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ABSTRACT State-of-health (SOH) prediction for lithium-ion batteries is a challenging and important topic
in the modern industry. With the advent of cloud-connected devices, there are huge amounts of the battery
degradation trend data available. How to make full use of these existing degradation data for the SOH
prediction is a valuable problem deserving deep research. Aiming at this problem, a multiple Gaussian
process regression (MGPR) method is proposed for the SOH prediction of lithium-ion batteries. In this
work, the health indicators (HIs) are firstly extracted from the charging process curves of the batteries, and
the mutual information analysis is used to select the important HIs which are strongly correlated to the
SOH. These selected HIs are applied as the regression model input for describing the aging procedure of the
battery effectively. Then, Gaussian process regression modeling is performed on the different batteries to
bring multiple GPR models. Lastly, a weighting strategy based on the prediction uncertainty is designed to
integrate the predictions from the multiple GPR models. The method validations are executed on the battery
datasets from NASA, and the results show that the proposed MGPR method has higher prediction accuracy
than the basic GPR method.

INDEX TERMS Lithium-ion batteries, Gaussian process regression, mutual information, state-of-health.

I. INTRODUCTION
Because of high single-cell voltage, large energy density and
long cycle life, lithium-ion batteries are widely used in many
fields including electric vehicles, communication stations,
and thermometers, etc. [1]–[3]. As the core component of
various systems, batteries are often related to the system
performance degradation or the complete failure. Therefore,
the configuration of intelligent and efficient battery manage-
ment system (BMS) is especially important for monitoring
the safety, reliability and availability of batteries [4], [5]. The
state-of-health (SOH) is used to quantitatively measure the
ability of the lithium-ion battery system to store and deliver
the energy while tracking the degradation trend of the
battery [6]. Capacity and internal resistance are the typical
health indicators for lithium-ion batteries. However, they are
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difficult to measure online due to many factors such as the
series and parallel connection of the cells [7], [8]. Therefore,
it is important to design the lithium-ion battery SOH predic-
tion method by mining the intrinsic status information from
the available online measured parameters.

The present SOH prediction technologies are mainly
divided into two categories including model-based methods
and data-driven methods. Model-based methods (e.g., equiv-
alent circuit models, electrochemical models, etc.) require a
large amount of prior knowledge to describe the degradation
process and the failure mode. Jong and Cho [9] established
a battery equivalent circuit model and used the extended
Kalman filter (EKF) method to predict the SOH of lithium-
ion batteries. Based on the existing empirical model [10],
Yu et al. [11] developed a particle filter based SOH prediction
method by considering the reduction of battery capacity and
the self-charging behavior. Guha and Patra [12] combined the
capacity reduction model and the internal resistance growth
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model for the SOH prediction of batteries. Wang et al. [13]
developed a battery prediction method that relies on a state
space model of discharge rate.

Data-driven methods extract the hidden information and
evolution rule from the battery data to realize the SOH
prediction of lithium-ion batteries. Different to the model-
based methods, data-driven methods overcome the problem
of requiring the accurate physical models. Wang et al. [14]
presented a SOH prediction method based onmulti-state non-
linear Brownianmotion. Principal component analysis (PCA)
is one well-known data analysis tool [15]. Guo et al. [16]
utilized PCA to optimize the health features extracted from
the charging curve, and then used relevance vector machine
to estimate the battery capacity. Li et al. [17] extracted the
characteristics of the charge-discharge curve and used the
ensemble learning neural network to improve the accuracy
of SOH prediction performance. Yang et al. [18] built the
SOHpredictionmodel by training a three-layer back propaga-
tion (BP) neural network. These present data-driven methods
usually give the deterministic results and do not consider the
uncertainty of the predictions [19], [20].

As one emerging method, Gaussian process regression
(GPR) is designed based on the Bayesian framework, and
has the ability of explaining the uncertainty of the predic-
tion results in probabilistic form. Because of its advantage
over the other data-driven methods, GPR has been one of
the important data-driven SOH prediction methods [21].
Li and Xu [22] applied GPR to identify the model parameters
and then carried out the particle filter to predict the remaining
useful life.Wang et al. [23] proposed the incremental capacity
analysis to extract the peak and the position as the GPR
input to predict the SOH. Yang et al. [24] extracted four
features from the charging curve as the input of GPR, and
applied the gray correlation method to analyze the correlation
between features and SOH. Yu [25] carried out the empir-
ical mode decomposition (EMD) to decompose the battery
capacity time series and then integrated multi-scale logistic
regression (LR) and GPR for the SOH prediction.

