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ABSTRACT The prognosis of childhood nephrotic syndrome directly hinges on the accurate prediction of
negative conversion days (NCDs). Therefore, this paper designs a hybrid approach of principal component
analysis (PCA) and backpropagation (BP)-adaptive boosting (AdaBoost) neural network (NN), and applies
the method to predict the NCDs for children with nephrotic syndrome. Specifically, PCA method was
employed for dimension reduction. Six principal components were extracted from multiple physiological
features, and taken as input variables of three-tiered neural networks. The boosted predictor of BP-AdaBoost
model, together with three predictors of BP NN, support vector machine (SVM) and radial basis func-
tion (RBF) NN, was trained for NCDs prediction. The experimental results show that the predictor of
BP-AdaBoost NN achieves the mean absolute error of 0.2334, the mean relative error of 3.2789%, the SD
of 4.6804 and the RSD of 50.8053% in NCDs prediction, and it outperforms other predictors of BP NN,
SVM and RBF NN on both accuracy and precision. Furthermore, comparison experiments are conducted on
PCA processed testing data and raw testing data for BP-AdaBoost NN and demonstrate the excellent effect
of PCA. The hybrid approach of PCA and BP-AdaBoost NN is simple and reliable for NCDs prediction
of childhood nephrotic syndrome, and it can help pediatricians prognose childhood nephrotic syndrome
accurately and further provide patients with better care and treatment.

INDEX TERMS Childhood nephrotic syndrome, negative conversion days (NCDs), principal component
analysis (PCA), backpropagation (BP)-adaptive boosting (AdaBoost) neural network (NN).

I. INTRODUCTION
Nephrotic syndrome, a collection of symptoms due to
glomeruli damage, is a common childhood disease, which
occurs in 1.5 per 100,000 children each year [1], [2]. The
incidence of the disease varies in different populations [3].
The disease of nephrotic syndrome in children can run a fre-
quently relapsing course, and consequently brings great harm
to healthiness and growth of children, e.g. risk of acute kidney
injury and growth retardation [4], [5]. Riar et al. [6] studied
the lifetime prevalence of allergies in childhood nephrotic
syndrome and discovered that two-thirds of children with
nephrotic syndrome at presentation have allergic symptoms
and asthma. Starc et al. [7] suggested that mesenchymal
stromal cells may be used in autologous cellular therapy
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approaches for idiopathic nephrotic syndrome treatment in
the pediatric population. Wang et al. [8] developed a novel
text messaging system for disease monitoring in childhood
nephrotic syndrome and it achieved better results than sched-
uled follow-up visits. Gipson et al. [9] pointed out that
data management and analysis can support new therapies
of nephrotic syndrome through clinical trials and improve
patient health outcomes. Considering the poor self-care abil-
ity of children, it is important to prognose nephrotic syndrome
of pediatric patients. The accurate prediction of negative con-
version days (NCDs) helps to improve treatment and curing
effect. The key to NCDs prediction is to find the complex
nonlinear function that maps physiologic features of children
with nephrotic syndrome to NCDs. Such features include
gender, age, albumin, immunoglobulin, etc. [10]

