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ABSTRACT Wu et al. proposed a generalized Tu-Deng conjecture over F2rm×F2m , and constructed Boolean
functions with good properties. However the proof of the generalized conjecture is still open. Based onWu’s
work and assuming that the conjecture is true, we come up with a new class of balanced Boolean functions
which has optimal algebraic degree, high nonlinearity and optimal algebraic immunity. The Boolean function
also behaves well against fast algebraic attacks. Meanwhile we construct another class of Boolean functions
by concatenation, which is 1-resilient and also has other good cryptographic properties.

INDEX TERMS Algebraic immunity, 1-resilient, nonlinearity, fast algebraic attacks, Tu-Deng conjecture,
Boolean function.

I. INTRODUCTION
It is difficult to construct Boolean function satisfying all main
criteria, including balancedness, optimal algebraic immunity
(AI), high algebraic degree (deg), high nonlinearity, etc. At
present, fast algebraic immunity (FAI) is usually computed
by computer to evaluate the ability of Boolean functions to
resist fast algebraic attack, but somework is to obtain accurate
fast algebraic immunity or its lower bound by mathematical
proof [1]–[4].

Researchers can construct Boolean functions with good
properties or special properties, such as rotationally sym-
metric Boolean functions [5]–[9]. Liu summarized the recent
work on Boolean functions constructed by decomposition
methods based on additive or multiplicative groups over
finite fields, which can effectively resist fast algebraic attacks
in [10]. In 2009, Tu and Deng [11] presented a combinatorial
conjecture (Tu-Deng conjecture) and constructed a class of
balanced even-variable Boolean functions with optimal AI,
optimal deg and very high nonlinearity. Subsequently, much
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work was done to prove the Tu-Deng conjecture [12]. How-
ever, this class of Boolean functions does not perform well
against fast algebraic attack (FAA). The idea of Tu and
Deng’s construction enlightens many people. Tang et al. con-
structed a class of Boolean functions which satisfies all main
criteria [13], and this class of functions is based on a new
combinatorial conjecture, whichwas proved to be true in [14].
Based on a general conjecture similar to Tu-Deng conjec-
ture mentioned in [15], Jin et al. proposed a construction
of Boolean functions with optimal AI. Note that the addi-
tive group of a finite field used in constructing functions is
F2k ×F2k . Therefore, in order to generalize the constructions
in [11], [13], [15], a natural idea is to decompose finite field
additive groups into different size additive groups. Wu et al.
realized this idea in paper [16]. In the above constructions,
parameters s defined as the power of the primitive elements
in the support are added, and Boolean functions with the
same good properties are added, but some functions are affine
equivalent when s takes different values [17].

By decomposing the additive group of the finite field
F2(r+1)m into a direct sum of F2rm and F2m where r ≥ 1
is an odd integer and m ≥ 3 is another integer, Wu et al.
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constructed two classes of (r + 1)m-variable unbalanced
Boolean functions in similar techniques as those in [11], [13],
[15]. If the combination conjecture holds, these constructed
functions can achieve optimal AI. In this paper, we present a
class of balanced Boolean functions over F2rm × F2m which
are proved to obtain optimal AI, optimal deg, high nonlin-
earity and good behavior against fast algebraci attack (FAA).
Furthermore, we construct another class of Boolean functions
with good cryptographic properties by concatenating with
Wu’s function proposed in [16].

The rest of the paper is organized as follows. In Section II,
we recall some preliminaries required for the subsequent
sections. In Section III, we propose a construction of balanced
Boolean functions with optimal AI. In Section IV, a class
of 1-resilient Boolean functions is presented. Section V
concludes this paper.

II. PRELIMINARIES
An n-variable Boolean function is a mapping from Fn2 to F2.
Let Bn be the set of all n-variable Boolean functions. The
support of Boolean function f ∈ Bn is defined as supp(f ) =
{x ∈ Fn2|f (x) = 1} and Hamming weight denoted by wt(f ) is
defined by the cardinality of the support. We say f is balanced
if wt(f ) = 2n−1. Let wtp(i) the number of 1’s in the binary
expansion of i mod (2p−1) where p represents the length of
the binary extension and can take different values.

The Boolean function f over F2n can also be uniquely
expressed by a univariate polynomial

f (x) =
2n−1∑
i=0

αix i

where α0, α2n−1 = 0 ∈ F2,αi ∈ F2n for 1 ≤ i < 2n − 1
such that α2i = α2i (mod 2n−1). The algebraic degree deg(f )
equals max{wt(i)|αi 6= 0, 0 ≤ i < 2n)}, where i is the binary
expansion of i. The algebraic degree of Affine functions is at
most 1. The nonlinearity of f , expressed byNf , is the minium
distance between f and all affine functions.
In fact, we can express Boolean functions more flexibly.