Although these aforementioned GPR methods have
demonstrated the successful applications in the SOH pre-
diction field, there are some limitations deserving further
studies. One the one hand, data feature extraction and deep
analysis are not enough. Although the present methods
[23], [24] have designed some features for SOH prediction,
the extracted features are still not sufficient and the impor-
tance on the SOH prediction is not analyzed comprehen-
sively. One the other, the present methods perform the SOH
prediction based on the historical data of the tested battery
and omit the integrated utilization of the other available
batteries [22]–[25]. In fact, with the development of cloud-
connected devices, we can collect a lot of degradation data
from the batteries installed on the different units. These exist-
ing different lithium-ion batteries can provide the important
information on SOH prediction. As shown in Fig. 1 [26], [27],
some lithium-ion batteries under the same conditions, col-
lected from NASA [28], [29], have the similar attenuation

FIGURE 1. SOH curves of different battery under the same conditions.

curves during the decay process. Therefore, how to take full
advantage of the existing other batteries to predict the given
battery SOH is an important problem.

Based on the above analysis, this paper is to propose a
multiple Gaussian process regression (MGPR) method for
predicting the SOH of the lithium-ion battery. The main
contributions include two aspects. (1) One contribution is
about the construction and selection of the health indicators
(HIs). We extract eight HIs by inspecting the trajectories of
the charging processes, and the mutual information analysis
is applied to select the key HIs according to the correlation
between the HIs and the SOH. The key HIs are regarded as
the prediction model input so that the aging of the battery can
be reflected effectively. (2) Another contribution lies in the
development of the multiple GPR (MGPR) model. Multiple
existing batteries are well utilized as the model training sets
and the single GPR model is built for each training battery.
Then all the GPR models are integrated for a holistic MGPR
model by the weighting strategy based on the prediction
uncertainty.

The structure of this paper is listed as follows: Section II
introduces the proposed model, including the HI selection
rules using the mutual information analysis, and the MGPR
model based on prediction variance. The experimental results
including the training data under the same conditions and dif-
ferent conditions are further analyzed in Section III. Finally,
Section IV draws some conclusions of the article.

II. METHODOLOGY
A. THE METHOD FRAMEWORK
Considering the sufficient utilization of the lithium-ion bat-
teries data, this paper proposes a MGPR method for the SOH
prediction of lithium-ion batteries. As shown in Fig. 2, the
flowchart of the proposed method involves three parts: fea-
ture extraction, offline modeling, and online testing. Feature
extraction is the basis of offline modeling and online testing.
A series of health indications (HIs) are extracted by inves-
tigating the current, voltage and temperature curves during
battery charging. The mutual information analysis is used
to analyze the correlation between HIs and SOH, and some
key HIs are obtained. In the offline modeling stage, several
Gaussian process regression models are established using the
lithium-ion battery data. The model input is the HIs obtained
in the feature extraction stage, while the model output is
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FIGURE 2. The SOH prediction flowchart based on the MGPR method.

the SOH. In the online testing phase, the multiple GPR
models from the offline modeling stage are separately tested
to obtain the corresponding prediction results and prediction
variances. For each GPRmodel, its weight is computed based
on the prediction uncertainty. Finally, the SOH prediction
result of a lithium-ion battery is given by the weighted outputs
of multiple GPR models.

B. FEATURE SELECTION USING MUTUAL INFORMATION
1) LITHIUM-ION BATTERY DATA
In this work, the cycling data of lithium-ion batteries are
obtained from the Prognostics Center of Excellence (PCoE)
at Ames Research Center, NASA [28], [29]. The charging
process consists of two phases: (Constant current) CC phase
and (Constant voltage) CV phase. In the CC phase, lithium-
ion battery is charged at a constant current of 1.5A until
the battery voltage reaches 4.2V. Then in the CV phase,
the lithium battery is under the constant voltage until the
charging current drops to 20mA. The discharge process is
performed under a constant current. Table 1 shows the oper-
ating conditions and parameters for several sets of batteries.
From this table, it can be seen that these batteries can be
classified into several groups. E.g., B5, B6, B7, and B18 can
be categorized together because of the same discharge current
and the same ambient temperature.