In recent years, artificial neural networks have been
widely applied in medical and clinical areas, including
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the prediction of NCDs of childhood nephrotic syndrome.
Liu et al. [11] applied the convolutional neural network
(CNN) to automated segmentation of multi-spectral magnetic
resonance (MR) image on stroke lesions, and achieved early
definitive diagnosis of the patients with ischemic stroke.
Gómez et al. [12] relied on the recurrent neural network
(RNN) to estimate laryngeal pressure in the diagnosis of
vocal cord dysfunction. Kawahara and Hamarneh [13] took
the classification of dermoscopic features within super-pixels
as a segmentation problem, and proposed a fully CNN to
detect such features from dermoscopic skin lesion images.
Choi et al. [14] proposed a new approach for real-time apnea-
hypopnea event detection using CNNs, and the approach
can both help reduce event detection time and be applied
to screen sleep apnea hypopnea syndrome (SAHS) severity.
With the aid of backpropagation (BP) neural network (NN),
Fan et al. [15] effectively measured respiratory flow with
portable pressure data, realized continuous respiratory moni-
toring, and thus provided an important tool for clinical mon-
itoring. In particular, artificial neural networks have been
successfully employed to diagnose and prognose various can-
cers [16]–[23]. For example, Alzubi et al. [16] suggested an
ensemble of weight optimized neural network with maximum
likelihood boosting (WONN-MLB) for lung cancer disease
in big data and achieved accurate diagnosis of lung cancer.
Horie et al. [17] developed deep learning method based on
CNNs for detecting esophageal cancer and demonstrated the
ability of neural networks in diagnosis of esophageal cancer.
Li et al. [18] applied deep CNNs models on sonographic
imaging data from clinical ultrasounds to diagnosis of thyroid
cancer and successfully improved the diagnostic accuracy.

In study of Liu et al. [10], the NCDs of childhood nephrotic
syndrome are predicted with a model based on BP NN.
Specifically, the relationship between the physiologic fea-
tures of patients and NCDs was established through BP NN,
and then used to predict the NCDs of the disease. However,
the method of Liu et al. [10] has two major defects:
(1) There are strong correlations between the multiple

physiologic features. The strong correlations make the prob-
lem more complex and the modelling less efficient, damping
the accuracy of NCDs prediction. Thus, it is inappropriate
to use all physiologic variables to create the neural network
prediction model.

(2) Traditional BP algorithm, as a local search optimization
method, is prone to the local minimum trap. In the traditional
algorithm, the minimum error function is taken as the approx-
imation target, and the self-learning is completed by gradient
descent. In this case, it is difficult for traditional BP algorithm
to find the global optimum of complex nonlinear functions.
Then, the neural network trained by BP algorithm may lead
to low prediction accuracy and precision.

To overcome the two defects, this paper designs a
hybrid approach of principal component analysis (PCA)
and BP-adaptive boosting (AdaBoost) NN, and applies the
method to predict the NCDs for children with nephrotic
syndrome.

The remainder of the paper is organized as follows:
Section II describes the dataset used in this research;
Section III details the proposed approach and its application
in NCDs prediction; Section IV presents the experimental
results, main findings and limitations; Section V wraps up
this paper with conclusions.

II. DATASET
In this research, the original dataset covers 90 samples
of childhood nephrotic syndrome. The dataset was pro-
vided by Department of Pediatrics at Changzhou No.2
People’s Hospital in China. First, blood tests were con-
ducted and relevant biomarkers were obtained for diagnosis.
Then medical treatments were offered to those children
whose illnesses were diagnosed as childhood nephrotic
syndrome. During treatment regular follow-up examina-
tions were performed until patients had recovered and
at the time NCDs were obtained. The dataset contains
9 biomarkers of children with nephrotic syndrome, including
gender, age (years), immunoglobulin G (IgG), immunoglob-
ulin A (IgA), immunoglobulin M (IgM), immunoglobulin
E (IgE), complement component 3 (C3), albumin (ALB)
and blood fat (BF). Except two biomarkers of gender and
age, the remaining seven biomarkers were obtained through
blood routine examinations. Figures 1 and 2 are respectively
the multi-dimensional visualization and the box plot of the
original samples. Note that 0 represents male and 1, female.