We can decompose the additive group of F2n into F2n1 ×F2n2

where n = n1 + n2 for two integers n1, n2 ≥ 1, so every
n-variable Boolean function is a mapping from F2n1 × F2n2

to F2. Thus f can be expressed as

f (x, y) =
2n1−1∑
i=0

2n2−1∑
j=0

fi,jx iyj, fi,j ∈ F2[n1,n2] .

It can be easily deduced that

deg(f ) = max
{
wtn1 (i)+ wtn2 (j)

∣∣∣ fi,j 6= 0
}

where 0 ≤ i ≤ 2n1−1, 0 ≤ j ≤ 2n2−1.
Let x · a be any inner product in Fn2, then the Walsh

transform of f ∈ Bn is defined as

Wf (a) =
∑
x∈Fn2

(−1)f (x)+a·x .

The nonlinearity of f can be expressed as

Nf = 2n−1 −
1
2
max
a∈Fn2
|Wf (a)|.

Over F2n , the Walsh transform can be defined as

Wf (a) =
∑
x∈F2n

(−1)f (x)+tr
n
1(ax)

where trn1(x) =
∑n−1

i=0 x
2i is a mapping from F2n to F2.

Furthermore, when n = n1 + n2 and f is a mapping from
F2n1 × F2n2 to F2, then for (a, b)∈F2n1 × F2n2 ,

Wf (a, b) =
∑

(x,y)∈F2n1×F2n2

(−1)f (x)+tr
n1
1 (ax)+tr

n2
1 (by).

Definition 1 [18]: The algebraic immunity of a Boolean
function f ∈ Bn, expressed by AI(f ), is defined as

AI(f ) = min
{
deg(g) | fg = 0 or (f+1)g = 0, g 6= 0

}
.

The Boolean functions with AI(f ) = dn/2e are called
optimal AI functions. To improve standard algebraic attacks,
Courtois proposed the fast algebraic attacks(FAA) [19]. Liu
proposed the concept of fast algebraic immunity to assess the
ability to resist FAA.
Definition 2 [20]: The fast algebraic immunity of a

Boolean function f ∈ Bn, expressed by FAI(f ), is defined as

FAI(f )=min
{
2AI(f ),

min
{
deg(g)+ deg(fg)|1≤ deg(g)<AI(f )

}}
.

III. BOOLEAN FUNCTION WITH VERY GOOD
CRYPTOGRAPHIC PROPERTIES
Conjecture 1: [16] For any 0 ≤ t ≤ 2m−2, define

St =

(a, b)
∣∣∣∣∣∣∣∣
0≤a≤2rm−2, 0≤b≤2m−1,

ua+ b ≡ t (mod 2m−1),

wtrm(a)+wtm(b) ≤
n
2
−1,

 ,
where u is an integer with 1≤u≤2k−1 and gcd(u, 2m−1)=1.
Then |St | ≤ 2rm−1.
Let α be a primitive element of F2rm and β = α(2

rm
−1)/(2m−1)

as a primitive element ofF2m . For any integer 0 ≤ s ≤ 2rm−2,
define

1s =

{
αi
∣∣∣ s ≤ i ≤ s+2rm−1−1}.

Construction 1: Let 0 ≤ s, l ≤ 2rm−2 be integers. G is an
n-variable Boolean function defined in F2rm × F2m → F2 by
setting

supp(G) =
{
(γ yu, y)

∣∣∣ y ∈ F∗2m , γ ∈ 1s\{α
s
}

}
⋃{

(0, y)
∣∣∣ y ∈ F∗2m

}
⋃{

(x, 0)
∣∣∣ x ∈ F2rm\1l

}
.
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The bivariate representation of G over F2rm × F2m can be
expressed as

G(x, y) =


g(
x
yu
), if x · y 6= 0

1, if x = 0, y ∈ F∗2m
1, if x ∈ F2rm\1l, y = 0
0, otherwise

where g is an (rm)-variable Boolean function and supp(g) =
1s \ {α

s
}, 0 ≤ s ≤ 2rm−2. For convenience, we denote

trrm1 and trm1 by ‘‘Tr’’ and ‘‘tr’’ respectively, and denote
Q = 2rm, q = 2m.

A. BALANCE
Theorem 1: The Boolean function G, defined in Construc-

tion 1, is balanced.
Proof: According to the definition of G, we can easily

get

wt(G) = (2rm−1 − 1)(2m − 1)+ 2m − 1+ 2rm−1

= 2(r+1)m−1

= 2n−1.