SOH describes the health status of the battery and reflects
the current rated capacity of the battery, expressed as:

SOH =
Ct
C0
, (1)

where Ct is the capacity of the t-th cycle and C0 is the
initial capacity. In addition to the rated capacity of the battery,
the parameters such as internal resistance of the battery and
number of cycles can also be used as characterization param-
eters for SOH.

2) FEATURE EXTRACTION
The voltage, current and temperature curves of the charging
process of the battery B6 at different cycle times are shown

TABLE 1. Batteries with their operating parameters.

in the Fig. 3. As the lithium-ion battery degrades, the voltage,
current and temperature variations during charging process
are regular. Therefore, extracting the HIs of the lithium-ion
battery from the charging curve helps to reflect the deterio-
ration trend of the battery. According to the characteristics of
lithium-ion battery charging curve with different cycle times,
eight HIs are extracted as follows.

a: HI1: THE TIME CORRESPONDING TO THE HIGHEST
TEMPERATURE IN THE TIME INTERVAL
FROM 1000s TO END
By most curves shown in Fig. 3 (a), we can see that the
time to reach the maximum temperature Tmax is gradually
reduced as the cycle number increases. For example, the first
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FIGURE 3. Charge profiles of B6 with different cycle times.

cycle arrives the highest temperature at the 3908s, while the
50th and 100th cycle arrive the highest temperature at the
3361s and 2335s, respectively. For avoiding the influence
of the initial temperature, the first 1000s are excluded. The
HI1 is defined as the time Tmax corresponding to the highest
temperature in the interval from 1000s to end.

HI1 = tTmax . (2)

b: HI2: THE MAXIMUM TEMPERATURE IN THE
INTERVAL FROM 1000s TO END
In the Fig. 3 (a), each maximum temperature in the tem-
perature curve may be related to the battery attenuation.
Although the maximum temperatures in the curve have no
obvious trend in the whole cycles, the regular changes can
be observed for some continuous cycles. For example, from
the 122th to 130th cycle, the maximum temperature per-
forms a decreasing trend. For a comprehensive consideration,
the maximum temperature Tmax in the time interval from
1000s to end is defined as the second HI:

HI2 = Tmax. (3)

c: HI3: THE END TIME OF THE CC MODE
As shown in Fig. 3 (b) and (c), the end time tcc of the CC
mode decreases as the number of cycle increases. This time
indicates the charge capacity in the CC mode. With this time,
the battery polarization phenomenon can be exhibited. As the
cycle number increases, the polarization becomes more seri-
ous and the end time tcc decreases gradually. For example,
the tcc values for the 1st, 100th, and 160th cycle are 3609s,

1689s and 1066s, respectively. So, we define the CC mode
end time tcc as the third HI:

HI3 = tcc. (4)

d: HI4: THE TIME DURATION FROM 3.9V TO
4.2V UNDER THE CC MODE
In the CCmode, as the number of cycle increases, the time for
the same voltage change are very different. Especially, at the
end of CC mode, the slopes of different voltage curves have
the clear distinction. Therefore, we define the time difference
for the voltage change from 3.9V (v1) to 4.2V (v2) as the
fourth HI:

HI4 = tv2 − tv1 , (5)

where tv1 , tv2 are the time instants corresponding to 3.9V and
4.2V, respectively.

e: HI5: THE VOLTAGE INCREASEMENT
IN 500s UNDER THE CC MODE
In the CCmode, different cycles have the different the voltage
growth rates, which can be used as an indicator of the battery
SOH. By defining the 3.9V as the starting point v1, the voltage
is increased to v2 after 500s. The voltage increasement in 500s
is defined as the fifth HI:

HI5 = v2 − v1. (6)

This index is similar to the HI4. The difference is that HI4 is
about the time change in the fixed voltage zone, while HI5 is
the voltage change in the fixed time zone.

f: HI6: THE TIME DURATION FROM 1.2A TO
0.5A IN THE CV MODE
The CVmode plays an important role in weakening the polar-
ization caused by CC charging. In the CV mode, the change
in the current at different cycles is related to the battery
degradation. The time duration required from 1.2A (i1) to
0.5A (i2) is defined as the sixth HI:

HI6 = ti2 − ti1 , (7)

where ti1 is the time instant at the 1.2A, while ti2 is the time
instant at the 0.5A. The longer the HI6 is, the more serious
the battery aging is. For the first cycle, HI6 value is 982s.
By contrast, the HI6 values of the 50th and 100th cycle are
1068s and 1266s, respectively.

g: HI7: THE CURRENT CHANGE IN 1000s
UNDER THE CV MODE
In the CVmode, the voltage growth rate changes for different
cycle times. By setting the starting current i3 as 1.5A, the
current after 1000s is denoted as i4. The seventhHI is given by

HI7 = i3 − i4. (8)

With the increasing cycle, the HI7 has a decreasing trend
generally. The first cycle has the HI7 as 0.95A, while the
160th cycle’s HI7 is 0.69A.
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TABLE 2. The results of mutual information analysis.

h: HI8: THE AREA UNDER THE CC MODE
The voltage area in the CC mode decreases as the battery
decays. Denote the end of the CC mode as tcc, and the
integration of the voltage v(t) in the CC mode is expressed by

HI8 =
∫ tcc

0
v(t)dt. (9)

Take the battery B6 as one example, and eight HIs are
extracted and normalized as shown in Fig. 4. By this figure,
we can see that all these indices change regularly regarding to
the cycle number. The next task is to select some key indices
for the SOH prediction modeling.

FIGURE 4. Eight HIs of battery B6.

3) MUTUAL INFORMATION
In order to select the key HIs for GPRmodeling, some quanti-
tative analyses are critical.Mutual information is ameasure of
the correlation degree between the two variables. Assuming
two random variables g1 and g2, the mutual information
between them can represent a measure of how much the
g1 can provide information for g2. The mutual information
value determines the importance of the variable g1 to the
variable g2, which facilitates a more rational selection of
the input variable [30]. Therefore, mutual information can
reveal the correlation between nonlinear variables, which is
consistent with the nonlinear characteristics of lithium-ion
battery sample data.

For two given random variables g1 = [g11, g12, · · · , g1n]
and g2 = [g21, g22, · · · g2n] with n samples, the mutual

information is denoted by

im(g1, g2) =
n∑
i=1

p(g1i, g2i) log
(
p(g1i, g2i)
p(g1i)p(g2i)

)
, (10)

where p(g1i, g2i) is the joint probability function, while p(g1i)
and p(g2i) are the marginal probability distribution functions.
The mutual information can be computed by the histogram
method [30], [31].

In the Table 2, we list the mutual information values
between the 8 HIs and the SOH for the 8 applied batteries.
Furthermore, for each battery, the mutual information values
are sorted, as shown in Table 3. Then the order sum of each
HI is calculated and listed in the last row of the Table 3. It can
be seen that HI3, HI4, HI8 are corresponding to the three
smallest MI order sum values. So, we select these three HIs
as the input to the model.

C. MULTIPLE GAUSSIAN PROCESS
REGRESSION MODELING
Gaussian Process (GP) is a collection of finite number of ran-
dom variables following Gaussian distribution [32]–[34]. The
MGPR method is to establish the multiple basic GPR models
and combine their outputs to provide the holistic result. For
the r-th basic GPR model, it is used to approximate the target
output fr (xr ), following the probability distribution as

fr (xr ) ∼ GP(m(xr ), k(xr , x′r )), (11)

where xr is d-dimensional input vectors,m(xr ), k(xr , x′r ) are
mean and covariance function, respectively, expressed by

m(xr ) = E[fr (xr )], (12)

k(xr , x′r ) = E[(fr (xr )− mr (xr ))(fr (x′r )− mr (x′r ))]. (13)

Usually,m(xr ) can be set to be zero. k(xr , x′r ) is selected as
the squared exponential covariance (SE) function, denoted by

k(xr , x′r ) = σ 2
fr exp

(
−
(xr − x′r )2

2l2r

)
, (14)

where the signal variance σ 2
fr represents the output scale,

the lr is the characteristic length scales. In many cases,
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TABLE 3. The orders of the mutual information values.