Because the size of the original samples which were clin-
ically obtained is relatively small, the method known as data
augmentation is used to produce virtual samples to enlarge
the dataset. Data augmentation is formalized by Vicinal Risk
Minimization (VRM), in which expert human is required to
describe the vicinity of each example and the examples in
the vicinity share the same calss. Zhang et al. [24] proposed
a novel data-agnostic data augmentation approach termed
mixup which incorporates the prior knowledge that linear
interpolations of feature vectors lead to linear interpolations
of the associated targets. The mixup constructs the virtual
example of (x̃, ỹ) by the following equation:{

x̃ = λ xi + (1− λ) xj
ỹ = λ yi + (1− λ) yj

(1)

where (xi, yi) and (xi, yi) are two examples randomly chosen
from the original dataset, xi and xj are raw input vectors, yi
and yj are one-hot label encodings, and λ ∈[0,1]. In themixup,
λ ∼Beta(α, α), for α ∈(0, ∞), and the hyper-parameter α
controls the strength of interpolation. A detailed description
of mixup can be found in literature [24].
In this research, the 300 virtual samples were con-

structed by using the data augmentation approach of mixup.
Figures 3 and 4 are respectively the multi-dimensional visu-
alization and the box plot of the virtual samples.

First 60 out of the 90 original samples were allocated to
the testing dataset, and the 330 samples consisting of the
remaining 30 original samples and the 300 virtual samples
were allocated to the training dataset.
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FIGURE 1. Multi-dimensional visualization of the original samples.

FIGURE 2. Bo plot of the original samples.

III. HYBRID APPROACH
A. PCA
PCA is a statistical method for data compression, dimension
reduction and denoising based on the covariance matrix of
variables. The basic principle is to find a set of orthog-
onal basis vectors and to convert noisy high-dimensional
samples into low-dimensional ones [25]. By PCA, multi-
ple interrelated variables can be transformed into a smaller
number of uncorrelated variables, namely, principal compo-
nents [26], [27]. This method has been widely adopted thanks
to its excellent performance. For the children with nephritic
syndrome, PCA can extract the principal components of
physiological features in three steps:
Step 1: Calculate the covariance matrix of the training

samples containing the physiological features of the children,
compute the eigenvalues and their corresponding eigenvec-
tors of the covariance matrix, and rank the eigenvalues in
descending order.
Step 2:Calculate variance contribution rate and cumulative

variance contribution rate.

FIGURE 3. Multi-dimensional visualization of the virtual samples.

FIGURE 4. Bo plot of the virtual samples.

Step 3: Determine the principal components of the physio-
logical features according to discriminant criteria of cumula-
tive variance contribution rate, difference of eigenvalues, etc.

B. BP-ADABOOST NEURAL NETWORK
BP NN is a multilayer feedforward neural network train
by error BP algorithm. As an adaptive pattern recognition
technique, BP NN features a simple structure, high maturity
and wide popularity [28]. The performance of classical BP
NN can be improved by simple ensemble realization, using
ensemble methods like AdaBoost algorithm [29], [30].

AdaBoost algorithm combines multiple weak learners into
a powerful regression machine. In general, a boosting ensem-
ble outperforms a single neural network, and pushes up the
accuracy [31]. AdaBoost NNs have delivered impressive per-
formance in practical applications [32]–[34].

To overcome its defects in NCDs prediction (Section I),
BP NN is replaced with BP-AdaBoost NN in this research.
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TABLE 1. Total variance explained.

The boosted predictor of BP-AdaBoost model was obtained
by enhancing the weak predictor of BP models with
AdaBoost algorithm.

Let m be the number of training samples, P be the num-
ber of weak predictors, xi be the input instance, and yi be
the expected outputs of xi. Then, the training set can be
expressed as S ={(xi, yi)}, i = 1, 2, . . . , m. For the pth

weak predictor, Dp(i) denotes the weight of the ith sample
and Dp(i) is initialized to be 1/m. In addition, let α denote
the threshold of the prediction error. Then, the neural network
structure can be determined by the dimensions of input and
output. Next, BP-AdaBoost algorithm can be summarized as
follows [35], [36].
Step 1: Initialize the weights and thresholds of the neural

network, including the distribution weight Dp(i) = 1/m (i =
1, . . . , m), α, P and p = 1.
Step 2: For p = 1, 2, . . . ,P, execute the following sub-steps:
Step 2.1: Train the pth weak predictor, i.e. train the pth BP

NN by the training set S. Let hp(x) be the function expressed
by the newly-trained BP NN and ep(i) be the absolute error
of predictive output for the ith sample. Calculate ep(i) by the
following equation:

ep (i) =
∣∣hp (xi)− yi∣∣ i = 1, 2, . . . ,m (2)

Step 2.2: Calculate εp by the following equation.