Thus the function G is balanced.

B. ALGEBRAIC IMMUNITY
Theorem 2: The Boolean function G, defined in Construc-

tion 1, has optimal AI when Conjecture 1 is true.
Proof: We need to prove that both G and G + 1 don’t

have any nonzero annihilator whose degree is less than n/2
when Conjecture 1 is true.

Assume that h is an n-variable Boolean function with
deg(G) < n/2. Then h could be written over F2rm × F2m as

h(x, y) =
2rm−1∑
i=0

2m−1∑
j=0

hi,jx iyj,

where h0,0, h0,2m−1, h2rm−1,0, h2rm−1,2m−1 ∈ F2, the other
hi,j ∈ F2n . It is obvious that h0,0 = 0.
Because of deg(G) < n/2 ≤ rm, it deduces that hi,j = 0

for any wtrm(i) + wtm(j) ≥ n/2, which implies h2rm−a,j = 0
for any 0 ≤ j ≤ 2m−1. Therefore,

h(γ yu, y) =
2rm−2∑
i=0

2m−2∑
j=0

hi,jx iyj +
2rm−2∑
i=0

hi,2m−1x iy2
m
−1.

Since h(x, y) = 0 for any (x, y)∈supp(G), we know that, for
any y ∈ F∗2m , γ ∈ 1s\{α

s
}, thus

h(γ yu, y) =
2rm−2∑
i=0

2m−2∑
j=0

hi,jγ iyui+j +
2rm−2∑
i=0

hi,2rm−1γ iyui

=

2m−2∑
k=0

yk
( 2rm−2∑

i=0

hi,k−ui(mod 2m−1)γ
i

+

2rm−1
2m−1 −1∑
j=0

hũk+j,2m−1γ
ũk+j(2m−1)

)

=

2m−2∑
k=0

hk (γ )yk

= 0

where ũ is an integer and uũ ≡ 1 (mod 2m−1), ũk is also
need to modulo (2m−1). And

hk (γ ) =
2rm−2∑
i=0

hi,k−ui(mod 2m−1)γ
i

+

2rm−1
2m−1 −1∑
j=0

hũk+j,2m−1γ
ũk+j(2m−1).

hk (γ ) is a polynomial to γ and have the elements in 1s \

{αs} as zeros. So the vector of coefficients can be expressed
as

hk =
(
h0,k , h1,k−u, · · · , hũk,0,

· · · , h2m−2,k+u, · · · , h2m−1+ũk,0, · · · , h2rm−2,k+u
)

+
(
0, · · · , 0, hũk,2m−1, 0, · · · , 0,

h2m−1+ũk,2m−1, 0, · · · , 0, h2rm−2m+ũk,2m−1, 0, · · · , 0
)

= h(1)k + h
(2)
k .

By now, the vector hk is a codeword of the BCH code whose
designed distance δ = 2rm−1. If it is nonzero, because of the
BCH bound, then wt(hk ) ≥ 2rm−1.
On the other hand, Since {(0, y) | y ∈ F2m} ⊆ supp(G),

then we have h(0, y) =
∑2m−1

i=0 h0,iyi = 0. Its vector of
coefficients is h′ = (h0,0, h0,1, · · · , h0,2m−1) = 0 as well
as wtm(k) ≤ m− 1 ≤ n/2− 1 for any 0 ≤ k ≤ 2m − 1.
With this, if Conjecture 1 is true, we have wt(hk ) ≤ 2rm − 1,
a contradiction happens that hk = 0. Thus for any 0 ≤ i ≤
srm − 1, there are hi,0 = hi,2m−1 if i ≡ ũk (mod 2m−1),
otherwise hi,k−ui = 0.

And we have equation

2m−1⋃
k=0

{
0 ≤ i ≤ 2rm−1

∣∣∣ i ≡ ũk (mod 2m−1)
}

=

{
i
∣∣∣ 0 ≤ i ≤ 2rm−1

}
.

Therefore, h(x, y) can be written as

h(x, y) =
2m−2∑
i=0

(
h0,ix i + hi,2m−1x iy2

m
−1
)

=

(
1+ y2

m
−1
) 2m−2∑

i=0

hi,0x i.

Because deg(h) < n/2, wtrm(i) + wtm(2m−1) < n/2,
which means wtrm(i) < n/2 − m. Consider the case of
x ∈ F2rm\1l, y = 0. We get h(x, 0) =

∑2m−2
i=0 h0,ix i = 0,

whose vector of coefficients is h′′ = (h0,0, · · · , h2rm−2,0).
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So if h′′ 6= 0, with BCH bound we have wt(h′′) ≥ 2rm−1.
Because wtrm(i) < n/2− m, we also have

wt(h′′) ≤
n/2−m−1∑
k=0

(
rm
k

)
<

b(rm−1)/2c∑
k=0

(
rm
k

)
< 2rm−1.

