
Received August 18, 2019, accepted October 1, 2019, date of publication October 14, 2019, date of current version October 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2947306

A Trust-Aware Task Offloading Framework
in Mobile Edge Computing
DEXIANG WU 1, GUOHUA SHEN 1,2,3, ZHIQIU HUANG 1,2,3, YAN CAO1, AND TIANBAO DU1
1College of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China
3Key Laboratory of Safety-Critical Software (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing
211106, China

Corresponding author: Guohua Shen (ghshen@nuaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772270, in part by the National Key
Research and Development Program of China under Grant 2018YFB1003902 and Grant 2016YFB1000802, and in part by the Key
Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology of China under Grant 1015-XCA1816403.

ABSTRACT Task offloading in Mobile Edge Computing (MEC) is a solution to augment resource-limited
mobile devices’ capabilities bymigrating tasks to the edge of the network (i.e., edge servers and idle devices).
At present, a lot of work is focused on optimizing policies to reduce latency or energy consumption for users.
However, they mostly ignore that services are not necessarily trustworthy because the resource providers are
complex, dynamic, and unreliable. The trustworthiness of a service in our paper mainly includes two aspects.
One is that resource providers will not violate users’ privacy. The other is that resource providers will perform
well to ensure the effectiveness of services. To solve this problem, we propose a trust-aware task offloading
framework. The main purpose of the framework is to select a resource provider for a user to reduce latency
or energy consumption and ensure service trustworthiness at the same time. The framework can be divided
into three modules (i.e., trust evaluation, filtering and selection). By combining trust evaluation and filtering
modules, some resource providers that are not trusted by users are filtered out to ensure that the services
provided to users are trustworthy. In the selection module, we select an appropriate provider for a user from
the qualified (i.e., left after the filtering process) resource providers based on an offloading policy. The
experimental results show that our framework not only reduces latency or energy consumption for users, but
also reduces the failure rate of tasks.

INDEX TERMS Mobile edge computing (MEC), task offloading, trust evaluation, machine learning, privacy
protection.

I. INTRODUCTION
In the past decade, cloud computing has developed rapidly
and brought many benefits. Computation offloading in cloud
computing allows users to offload computationally inten-
sive tasks to a resource-rich remote cloud [1]. With the
rapid growth of smart mobile devices such as smartphones
and wearable devices, more and more intelligent mobile
applications such as face recognition, virtual reality, health
surveillance, and real-time translation are emerging [2].
These applications usually run resource-hungry algorithms
(e.g., GPU rendering and deep learning) [3], which would
require intensive computing and high energy consump-
tion. In addition, these emerging applications often demand

The associate editor coordinating the review of this manuscript and
approving it for publication was Vaibhav Rastogi.

low-latency. However, cloud computing cannot meet the
above two requirements at the same time [4].

To address this challenge, Mobile Edge Computing (MEC)
as a complement to cloud computing has been proposed to
solve the shortcomings of cloud computing. By sinking com-
puting power to the edge of the network and leveraging amul-
titude of end-user devices to complete computation tasks [5],
it promises to provide users with low-latency services.

Task offloading in MEC is a solution to augment resource-
limited mobile devices’ capabilities by migrating tasks to the
edge of the network. D2D (device-to-device) communication
has become a key technology of 5G, and it is widely added
to mobile edge computing. At present, a lot of research has
been carried out on task offloading in MEC, and good results
have been achieved in reducing latency and energy consump-
tion. However, only a little work has focused on whether

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 150105

https://orcid.org/0000-0002-5709-9780
https://orcid.org/0000-0003-2182-0019
https://orcid.org/0000-0001-6843-1892

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

the services provided are trustworthy. Offloading in MEC is
more complex than that in cloud computing. The resource
providers in cloud computing are usually several large com-
panies, while the resource providers in MEC can be either
MEC servers or idle devices around the network. Therefore,
resource providers in MEC have new characteristics such as
dynamic, complex, and unreliable, which make it difficult to
ensure that services are trustworthy.

The trustworthiness of a service in our paper mainly
includes two aspects. One aspect is that resource providers
will not violate users’ privacy, which we refer to as Priv −
trustworthiness. The essence of task offloading is the out-
sourcing of computation, so the privacy of users must also
be protected in the process. When a task contains sensi-
tive information, it will pose a threat to personal privacy if
such information is acquired by malicious devices and used
maliciously. Zhang et al. [6]–[8] pointed out that since user
data in mobile edge computing is usually processed in semi-
trusted authorized entities, it is likely to cause data leakage
or data loss. The other is that resource providers will perform
well to ensure the effectiveness of services, which we refer
to as Effe − trustworthiness. If the number of misbehav-
ing providers increases, there will be some bad situations,
such as high task failure rate or actual latency far beyond
prediction, which will disrupt offloading and lead to low
offloading effectiveness. For example, a resource provider
who only wants to benefit from task offloading does not
contribute resources or reduces a large number of resources
without agreement. If we do not consider the trustworthiness
of services, even if offloading policies achieve good results
in the optimization of latency or energy consumption, it is
difficult to apply task offloading in practice because of the
low effectiveness or the potential threat to users’ privacy.