εp =
∑

i:ep(i)>0

Dp (i) i = 1, 2, . . . ,m (3)

Step 2.3: Calculate the weight coefficient wp of weak
predictor according to the εp.

wp = 0.5× ln
[
1− εp
εp

]
(4)

Step 2.4:Adjust the weights of training samples in the next
round of training according to the weight coefficient wp:

Dp+1 (i) =


exp

(
wp
)
× Dp (i)

Bp
, e (i) > α

Dp (i)
Bp

, e (i) ≤ α
i = 1, 2, . . . ,m

(5)

where α is the threshold of prediction error; Bp is the nor-
malization factor making the total distribution weight 1 under

a constant weight ratio. The normalization factor can be
expressed as:

Bp =
1

m∑
i=1

Dp+1 (i)
(6)

Step 3: After P rounds of training, obtain the set of P
weak predictive functions {o(hp(x), wp)}, p = 1, 2, . . . , P.
Then, derive the output functionO(x) of the boosted predictor
obtained by combining weak predictive functions:

O (x) =
P∑
p=1

wp×o
(
hp (x) ,wp

)
(7)

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS
PCA method was applied to extract the components of
physiologic features of children with nephrotic syndrome.
Total variance explained is presented in Table 1. It can be
seen that six principle components were extracted, which
explain 84.928% of the total variance. Tables 2 and 3 show
the component matrix and the component score coefficient
matrix, respectively.

BP-AdaBoost algorithm was run on MATLAB 2014a.
The neural networks adopted a simple three-tier structure
of 6-13-1, and were trained by the traingd function, which
implements gradient descent learning. Themaximum number
of training rounds was set to 5,000 and the learning rate to 0.1.
The number of weak predictors (BP models) P was set to 10.
BP-AdaBoost model was the boosted predictor combined by
10 weak predictors of BPmodels. Besides BP-AdaBoost NN,
three prediction models of BP NN, support vector machine
(SVM) and radial basis function (RBF) NN were created for
comparison.

As mentioned in Section II, the 330 samples were used to
train the prediction models and the 60 samples were adopted
to test the models. The method of 10-fold cross validation is
performed to train the predictionmodels. The indices ofMean
Squared Error (MSE) and Root Mean Square Error (RMSE)
were used to estimate performance of the prediction models.
The performance of cross validation for BP-AdaBoost NN,
BP NN, SVM and RBF NN are tabulated in Table 4.
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TABLE 2. Component matrix.

TABLE 3. Component score coefficient matrix.

TABLE 4. Performance of cross validation for BP-AdaBoost NN, BP NN,
SVM, and RBF NN.

FIGURE 5. Prediction results of BP-AdaBoost NN, BP NN, SVM and RBF
NN on PCA processed testing data.

Figure 5 displays the NCDs predicted by BP-AdaBoost
NN, BP NN, SVM and RBF NN on the testing dataset which
was processed by PCA, as well as the actual values of NCDs.
Note that the output of BP NN is the mean of all outputs
of 10 BP models. Figure 6 displays the NCDs predicted by
BP-AdaBoost NN on PCA processed testing data and raw
testing data respectively, as well as the actual values of NCDs.

B. RESULTS ANALYSIS
The absolute errors and relative errors of BP-AdaBoost NN,
BP NN, SVM and RBF NN on PCA processed testing data

FIGURE 6. Prediction results of BP-AdaBoost NN on PCA processed
testing data and raw testing data.

were calculated from the prediction results and the actual
NDCs. The calculated absolute errors and relative errors are
given in Figure 7 and Figure 8 respectively.