A contradiction happens, so h′′ = 0.
With all above, h(x, y) = 0, which means there is no

nonzero annihilators whose degree less than n/2 for G. As
to G+1, we can deduce the same result with similar proof.

C. NONLINEARITY
Lemma 1 [16]: Let T be an integer. Then,

2T
(
lnT
π
+0.163

)
<

T−1∑
i=1

1

sin iπ
2T

< 2T
(
lnT
π
+0.263

)
+
3π
8T
.

Lemma 2: Let 0 ≤ s ≤ Q− 2 be an integer and

3s =
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(γ y).

If r = 1, then |3s| = 2m−1 − 1.
If r > 1, then

|3s| ≤

(
(n−2m) ln 2

π
+0.263

)
2(n−m)/2 + 2m−1 +

1
2
.

Proof: Let ξ ∈ C be a (Q−1)-th root of unity and
ζ = ξN where N = (Q−1)/(q−1). χ1 express the primitive
multiplication character of F∗Q and define the Gauss sums
over FQ as

G1(χ
µ
1 ) =

∑
x∈F∗Q

χ
µ
1 (x)(−1)

Tr(x).

For µ = 0, as we know, G1(χ0
1 ) = −1 and |G1(χ0

1 )| = Q1/2.
For any 1 ≤ µ ≤ Q− 2. Through Fourier inversion for any
0 ≤ i ≤ Q− 2, we have

(−1)Tr(α
i)
=

1
Q− 1

Q−2∑
µ=0

G1(χ
µ
1 )ξ
−iµ.

Hence we have

3s =

s+Q/2−1∑
i=s+1

q−2∑
j=0

(−1)Tr(α
i+Nj)

=
1

Q− 1

s+Q/2−1∑
i=s+1

q−2∑
j=0

Q−2∑
µ=0

G1(χ
µ
1 )ξ
−µ(i+Nj)

=
1

Q− 1

Q−2∑
µ=0

G1(χ
µ
1 )

s+Q/2−1∑
i=s+1

ξ−iµ
q−2∑
j=0

ζ−jµ

Note that

s+Q/2−1∑
i=s+1

ξ−iµ =


Q
2
− 1, if µ = 0,

ξ−sµ
1− ξ−µ

Q
2

1− ξ−µ
− ξ−sµ, otherwise.

q−2∑
j=0

ζ−jµ =

{
q− 1, if µ ≡ 0 (mod q−1),
0, otherwise.

Then we have,

3s = −
(Q− 2)(q− 1)

2(Q− 1)

+
q−1
Q−1

Q−2∑
µ=0

(q−1)|µ

G1(χ
µ
1 )

(
ξ−sµ

1−ξ−µ
Q
2

1−ξ−µ
−ξ−sµ

)
.

If r = 1, it means Q = q, then

|3s| =

∣∣∣∣−Q− 2
2

∣∣∣∣ = 2m−1 − 1.

If r > 1, then

|3s| =
(Q−2)(q−1)
2(Q−1)

+
(q−1)Q

1
2

Q−1

Q−2∑
µ=0

(q−1)|µ

∣∣∣∣∣1−ξ−µ
Q
2

1−ξ−µ
−1

∣∣∣∣∣
=

(Q−2)(q−1)
2(Q−1)

+
(q−1)Q

1
2

Q−1

Q−2∑
µ=0

(q−1)|µ

∣∣∣∣∣ 1

1+ ξ−
µ
2
−1

∣∣∣∣∣
=

(Q−2)(q−1)
2(Q−1)

+
(q−1)Q

1
2

Q−1

Q−2∑
µ=0

(q−1)|µ

∣∣∣∣∣ 1

ξ
µ
4 + ξ−

µ
4

∣∣∣∣∣
≤

q−1
2
+

(q−1)Q
1
2

2(Q−1)

N−1∑
k=1

1

sin kπ
2N

.

With Lemma 1, we have

|3s| ≤
q−1
2
+

(q−1)Q
1
2

2(Q−1)

(
2N

(
lnN
π
+0.263

)
+
3π
8N

)
<

q−1
2
+ Q

1
2

(
lnN
π
+0.263

)
+

3π (q−1)2Q
1
2

8(Q−1)2

<

(
(n−2m) ln 2

π
+0.263

)
2(n−m)/2 + 2m−1 +

1
2
.