we assume that the observed data can be represented as an
implicit function with Gaussian noise as

yr = fr (X r )+ ε, ε ∼ N (0, σ 2
nr ), (15)

where X r is the data matrix composed of the n observations
of the input vector xr , yr is the observation corresponding to
X r , ε is white noise whose mean is 0 and variance is σ 2

nr .
Hence the prior distribution of yr is denoted as

yr ∼ N (0,K (X r ,X r )+ σ 2
nrIn), (16)

where K (X r ,X r ) is the n-dimensional symmetric positive
definite matrix and its element Kij = k(X r (i, :),X r (j, :))
describes the correlation between the i-th sample X r (i, :)
and the j-th sample X r (j, :), In is the n-dimensional identity
matrix.

The hyper-parameter set 2r = [σfr , lr , σnr ] can be deter-
mined by maximizing the log-likelihood, denoted by

Lr = log p(yr |X r ,2r ) = −
1
2
yTr [K (X r ,X r )+ σ 2

nrIn]
−1yr

−
1
2
log(det(K (X r ,X r )+ σ 2

nrIn)−
n
2
log 2π. (17)

The conjugate gradient method is used to find the optimal
hyper-parameter, and the maximum value of the objective
function is obtained by the derivative of the log-likelihood
function. The optimization process is solved based on

∂

∂2r
log(yr |X r ,2r ) =

1
2
tr
{[
ααT − (K (X r ,X r )

+ σ 2
nrIn)

−1 ∂(K (X r ,X r )+ σ 2
nrIn)

∂2r

]}
α =

[
K (X r ,X r )+ σ 2

nrIn
]−1

yr .

(18)

For the test input x∗, the joint distribution of the observed
value yr and the predicted output y∗ are expressed as[

yr
y∗

]
∼ N

(
0,
[
K (X r ,X r )+ σ 2

nrIn K (X r , x∗)
K (x∗,X r ) K (x∗, x∗)

])
,

(19)

where K (X r , x∗) = K (x∗,X r )T is the covariance matrix
between X r and x∗, and K (x∗, x∗) is the covariance of x∗.

The posterior distribution of the predicted value y∗ is
expressed by

p(y∗|X r , yr , x
∗) = N (ũr , c̃r ), (20)

where the prediction mean ũr and the prediction variance c̃r
are given as

ũr = K (x∗,X r )[Kr (X r ,X r )+ σ 2
nrI]
−1yr , (21)

c̃r = K (x∗, x∗)− K (x∗,X r )T

× [K (X r ,X r )+ σ 2
nrI]
−1K (X r , x∗). (22)

Then, for the test input x∗, its prediction mean ũr and
variance c̃r from the r-th GPR model can be obtained. The
prediction mean is used as the prediction result, and the
prediction variance c̃r gives a confidence interval to represent
the uncertainty corresponding to each measurement result.
The 95% confidence interval is given by[

ũr − 1.96
√
c̃r, ũr + 1.96

√
c̃r
]
. (23)

In the MGPR model, the uncertainty of the predicted value
ũr obtained by the r-model is used to determine the weight
wr of the model to determine the accuracy of each GPR
prediction. The uncertainty is related to c̃r , and the weight
of each basic GPR model can be obtained by prediction
variance c̃r as

wr =
1/̃
cr

m∑
j=1

1/̃
cj

. (24)

Then the final output of the MGPR is

ŷ =
m∑
r=1

wr ũr . (25)

One problem which should be noted is about the predic-
tion uncertainty. The GPR based methods has the advan-
tage of explaining the prediction uncertainty. For the single
GPR model, the prediction uncertainty can be obtained by
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TABLE 4. The prediction results for the battery B6.

Eq. (23). However, in the proposed method, the prediction
uncertainty of each single GPRmodel is utilized to design the
model weight for a weighted MGPR model. Therefore, the
prediction uncertainty of MGPRmodel is missing. The deter-
mination of the MPGR prediction uncertainty is one problem
deserving the future studies.