To ensure the trustworthiness of services (i.e., Priv −
trustworthiness and Effe − trustworthiness), we conduct a
trust evaluation of these two aspects. On the one hand, to pro-
tect a user’s privacy, we introduce task sensitivity to measure
the threat to the user’s privacy caused by the exposure of sen-
sitive information contained in the task, and introduce identity
trust to evaluate the trust degree of the user to providers.
When the task sensitivity is higher than the identity trust level
of a provider, it indicates that the provider is not trusted by
the user to complete the task. On the other hand, to ensure
the effectiveness of services, we introduce behavior trust
to evaluate whether providers are misbehaving. Users have
their required behavior levels of services. When a provider’s
behavior trust level is lower than a user’s required behavior
level, it is not trusted by the user to complete the task.
However, it is difficult to choose an appropriate weight for
each trust factor in establishing a trust evaluation mechanism.
Therefore, we establish a novel trust evaluation mechanism
by formalizing trust evaluation as a classification problem in
machine learning.

Overall, to reduce latency or energy consumption and
ensure the trustworthiness of services at the same time,
we propose a trust-aware task offloading framework.

The framework can be divided into three modules (i.e., trust
evaluation, filtering, and selection). In the trust evaluation
module, we introduce identity trust and behavior trust to
evaluate resource providers, and establish a novel trust evalu-
ation mechanism based on machine learning. In the filtering
module, we filter out some resource providers with low trust
level by filtering algorithm based on the results of trust eval-
uation. Based on the two modules, we are able to ensure the
trustworthiness of services. In the selection module, we select
the appropriate one from the qualified resource providers for
the user to perform the task according to the offloading policy.

The main contributions of the paper are as follows: (1)
1) To ensure the Priv − trustworthiness, we introduce

task sensitivity to measure the threat to the user’s pri-
vacy if the sensitive information contained in the task
is exposed. We introduce online social networks into
MEC, which maps the trust relationship established by
device owners in the social layer into the identity trust
relationship between devices. If a provider’s identity
trust level is lower than task sensitivity, it is untrustwor-
thy. To ensure the Effe− trustworthiness, we introduce
behavior trust to evaluate the behavior performance of
resource providers. Users have the required behavior
levels of services. If a provider’s behavior trust level
is lower than the user’s required behavior level, it is
untrustworthy.

2) Based on the relationship between task sensitivity
and identity trust, as well as the relationship between
behavior level required by the user and behavior trust
level of a provider, a trust-based filtering algorithm is
proposed to filter out those unqualified providers.

3) We propose a trust-aware task offloading framework to
reduce latency or energy consumption and ensure the
trustworthiness of services for users at the same time.

The remainder of this paper is organized as follows:
Section II briefly introduces the related work. Section III
describes the relevant preliminary knowledge. Section IV
introduces our trust-aware task offloading framework in
detail. Section V introduces the experimental evaluation of
our framework. Finally, we make a summary and put forward
the direction of future research.

II. RELATED WORK
To select trustworthy resource providers, we need to establish
a trust evaluation mechanism. Meanwhile, facing a large
number of resource providers, we need to select an appro-
priate resource provider to complete a task according to an
offloading policy. Therefore, in this section, we focus on trust
evaluation and task offloading policies in MEC.

A. TRUST EVALUATION IN MOBILE EDGE COMPUTING
Trust evaluation has received extensive attention and research
in areas including cloud computing, mobile cloud computing,
and peer-to-peer computing [9]–[12]. At present, people are
building some new trust evaluation mechanisms based on the
new characteristics of MEC.

150106 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

According to the sources of trust factors, we classify the
existing evaluation work in MEC into three categories: indi-
rect trust models (based on reputation), direct trust mod-
els (based on direct interaction records), and hybrid models
(both direct and indirect trust factors). Hussain and Almourad
[13], [14] studied how to compute the reputation of edge
data centers, using centralized trust management, which
stores the reputation of LTE deployed clouds. Through this
system, users can anonymously evaluate cloudlet services.
Zhou et al. [15] proposed a method to learn users’ prefer-
ences based on their contexts, previous behaviors, and social
intimacy. He designed a trust evaluation mechanism based on
users’ preferences to guarantee trustworthy edge computing.
To enhance the reliability of trust evaluation, we will take into
account both indirect trust factors and dircet trust factors.