Lemma 3: Let 0 ≤ s ≤ Q−2 be an integer and

0s =
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(γ y)+tr(y
u),

then

|0s| ≤

(
(n−m) ln 2

π
+0.263

)
2n/2

−

(
(n−2m) ln 2

π
+0.163

)
2n/2−m +

3
2
.

Proof: The definition of notations in this lemma is the
same as that in Lemma 2. Let χ2 be the primitive multiplica-
tion character of F∗q and define the Gauss sums over Fq for
any 0 ≤ ν ≤ q− 2 as

G2(χν2 ) =
∑
x∈F∗q

χν2 (x)(−1)
tr(x).
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We also have G2(χ0
2 ) = −1 and |G2(χ2)| = q1/2 for any 1 ≤

ν ≤ q− 2. Through Fourier inversion for any 0 ≤ i ≤ q− 2
we have

(−1)tr(α
i)
=

1
q− 1

q−2∑
ν=0

G2(χν2 )ζ
−iν .

Hence, we have

0s =

s+Q/2−1∑
i=s+1

q−2∑
j=0

(−1)Tr(α
iβ j)+tr(β ju)

=
1

(Q− 1)(q− 1)

Q−2∑
µ=0

q−2∑
ν=0

G1(χ
µ
1 )G2(χν2 )

×

s+Q/2−1∑
i=s+1

ξ−iµ
q−2∑
j=0

ζ−j(µ+uν).

Note that
q−2∑
j=0

ζ−j(µ+uν) =

{
q−1, if µ+ uν ≡ 0 (mod q−1);
0, otherwise.

Since µ+ uν ≡ 0 (mod q−1) if and only if ν = 0 and µ =
k(q − 1) (0 ≤ k ≤ N−1), or ν ≡ q− 1− ũµ (mod q−1)
and (q−1) - µ, where ũu ≡ 1 (mod q−1). Thus we have

0s =
1

(Q− 1)(q− 1)

·

(
(Q− 2)(q− 1)

2
+ (q−1)

Q−2∑
µ=1

(q−1)-µ

G1(χ
µ
1 )

×G2(χ
q−1−ũµ
2 )

(
ξ−sµ

1−ξ−µ
Q
2

1−ξ−µ
−ξ−sµ

)
+ (q−1)

×

Q−2∑
µ=1

(q−1)|µ

G1(χ
µ
1 )(−1)

(
ξ−sµ

1− ξ−µ
Q
2

1− ξ−µ
− ξ−sµ

))
.

Therefore,

|0s| ≤
Q−2

2(Q−1)
+
Q

1
2 q

1
2

Q−1

Q−2∑
µ=1

(q−1)-µ

∣∣∣∣∣1−ξ−µ
Q
2

1−ξ−µ
−1

∣∣∣∣∣
+

Q
1
2

Q−1

Q−2∑
µ=1

(q−1)|µ

∣∣∣∣∣1−ξ−µ
Q
2

1−ξ−µ
−1

∣∣∣∣∣
<

1
2
+
Q

1
2 q

1
2

Q−1

Q−2∑
µ=1

∣∣∣∣∣ 1

ξ
µ
4 + ξ−

µ
4

∣∣∣∣∣
−
Q

1
2 q

1
2−Q

1
2

Q−1

Q−2∑
µ=1

(q−1)|µ

∣∣∣∣∣ 1

ξ
µ
4 + ξ−

µ
4

∣∣∣∣∣ .
Hence,

|0s| ≤
1
2
+

Q
1
2 q

1
2

2(Q−1)

Q−2∑
µ=1

1
sin µπ

2(Q−1)
−
Q

1
2 q

1
2−Q

1
2

2(Q−1)

N−1∑
k=1

1

sin kπ
2N

.

By Lemma 1 we have, if r = 1, i.e., Q = q,N = 1, then

|0s| ≤
1
2
+

q
2(q−1)

(
2(q−1)

( ln(q−1)
π
+0.263

)
+

3π
8(q−1)

)
<

3
2
+

(
m ln 2
π
+ 0.263

)
2m.

If r > 1, then

|0s|

≤
1
2
+

Q
1
2 q

1
2

2(Q−1)

(
2(Q−1)

( ln(Q−1)
π
+0.263

)
+

3π
8(Q−1)

)
−
Q

1
2 q

1
2−Q

1
2

2Q−1)
2N

(
lnN
π
+0.163

)
<

1
2
+ Q

1
2 q

1
2

(
lnQ
π
+0.263

)
−

Q
1
2

q
1
2+1

(
lnN
π
+0.163

)
≤

3
2
+

(
(n−m) ln 2

π
+0.263

)
2
n
2

−

(
(n−2m) ln 2

π
+0.163

)
2
n
2−m.