III. SIMULATIONS
In order to verify the proposed MGPR method, we use the
NASA battery dataset to perform simulation experiments.
The applied batteries are the commercially available Li-ion
18650 sized rechargeable batteries, which are tested under
three different operational profiles (charge, discharge, and
impendence) [26], [29]. The accuracy of the SOH estimation
is evaluated in terms of root mean square error (RMSE) and
absolute error percentage (MAPE) [35]. The RMSE calcula-
tion formula is given by

RMSE =

√√√√√ n∑
i=1

(y∗i − ŷi)
2

n
, (26)

while the MAPE calculation formula is defined as

MAPE =
1
n

n∑
i=1

∣∣∣∣y∗i − ŷiy∗i

∣∣∣∣× 100%, (27)

where y∗i is the true value, ŷi is the estimated value, and n is
the number of samples.

A. BATTERIES IN THE SAME CONDITIONS
In the real industrial scenarios, there are often some batteries
which are with the similar running conditions. The similar
batteries have the similar degradation mechanisms, and it
is possible to achieve better prediction results by integrat-
ing these existing similar batteries for the SOH prediction
modeling. To verify this, two groups of similar batteries are
illustrated. One group involves the batteries B5, B6, B7 and
B18, while another group includes the batteries B45, B46,
B47 and B48.

1) CASE ONE
In this case, we select the batteries B5, B7, and B18 as
training set, and apply the battery B6 as a testing set. All these
involved batteries have the same conditions, which can be
seen by Table 1. To give a deep discussion, five models are
developed as follows.

a) 1-GPR model with individual training data sets: the
method is to establish a basic GPRmodel in which the battery

B18 is used to train the model and the battery B6 is applied
for testing.

b) 2-MGPR(i) model with two training data set: themethod
is to establish the MGPR model, in which B5 and B18 are
used for training, and B6 is tested.

c) 2-MGPR(ii) model with two training data sets: the
method is to establish the MGPR model, in which B7 and
B18 are used for training, and B6 is tested.

d) 3-MGPRmodel with three training data sets: the method
is to establish theMGPRmodel, in which B5, B7 and B18 are
used for training, and B6 is tested.

e) ZGPR model with three training data sets: The method
is to establish a basic GPR model in which B5, B7, B18 are
trained and B6 are tested.

The test results of all models are plotted in Fig. 5 and the
performance indices are listed in Table 4. The SOH curves
used for training and testing are listed in Fig. 5 (a)-(d) for the
five applied models, respectively. The prediction results by
1-GPR model is seen in Fig. 5 (e) with a large prediction
bias, which has the RMSE of 0.0624 and the MAPE of
7.085%. When two batteries are used for model training, that
means the application of 2-MGPR(i) and 2-MGPR(ii) mod-
els, the results are seen in the Fig. 5 (f) and (g), respectively.
It is clear that their performances outperform the basic 1-GPR
method. Compared to the 1-GPR model, 2-MGPR(i) and
2-MGPR(ii) methods reduce the RMSE from 0.0624 to
0.0173, which improve the prediction accuracy by 72.3%.
However, due to the use of different training sets,
2-MGPR(i) and 2-MGPR(ii) have the differentMAPE values,
which are both lower than 1-GPR MAPE. For the 3-MGPR
model shown in Fig. 5(h), the RMSE is further reduced
to 0.0167 because of three training datasets are involved.
Therefore, increasing the number of data sets can enhance
the diversity of the model and improve the accuracy of the
prediction. However, it should be noted that to perform the
basic GPR modeling on the multiple datasets simply may not
result in the good SOH prediction performance. To validate
this, the ZGPRmodel, which is a basic GPRmodel trained by
the three battery datasets, is carried out and the SOH predic-
tion result on the battery B6 is given the Fig. 5 (i). The RMSE
and MAPE of ZGPR are 0.023, and 2.2079%, respectively,
which are larger than the MGPR’s. To compare the results of
3-MGPR and ZGPR, we can observe that the MGPR method
can provide better SOH prediction performance when the
same training datasets are used. The absolute error curves of
all the methods are given in Fig. 5 (j), while the error analysis
is demonstrated in Fig. 5 (k). In this case, the ZGPR model
has lower prediction error than the 1-GPR method because
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FIGURE 5. The prediction results of the battery B6. (a)-(d) are for more clearly indicating the relationship between the training set and the test set,
where the y-axis 1-3 are corresponding to the training set B5, B7, B18, respectively, and the y-axis 4 is the test set B6. (e)-(i) represent the comparison
of the predicted results of each model with the test values. (j) shows the error plots for the five methods. (k) is a wire box diagram of the error.

of the introduction of more training datasets. Furthermore,
the proposed MGPR method outperforms the ZGPR method
because of the multiply modeling strategy based on the model
weighting.