According to the technology used, we divide the exist-
ing evaluation work in MEC into two categories: emerg-
ing technology-based models and formula-based models.
Xu et al. [16] presented a novel trustless crowd-intelligence
ecosystem based on the common decentralization feature of
mobile edge computing and blockchain technology, which
can ensure that all trustless objects in the whole system
must perform trusted operations. The formula-based models
always assign a weight to each trust factor and integrate them
into a value. Yuan and Li [17] made some discussions on
trust management in mobile edge computing, and elaborated
the reasons and significance of trust management. He pro-
posed a trust computing mechanism based on multi-source
feedback (MSTrust).

However, in the traditional formula method, how to give
each trust factor an appropriate weight is a very difficult
problem. Although the value derived from the formula-based
approach can be used as a reference for the trust level, it is
not accurate enough to be in accordance with the user’s
expectations because trust is a subjective metric. Besides,
they are not easily understood by users directly. It is necessary
to provide users with an accurate and intuitive trust evaluation
method. Compared with the above solutions, trust evaluation
in our framework is formalized as a classification problem in
machine learning.

Based on the above analysis, we will take hybrid trust
factors into consideration and utilize a classification approach
in machine learning to establish a trust evaluation mechanism
for mobile edge computing.

B. TASK OFFLOADING POLICIES IN MOBILE
EDGE COMPUTING
So far, task offloading has gained a lot of researchers’ atten-
tion. An offloading policy is an important part of offloading
process, determining which tasks will be offloaded and where
they will be offloaded.

From the existing work, the objectives of offloading poli-
cies are mainly divided into three types: reducing latency,
reducing energy consumption, and balancing latency and
energy consumption [18]. Zhang et al. [19] proposed an
optimal offloading scheme with the goal of reducing latency

in the case of limited computing resources of MEC. The
author proposed a layered MEC deployment architecture and
solved the multi-user offloading problem by using Stackel-
berg game theory. The author’s proposed offloading scheme
not only provides a significant improvement in reducing
latency over local execution, but also guides the deployment
of MEC servers. Liu et al. [20] introduced a cloud-assisted
edge computing framework with a three-tier network, and the
energy consumption minimization problem is formalized as a
mixed integer programming. Dong [21] proposed a dynamic,
decentralized resource allocation policy based on latency and
energy consumption, which is used to deal with the prob-
lem of task offloading between multiple heterogeneous edge
nodes and central clouds.

In addition to the above-mentioned offloading policies to
reduce latency or energy consumption from the perspective
of selecting the appropriate resource provider, there are other
interesting research on optimizing offloading policies from
the perspective of communication and computation cooper-
ation. Li et al. [22] exploited the idea of computation repli-
cation which allows each user to offload its task to multiple
edge nodes to speed up the downloading phase via trans-
mission cooperation. Their results show that computation
replication is very useful for reducing communication latency
in tasks where the output data size is larger than the input
data size. On the contrary, sometimes multiple users can use
collaborative properties to share part of a user’s computation
tasks. Al-Shuwaili and Simeone [23] leveraged the inherent
collaborative properties of Augmented Reality (AR) appli-
cations and proposed a novel resource allocation approach
over both communication and computation resources. In this
way, different users are able to share part of the computation
tasks as well as the input and output data. Our research is
to optimize the policy by selecting an appropriate resource
provider for the user to complete the task.

Based on the above analysis, the offloading policy in
our framework aims to select the appropriate resource
provider for the user, taking into account latency and energy
consumption.

III. PRELIMINARIES
Corresponding to the two aspects of service trustworthiness,
we need to introduce task sensitivity, identity trust evaluation,
and behavior trust evaluation.

Task sensitivity and identity trust evaluation are introduced
to ensure the Priv − trustworthiness. We compare the task
sensitivity level with the identity trust level of a provider to
protect the privacy of the user. If the task sensitivity is higher
than the identity trust level of a provider, it indicates that the
provider is unqualified to complete the task.

Behavior trust evaluation is introduced to ensure the
Effe − trustworthiness. We compare the behavior level
required by the user and the behavior trust level of a provider
to ensure the effectiveness of services. If the behavior trust
level of a provider is lower than the user’s required behavior
level, the provider is unqualified. These providers who are

VOLUME 7, 2019 150107

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

FIGURE 1. Social collaborative mobile edge computing.

not qualified in identity or behavior will be removed. In this
section, we will explain the above concepts, which are pre-
requisites closely related to our framework.