To demonstrate the effect of PCA, BP-AdaBoost NN was
also trained and tested on raw data. Figure 9 displays the abso-
lute errors of BP-AdaBoost NN on PCA processed testing
data and raw testing data respectively. Figure 10 displays the
relative errors.

The performance indices of accuracy and precision were
calculated to estimate prediction models. Accuracy indices
include mean/minimum/maximum absolute errors and rela-
tive errors. Precision indices include Standard Deviation (SD)
and Relative StandardDeviation (RSD). Table 5 compares the
prediction results of BP-AdaBoost NN, BP NN, SVM and
RBF NN on PCA processed testing data. Table 6 compares
the prediction results of BP-AdaBoost NN on PCA processed
testing data and raw testing data.

As shown in Table 5, the absolute errors of BP-AdaBoost
NN on PCA processed testing data averaged at 0.2334,
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FIGURE 7. Absolute errors of BP-AdaBoost NN, BP NN, SVM and RBF NN
on PCA processed testing data.

FIGURE 8. Relative errors of BP-AdaBoost NN, BP NN, SVM and RBF NN
on PCA processed testing data.

FIGURE 9. Absolute errors of BP-AdaBoost NN on PCA processed testing
data and raw testing data.

minimized at 0.0008 and peaked at 1.0218, the relative errors
averaged at 3.2789%, minimized at 0.0057% and peaked
at 22.4350%, the SD is 4.6804 and the RSD is 50.8053%,

FIGURE 10. Relative errors of BP-AdaBoost NN on PCA processed testing
data and raw testing data.

TABLE 5. Comparisons of BP-AdaBoost NN, BP NN, SVM and RBF NN on
PCA processed testing data.

indicating that BP-AdaBoost NN outperforms other predic-
tors and has a good performance in the prediction of NCDs
of childhood nephrotic syndrome. Compared with BP NN,
SVM and RBF NN, BP-AdaBoost NN boasts strong gener-
alization ability and predicts the NCDs in an accurate and
precise manner. This is because the weak predictors of BP
models are improved by AdaBoost algorithm into the boosted
predictor of BP-AdaBoost model. Specifically, the weights of
training samples and those of weak predictors of BP models
are adjusted according to prediction errors for training sam-
ples; the weight of the sample with larger prediction error
is increased, and the weak predictor with good performance
is assigned a relatively large weight in the final weighted
combination. That is why the boosted model of BP-AdaBoost
NN achieves better learning and prediction results than the BP
predictor.

As shown in Table 6, BP-AdaBoost NN on PCA processed
testing data outperforms BP-AdaBoost NN on raw testing
data in all indices. The excellent performance of the hybrid
approach of PCA and BP-AdaBoost NN can be attributed
to the application of PCA. PCA method reduces the number
of input variables of the neural network and simplifies the
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TABLE 6. Comparisons of BP-AdaBoost NN on PCA processed testing
data and raw testing data.

network structure, leading to high prediction accuracy and
precision.

Of course, the research results may not apply to all chil-
dren with nephrotic syndrome, owing to two reasons. First,
the sample size is not big although the data augmentation
method is used. Second, the multiple physiologic features of
patients are considered as a whole in the PCA-based dimen-
sion reduction, calling for differentiation between the effect
of each physiologic feature.

V. CONCLUSION
The NCDs prediction is crucial for prognosis of childhood
nephrotic syndrome. In view of this, PCA and BP-AdaBoost
neural network were combined into a hybrid approach for
automated prediction of the NCDs. Through experiments,
the proposed BP-AdaBoost model was proved suitable for
accurate prediction of the NCDs. Thus, this research provides
a potential adjunct tool for pediatricians, enabling them to
prognose childhood nephrotic syndrome accurately and pro-
vide patients with better care and treatment.

To further enhance the generalization ability of the predic-
tion model, the future research will focus on the following
two issues. First, more clinical cases will be collected to
train the model, aiming to improve the reliability of NCDs
prediction. Second, the physiological features closely related
to NCDs will be determined through multi-factor analysis.
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