2) CASE TWO
This case selects B45, B46, and B48 as the training sets, and
B47 as a testing set. The five models of the experiment are as
follows:

a) 1-GPR model with individual training data set: the
method is to establish a basic GPR model in which B48 is
trained and B47 battery is tested.

b) 2-MGPR(i) model with two training data sets: the
method is to establish the MGPR model, in which B45 and
B48 are used for training, and B47 is tested.

c) 2-MGPR(ii) model with two training data sets: the
method is to establish the MGPR model, in which B46 and
B48 are used for training, and B47 is tested.

d) 3-MGPRmodel with three training data sets: the method
is to establish the MGPR model, in which B45, B46 and
B48 are used for training, and B47 is tested.

e) ZGPRmodel with three training data sets: Themethod is
to establish a basic GPR model, in which B45, B46, B48 bat-
teries are trained and B47 is tested.

The test results are shown in Fig. 6 and Table 5.
Fig. 6 (a)-(d) plot the SOH curves of the training and testing
batteries for different methods. The SOH prediction using
the 1-GPR method, shown in the Fig. 6 (e), is not satis-
factory with the large RMSE 0.0761 and the large MAPE
9.6808%. The results of 2-MGPR(i) and 2-MGPR(ii) are
shown in Fig. 6 (f) and (g), respectively. The twomodels have
higher prediction accuracy, which reduce the RMSE from
0.0761 to 0.0415 and 0.0384, respectively. The prediction
RMSE is improved by 45.5% and 49.5%, respectively. Also
MAPE is reduced to 4.559% and 3.8893%, respectively.With
more training datasets including B45, B46 and B48, the
3-MGPR model achieves the better SOH prediction result,
which reduces the RMSE by 22.4% and 16.1% compared to
2-MGPR(i) and 2-MGPR(ii), respectively. It should be noted
that ZGPR can not achieve a better prediction than 1-GPR in
this case. The RMES and MAPE of ZGPR are 0.2606 and
23.1902%, respectively, which are clearly larger than the
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FIGURE 6. The prediction results of the battery B47. (a)-(d) are for more clearly indicating the relationship between the training set and the test set,
where the y-axis 1-3 are corresponding to the training set B45, B46, B48, respectively, and the y-axis 4 is the test set B47. (e)-(i) represent the
comparison of the predicted results of each model with the test values. (j) shows the error plots for the five methods. (k) is a wire box diagram of the
error.

TABLE 5. The prediction results for the battery B47.

other methods. This further demonstrates that the simple
use of more training datasets without the multiple modeling
strategy can not ensure the performance improvement. The
training datasets with the different characteristic may bring
the increasing of prediction error. By contrast, the MGPR
method can make the rational use of the multiple training
datasets and distinguish the influence of different training
datasets by the weighting strategy. The absolute error curves
and the error block diagrams of the five methods are given
in Fig. 6 (j) and (k). We can observe that 3-MGPR method
performs best.

B. BATTERIES IN DIFFERENT CONDITIONS
In order to further verify the effectiveness of the algorithm,
several sets of experimental data under different experimental

conditions are also selected for method testing. In this
case, the SOH prediction model is trained using B5, B29,
B34, and is tested on B6. It should be pointed out that
B5 and B6 are from the same conditions, while the batteries
B29 and B34 involve different experimental conditions. The
experimental results are shown in Fig. 7 and Table 6. The
1-GPR models trained with B5, B29 and B34 obtain
the RMSE values of 0.0176, 0.1654 and 0.0776, respec-
tively. The results are reasonable because the batteries under
different conditions lead to the high prediction error, while
the battery from the same condition can provide a good
prediction model. With all the three batteries for GPR mod-
eling, the ZGPR method has the RMSE of 0.0262 and the
MAPE of 2.9605%. This is better than the GPR models
based on the single battery B29 and B34. When the proposed
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FIGURE 7. The prediction results of B6 battery. (a)-(d) are for more clearly
indicating the relationship between the training set and the test set,
where the y-axis 1-3 are corresponding to the training set B5, B29, B34,
and the y-axis 4 is the test set B6. (b)-(c) represent the comparison of the
predicted results of 3-GPR and ZGPR with the test values. (d) shows the
error plots for the five methods.