Lemma 4 [21]: Let h be the Carlet-Feng function in k
variables, then for any a ∈ F∗2k , there’s

|Wh(a)| ≤
(
k ln 2
π
+ 0.485

)
2
k
2+1.

Theorem 3: Let G be the Boolean function defined in Con-
struction 1. Then

NG ≥ 2n−1 −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m −

1
2
.

Proof: We computeWG(a, b) for any (a, b) ∈ FQ × Fq.
If (a, b) = (0, 0), thenWG(0, 0) = 0 sinceWG is balanced. If
(a, b) 6= (0, 0), we have

WG(a, b) = −2
∑

(x,y)∈supp(G)

(−1)Tr(ax)+tr(by)

= −2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)+tr(by)

− 2
∑
y∈F∗q

(−1)tr(by) − 2
∑

x∈FQ\1l

(−1)Tr(ax).

i). If a = 0, b 6= 0, then

WG(0, b) = −2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)tr(by)

− 2
∑
y∈F∗q

(−1)tr(by) − 2
∑

x∈FQ\1l

1

= −2·(−1)·(2rm−1−1)− 2·(−1)− 2·2rm−1

= 2rm − 2+ 2− 2rm

= 0.
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ii). If a 6= 0, b = 0, then

WG(a, 0) = −2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)

− 2
∑
y∈F∗q

1− 2
∑

x∈FQ\1l

(−1)Tr(ax)

= −2 ·3s − 2 · (2m−1)+Wh(a).

iii). If ab 6= 0, then

WG(a, b) = −2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)+tr(by)

− 2
∑
y∈F∗q

(−1)tr(by) − 2
∑

x∈FQ\1l

(−1)Tr(ax)

= −2 · 0s + 2+Wh(a).

So with Lemma 3 and Lemma 4, we have

max
(a,b)∈FQ×Fq

|WG(a, b)|

= max

{
max
a∈FQ
|WG(a, 0)|, max

(a,b)∈F∗Q×F∗q
|WG(a, b)|

}

≤

(
(n− m) ln 2

π
+ 0.263

)
2
n
2+1

+

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2 +1

−

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m+1 + 1.

Therefore,

NG = 2n−1 −
1
2

max
(a,b)∈FQ×Fq

|WG(a, b)|

≥ 2n−1 −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m −

1
2
.

D. ALGEBRAIC DEGREE
Theorem 4: Let G be the Boolean function defined in Con-

struction 1, then deg(G) = n− 1.
Proof: Let f , h : F2rm × F2m → F2 be both n-variable

Boolean functions with the following support.
supp(f ) =

{
(γ yu, y)

∣∣∣ y ∈ F∗2m , γ ∈ 1s

}
,

supp(h) =
{
(0, 0)

}⋃{
(αsyu, y)

∣∣∣ y ∈ F∗2m
}⋃{

(0, y)
∣∣∣ y ∈ F∗2m

}⋃{
(x, 0)

∣∣∣ x ∈ F∗2rm\1l

}
.

It is obvious thatG = f +h. And f is the function constructed
by Jin et al. [15], of which deg(f ) ≤ n− 2. So we just need

to consider deg(h). From Lagrange’s interpolation formula,
we get

h(x, y)

= (x2
rm
−1
+ 1)(y2

m
−1
+ 1)

+

∑
(αsbu,b)
b∈F∗2m

(
(x + αsbu)2

rm
−1
+ 1

) (
(y+ b)2

m
−1
+ 1

)

+

∑
(0,b)
b∈F∗2m

(x2
rm
−1
+ 1)

(
(y+ b)2

m
−1
+ 1

)

+

∑
(a,0)

a∈F∗2rm \1l

(
(x + a)2

rm
−1
+ 1

)
(y2

m
−1
+ 1)

= x2
rm
−1y2

m
−1
+

∑
b∈F∗2m

x2
rm
−1(y+ b)2

m
−1

+

∑
b∈F∗2m

(
(x+αsbu)2

rm
−1
+ (y+b)2

m
−1(x+αsbu)2

rm
−1
)

+

∑
a∈F∗2rm\1l

(
(x + a)2

rm
−1
+ y2

m
−1(x + a)2

rm
−1
)
.

Expanding these terms, we have

h(x, y)

= x2
rm
−1y2

m
−1

+

∑
b∈F∗2m

(x + αsbu)2
rm
−1
+

∑
a∈F∗2rm\1l

(x + a)2
rm
−1

+

∑
b∈F∗2m

2m−1∑
i=0

2rm−1∑
j=0

(
2rm−1
j

)(
2m−1
i

)
αsjbuj+i

× x2
rm
−1−jy2

m
−1−i

+

∑
b∈F∗2m

x2
rm
−1

2m−1∑
i=0

(
2m−1
i

)
biy2

m
−1−i

+

∑
a∈F∗2rm\1l

y2
m
−1

2rm−1∑
j=0

(
2rm−1
j

)
ajx2

rm
−1−j.