A. DEFINITION OF SOCIAL COLLABORATIVE MOIBLE
EDGE COMPUTING
Online social networks have become an indispensable part
of people’s daily life and have been widely used in many
scenarios, such as friend recommendation and access control
system based on trust.

To protect the privacy of users in task offloading, we intro-
duce online social networks into MEC. We call this new
paradigm, which combines mobile edge computing with
online social networks, Social Collaborative Mobile Edge
Computing (SCMEC). Because mobile devices, wearable
devices, and so on are owned and carried by people,
it is hopeful and promising to construct a secure col-
laborative environment by leveraging social relationships
formed by people’s social interactions. For one thing, it is
able to increase people’s willingness to contribute their
resources; for another, based on social relationships, selecting
trusted nodes for task offloading enhances privacy protection
for users.

As shown in Fig. 1, the diagram is divided into a device
layer and a social layer. In the social layer, device own-
ers establish trust relationships with other people through
social applications and have different trust levels for dif-
ferent people. Everyone can own one or more devices. In
the device layer, the trust relationships between devices
correspond to the trust relationships between their owners
in the social layer. A device can establish a D2D connec-
tion with another device within a certain range. Devices
can request services from nearby MEC servers or nearby
devices to complete tasks. It should be noted that, if there
is no special explanation, the MEC mentioned below refers
to SCMEC.

B. RELATED THEORIES IN SOCIAL COLLABORATIVE
MOIBLE EDGE COMPUTING
1) TASK SENSITIVITY
Our paper refers to the Health Insurance Portability and
Accountability Act (HIPAA) [24] standard to determine
which personal information is sensitive. Here are some
related concepts about task sensitivity.
• Sensitivity of personal information: It is the extent to
which users are concerned about providing private data.
It measures the damage to users when sensitive infor-
mation items are exposed. The higher the sensitivity
of personal information, the greater the harm to users
when it is exposed. SI is a finite set of personal infor-
mation items. For any personal information item s ∈
SI , the function f (s) obtains its sensitivity. We divided
the sensitivity of personal information into three levels.
In other words, f (s) ∈ {1, 2, 3}. The values from 1 to
3 represent low, medium, and high, respectively. If s is
level 3, it means that when s is exposed, it will pose a
threat to the user’s property or life. If s is level 2, it means
that when s is exposed, it will cause discomfort to the
user. If s is level 1, it means that when s is exposed, it will
have little impact on the user. For more detailed informa-
tion, Weible [25] analyzed which personal information
is more sensitive to users. Sensitivity is suggested by
relevant experts and can be changed according to the
user’s own requirements.

• Sensitive information set: It refers to a set of several
sensitive information items.

• Relevant sensitivity: It refers to the harm degree to
users when two personal information items si and sj are
exposed simultaneously. It can be obtained by the func-
tion F(si, sj). F(si, sj) ∈ {1, 2, 3}. Values ranging from
1 to 3 represent low, medium, and high, respectively.
Relevant sensitivity is given by experts after reasoning
and analysis, and is not able to be modified by users.

• Task sensitivity: A task Tt consists of a piece of code
and some input data to perform a specific function.
There are some personal information items in the input
data. The personal information items that need to be
collected for a task to perform a specific function are
predetermined and limited in number. We determine
the sensitivity of a task by analyzing the sensitivity of
these information items. The sensitivity of a task can be
calculated by using (1), and n is the number of personal
information items contained in the task. 1 ≤ i ≤ n and
i + 1 ≤ j ≤ n. When a task contains only one sensitive
information item, task sensitivity is the sensitivity level
of the information item. When a task contains multiple
sensitive information items, it is necessary to consider
the relevant sensitivity level of each two items and
the respective sensitivity levels of the two items. Task
sensitivity is the maximum of these three levels in all
combinations. In particular, when a task does not involve
any personal sensitive information, the sensitivity of the

150108 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

task is 0, that is, the task is not sensitive. If there are n
personal information items needed in a task, the number
of relevant sensitivity composed of each two personal
information items is C2

n . Therefore, the computation of
task sensitivity has a low complexity O(n2).

St =

0 if n = 0
f (s1) if n = 1
MAX

{
F(si, sj), f (si), f (sj)

}
if n >= 2

(1)

Generally speaking, if a personal information item is
exposed, it will not cause too much harm to a user. How-
ever, when multiple personal information items constitute
an information set, it will pose a great threat to the user’s
privacy. Therefore, the sensitivity of the information set must
be considered.