TABLE 6. The prediction results for the battery B6 based on the training
batteries with different conditions.

MGPR method is applied, the MGPR method still predicts
the trend of SOH degradation relatively well with the RMSE
of 0.0224 although the batteries used for model training

FIGURE 8. The prediction results of B6 Battery by the 3-MGPR and ZGPR
with different index groups.

TABLE 7. The prediction results of B6 battery with different index groups.

include the different types of batteries. Looking back the
results in Table 4, the SOH prediction RMSE by the 3-MGPR
is 0.0167. That means MGPR considering the batteries under
different conditions may lead to a slight performance degra-
dation, but the results from MGPR are still satisfactory.

C. FURTHER DISCUSSIONS
In this paper, we apply the mutual information analysis to
select the key HIs. To demonstrate the effectiveness of the
index selection strategy based on the mutual information
analysis, we give some further discussions. For the case one
in the section III-A, we develop the SOH prediction models
via two groups of indices, respectively. Group 1 involves
the indices HI3, HI4 and HI8, which have been identified
as the key HIs in the previous discussions. For comparison,
Group 2 includes the indices HI2, HI6 and HI7. Based on
these two groups of HIs, the 3-MGPR and ZGPR models
are developed and the corresponding models are denoted
by 3-MGPR-G1, 3-MGPR-G2, ZGPR-G1 and ZGPR-G2,
respectively. The SOH predictions on the battery B6 are
plotted in the Fig. 8, and the corresponding statistical results
are given in Table 7. For the 3-MGPR model, it can be
seen that group 1 in the Fig. 8 (a) gives better SOH pre-
diction than group 2. The RMSE obtained by the 3-MGPR
model with group 1 is the 0.0167, while the RMSE from the
3-MGPR model with group 2 is 0.0797. The MAPE values
for group 1 and group 2 are 1.6535% and 8.2487%, respec-
tively. It is obvious that the 3-MGPR model with the index
group 2 brings the higher prediction error. Similar results
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can be observed for the ZGPR method. When the group 2 is
applied, the model prediction RMSE and MAPE are 0.0869,
and 9.6071%, respectively, which are larger than the ones
from group 1. So, the group 1, selected based on the mutual
information analysis, can predict the change of the SOHmore
precisely. These results demonstrate the effectiveness of the
proposed HI selection strategy.

TABLE 8. The SOH prediction results for all the batteries.

In the above discussions, only one battery is applied for
testing. For the deep analysis, we test all the batteries by the
leave-one-out strategy. That means, among the four batteries
of every case, each battery is tested while the other three bat-
teries are used as the training set. The SOH prediction results
for all the batteries are tabulated in Table 8. By this table,
we observe that the proposed 3-MGPR method achieves the
smaller RMSE and MAPE than ZGPR for the batteries B5,
B6, B18, B46, B47 and B48. For the battery B7 and B45,
the 3-MGPR has a little higher RMSE than ZGPR. The
mean RMSE of 3-MGPR is 0.0426, which is smaller than
the ZGPR’s mean RMSE 0.0805, while the mean MAPE of
3-MGPR is 5.4097%, clearly smaller than the ZGPR’sMAPE
9.0531%. To sum up, the application by the leave-one-out
strategy demonstrate the proposed multiple GPR method can
give better prediction than the basic ZGPR on the whole.

IV. CONCLUSION
This paper designs one method for the SOH prediction of
lithium-ion batteries based on multiple Gaussian process
regression model. In this proposed method, the mutual infor-
mation analysis is used to select the key HIs, and the mul-
tiple GPR models from the existing batteries are combined
by applying the weighting strategy based on the prediction
uncertainty. The proposed model is validated by several sets
of lithium-ion battery data involving the same conditions and
the different conditions. Based on the applications results,
some conclusions can be drawn. Firstly, compared to the
basic GPR method, the MGPR method can improve the SOH
prediction performance by applying the multiple GPR mod-
eling strategy. Secondly, considering more training datasets
from the same conditions benefits the SOH prediction for the
MGPR method. Thirdly, even if the training datasets include
some batteries from the different conditions, the MGPR
method still does well.
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