replaying real streams previously stored; in
this way we would perform ‘‘delayed’’ runtime verification,
making sure that our systemworks as expected for real inputs.
This approach can be further improved to provide feedback
in real time, which could be complemented with unbounded
timeouts for some temporal operators, hence providing a
runtime verification tool for potentially infinite streams.

It would be interesting to optimize our random generation
procedure, using for example coverage-guided techniques,
like the one recently applied in JQF [40], and parametric
generators, as described in [41], [42]. Because our test gen-
eration procedure takes more time than simpler approaches,
improving this stage might be very beneficial for the tool.
Coverage-guided techniques (see [48] for details) requires
a previous step of code instrumentation for collecting code
coverage; then, given an initial set of inputs, they are ran-
domly mutated [49]; those mutants that increase the coverage
are saved for later mutation. Code coverage can be improved
by checking the validity of the arguments [41], [42], hence
biasing the generation towards semantically valid arguments.
In our case, it would be interesting to use coverages designed
for functional programs, like the proposed in [50], while
validity fuzzing can take advantage of Scala preconditions
(assert, assume, require, and ensuring). Regarding parametric
generators, they are a modification of standard random gen-
erators that are turned deterministic by fixing an underlying
stream of bits. Mutations in this stream lead to structural
mutations of semantically valid inputs, obtaining in this way
a better coverage. In our case, we would need to transform
ScalaCheck generators, which are the underlying generators
of FlinkCheck, in order to obtain this kind of deterministic
generators.
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Another interesting optimization technique is targeted
property-based testing [43], which uses utility functions
to search for those values that are most likely to falsify
the property. The weak point of this technique is that it is only
applicable when such utility functions are available. In order
to implement this mechanism in FlinkCheck we need to study
first the kind of programs that would benefit from it. Once
new examples and real systems are tested with FlinkCheck
we will decide the most appropriate direction to optimize
generators.

Currently, FlinkCheck does not support counterexample
minimization via shrinking [9], which is a typical feature in
PBT, but we consider adding this feature in the future, espe-
cially after the promising performance results, that suggest
the minimization process would not be too slow to use it
in practice. So far FlinkCheck can only be used for testing
stream transformations, but we also contemplate adding sup-
port for testing checkpointing and state handling in Flink.
We could also support other windowing policies for gen-
erators and property formulas, like session-based windows.
Finally, our property formulas support the consume LTLss
operation, but FlinkCheck does not include a generator com-
binator for consume; implementing a consume generator
could be interesting to generate streams where letters can
depend on the value of some previous letters, in the style of
Lutin [38].
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