Finally, we get

h(x, y) =
∑
b∈F∗2m

(x + αsbu)2
rm
−1
+

∑
a∈F∗2rm\1l

(x + a)2
rm
−1

+

∑
b∈F∗2m

2m−1∑
i=1

2rm−1∑
j=1

(
2rm−1
j

)(
2m−1
i

)
αsjbuj+i

× x2
rm
−1−jy2

m
−1−i

+

∑
b∈F∗2m

y2
m
−1

2rm−1∑
j=1

(
2rm−1
j

)
αsjbujx2

rm
−1−j

+

∑
a∈F∗2rm\1l

y2
m
−1

2rm−1∑
j=1

(
2rm−1
j

)
αjx2

rm
−1−j.
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By now, we can see when j = 1, the coefficent of
y2

m
−1x2

rm
−1−j is∑

b∈F∗2m

(
2rm−1

1

)
αsbu +

∑
a∈F∗2rm\1l

(
2rm−1

1

)
a,

which is nonzero obviously. So deg(h) = n−1, which means
deg(G) = n− 1.

E. IMMUNITY AGAINST FAST ALGEBRAIC IMMUNITY
G is the Boolean function defined in Construction 1. We fix
s = l = 0, select some values of the parameters r,m, u, and
use computer to get the value of the pair (e, d) with e < n/2
and e + d < n in order to judge where there is a function h
satisfying deg(h) < e and deg(hG) ≤ d exists. The result is
i). Let n = 12, r = 3, m = 3, there do not exist such

pair with e + d ≤ n− 2 for any possible u, meaning
FAI(G) = n− 1.

ii). Let n = 16, r = 3, m = 4, there do not such pair
with e + d ≤ n− 2 for u = 7, 11, 13, 14, meaning
FAI(G) = n− 1. When u = 1, 2, 4, 8, there do not exist
such pair with e+d ≤ n− 3, meaning FAI(G) = n−2.

So that we can say the function G in Construction 1 has good
resistance to FAA.

IV. CONSTRUCTING BOOLEAN FUNCTIONS BY
CONCATENATION
A. CONSTRUCTION
Before, Wu et al. constructed a class of balanced Boolean
functions as follows.
Construction 2 [16]: Define a class of Boolean Functions

Fu : F2rm × F2m → F2,

F(x, y) =

f (
x
yu
), x · y 6= 0

w(x), y = 0

where f ,w are both rm-variable Boolean functions with
supp(f ) = 1s, supp(w) = 1l , 0 ≤ s, l ≤ 2rm − 2.
What we do next is to construct a new class Boolean func-

tions by concatenating Boolean functionsG and F , which are
defined in Construction 1 and Construction 2, respectively.
Construction 3: Let u, v satisfy gcd(uv, 2m−1) = 1,

Fu,Gv be the Boolean functions mentioned above and
Fu,Gv as n-variable function overF[x1, x2, . . . , xn]. Then the
Boolean function by concatenating Fu and Gv is

Hu,v(x1, x2, . . . , xn+1) = (1+xn+1)Fu + xn+1Gv.

B. PROPERTIES
Theorem 5: Let Hu,v be the (n+1)-variable Boolean func-

tions in Construction 3. Then Hu,v is balanced.
Proof: Obviously, Hu,v = Fu if xn+1 = 0, otherwise

Hu,v = Gv. Therefore, we have

|wt(Hu,v)| = |wt(Fu)| + |wt(Gv)| = 2n−1 + 2n−1 = 2n.

So, Hu,v is balanced.

Theorem 6: Let Hu,v be the (n+1)-variable Boolean func-
tions in Construction 3. Then we have

deg(Hu,v) ≥ deg(Fu) ≥ n− 1.
Lemma 5 [22]: Given that f , g are n-variable Boolean

functions, which AI(f ) = d1, AI(g) = d2. Let h be the
Boolean function by concatenation of f , g. Then AI(h) =
min{d1, d2} + 1 if d1 6= d2 or d1 ≤ AI(h) ≤ d1 + 1.
With Lemma 5, we can deduce a theorem as follows.
Theorem 7: Let Hu,v be the (n+1)-variable Boolean func-

tion in Construction 3. Assume that Conjecture 1 is true, then
n/2 ≤ AI(Hu,v) ≤ n/2+ 1.
Theorem 8: Let Hu,v be the (n+1)-variable Boolean func-

tion in Construction 3. Then the nonlinearity of Hu,v is

NHu,v ≥ 2n −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2+1

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2 +1

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m+1 −

5
2
.

Proof: From last section, we have

NGv ≥ 2n−1 −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m −

1
2
.

On the other hand, Wu et al. [16] showed us that

NFu ≥ 2n−1 −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m − 2.

According to the fact NHu,v ≥ NFu +NGv we have

NHu,v ≥ 2n −
(
(n− m) ln 2

π
+ 0.263

)
2
n
2+1

−

(
(n− m) ln 2

π
+ 0.485

)
2
n−m
2 +1

+

(
(n−2m) ln 2

π
+ 0.163

)
2
n
2−m+1 −

5
2
.

At the end, we test the immunity against FAA of Hu,v. We
fix s = l = 0, select the values of the parameters r,m, u, v
with gcd(uv, 2m−1) = 1, and use computer to get the value
of the pair (e, d) with e < n/2 and e + d < n in order to
judge whether there is a function h satisfying deg(h) < e and
deg(hF) ≤ d exists. Results are as follows:
i). Let n + 1 = 13, r = 3, m = 3, there do not exist such

pair with e+ d ≤ n− 3 for any possible (u, v), meaning
FAI(H ) = n− 2.
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ii). Let n + 1 = 17, r = 3, m = 4, we test some pair
(u, v), for instance, when (u, v) = (1, 2) or (1, 2), there
do not exist such pair with e + d ≤ n − 3, meaning
FAI(H ) = n − 2. And when (u, v) = (1, 7) or (2, 7),
there do not eixst such pair with e+d ≤ n−2, meaning
FAI(H ) = n− 1.

So that we can say the function Hu,v in Construction 3 has
good resistance to FAA.

C. DISCUSSION ON 1-RESILIENT
Hu,v is the (n+1)-variable Boolean function defined in Con-
struction 3. Then its Walsh transform is

WHu,v (a, b, c) = WFu (a, b)+ (−1)cWGv (a, b),

where a ∈ F2rm , b ∈ F2m , c ∈ F2. So we have some results.
i). If a = 0, b = 0, c = 0, since Hu,v is balanced, then

WHu,v (0, 0, 0) = 0.

ii). If a = 0, b = 0, c = 1, then

WHu,v (0, 0, 1) = WFu (0, 0)−WGv (0, 0) = 0.

iii). If a = 0, b 6= 0, c = 0, then

WHu,v (0, b, 0)

= WFu (0, b)+WGv (0, b)

= −2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)tr(by) − 2
∑
x∈1l

1

− 2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)tr(by) − 2
∑
y∈F∗q

(−1)tr(by)

− 2
∑

x∈FQ\1l

1

= 2rm − 2rm

+
(
− 2·(−1)·(2rm−1−1)− 2·(−1)− 2·2rm−1

)
= 0.

iv). If a 6= 0, b = 0, c = 0, then

WHu,v (a, 0, 0)

= WFu (a, 0)+WGv (a, 0)

= −2
∑
γ∈1s

∑
y∈F∗q

(−1)Tr(aγ y
u)
− 2

∑
x∈1l

(−1)Tr(ax)

− 2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)

− 2
∑
y∈F∗q

1− 2
∑

x∈FQ\1l

(−1)Tr(ax)

= −2
∑
γ∈1s

∑
y∈F∗q

(−1)Tr(aγ y
u)
−2

∑
γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)

− 2 · (2m − 1).

If r = 1 (i.e. Tr = tr), then

WHu,v (a, 0, 0)

= −2
∑
γ∈1s

∑
y∈F∗q

(−1)Tr(aγ y
u)

− 2
∑

γ∈1s\{αs}

∑
y∈F∗q

(−1)Tr(aγ y
u)
− 2 · (2m − 1)

= −2 · 2m−1 ·(−1)− 2·(2m−1 − 1)·(−1)− 2·(2m−1)

= 0.

Therefore, from the discussion above we have the following
theorem.
Theorem 9: Let Hu,v be the (n+1)-variable Boolean func-

tion in Construction 3. Then Hu,v is 1-resilient if r = 1.

V. CONCLUSION
In this paper, we present a class balanced Boolean functions
which has optimal AI, high nonlinearity and optimal alge-
braic degree. This Boolean function also behaves well against
FAA. Then we constructed a class of 1-resilient Boolean
functions with good cryptographic properties by concatenate
our function toWu’s function. Finally we should indicate that
the ability of these two constructions against FAA still need
further research.
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