2) IDENTITY TRUST EVALUATION
We associate the device layer with the social layer in SCMEC.
We map the trust relationships established in the social layer
to the device layer, and when a task is sensitive to the user,
we only select one of the resource providers trusted by the
user to offload the task. Therefore, we need to finish the trust
evaluation in online social networks.

At present, there has been a lot of work on trust com-
puting in online social networks, which can be divided into
three categories: structure-based models, interaction-based
models, and hybrid models [26]. Yin et al. [27] proposed
AUTrust trust evaluation model to evaluate social network
relationships, which is a hybrid model that comprehensively
considers three categories of trust factors. He assigned the
same weight to each category of factor and then integrated it
into a global trust value.

We adopt the trust evaluation mechanism proposed by
Zhao and Pan [28] as our identity trust evaluation method,
which includes structural factors and interactive factors.
He pointed out that most of the trust evaluations in existing
studies just quantify several trust related factors and integrate
them into a trust value by setting a weight for each factor.
For one thing, it is difficult to determine the weight value
of each factor; for another, the evaluation result is a value,
which is not intuitive to users. Consequently, he formalized
trust evaluation in online social networks as a classification
problem in machine learning.

To evaluate the trust level in online social networks, it is
essential to construct an identity trust feature vector. In online
social networks, m and n are two users. We suppose that m is
an evaluator and n is a object evaluated bym. The mechanism
combines structural and interactive factors to construct a trust
feature vector v(m, n). If n is a fan of m, n is called a follower
of m and m is called a friend of n. The elements of the vector
are shown in Tab. 1. For more details, please refer to Zhao’s
paper, which will not be repeated here.

Corresponding to task sensitivity, we also divide identity
trust into three levels. The identity trust level of n given by m
can be expressed as It(m, n). It(m, n) ∈ {1, 2, 3}. The values

TABLE 1. Elements of identity trust feature vector.

from 1 to 3 indicate that the trust levels are low, medium, and
high, respectively. After constructing the trust feature vector
v(m, n) from the above eight factors, we need to map it to a
discrete trust level ranging from 1 to 3. We use ITC(v(m, n))
to express the mapping from a trust feature vector to a trust
level, that is, It(m, n) = ITC(v(m, n)).

3) BEHAVIOR TRUST EVALUATION
Behavior trust evaluation is a method to evaluate providers’
behavior performance, which is used to predict the effective-
ness of services. Due to the new characteristics of mobile
edge computing, there will be some misbehaving providers,
which will disrupt offloading and lead to low offloading
effectiveness. Therefore, we need to establish a trust evalu-
ation mechanism for their behavior and performance in this
process.

However, it is difficult to choose an appropriate weight
for each factor that affects behavior evaluation. Therefore,
we also perform the evaluation of behavior trust by utilizing
a classification approach in machine learning.

To evaluate the behavior, we first need to construct a behav-
ior trust feature vector. There are mainly two main principles
that need to be considered. Firstly, the feature vector should
include factors that are closely related to the behavior during
the task offloading process. Secondly, it can be retrieved
from the interactive data without too much computing effort.
In mobile edge computing, we assume that j is an idle device
and i is a device which has a task to offload. According to
previous work and our research, the elements of the behavior
trust feature vector v(i, j) are listed in Tab. 2.

To evaluate the behavior of j, we take 7 related factors into
consideration. The first five factors are related to the perfor-
mance of all services provided by j, and the last two factors are
related to the performance of services provided by j for i. If we
take a time interval t as a segment, we update the behavior
trust level once per segment, and take the performance of j in
the latest s segments as the data source.

For the first five features, ANum(j) and CNum(j) respec-
tively correspond to the total number of services provided by
j and the number of tasks successfully completed by j, while
ACRatio(j) stands for the ratio of CNum(j) and ANum(j).
Reputation(j) represents the overall impression of j given by
all objects interactingwith j, andReputation(j) ∈ [0, 1].ACTp
(actual completion time) and ECTp (estimated completion
time) respectively correspond to the actual completion time

VOLUME 7, 2019 150109

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

TABLE 2. Elements of behavior trust feature vector.

and the estimated completion time of a successfully com-
pleted task Tp. Equation (2) is used to calculate TD_rate(j).
TD_rate(j) represents the average deviation rate of the actual
time spent by j and the estimated time. By considering the
time deviation rate, we can judge whether j is misbehaving in
the process of providing services, such as reducing a large
number of resources and not providing resources. For the
last two factors, Num(i, j) describes the number of times j
provides services for i. Score(i, j) describes the average score
of j given by i according to j’s services. It is noteworthy
that we assume that all objects are willing to contribute their
resources to each other.

TD_rate(j) =
1

CNum(j)

CNum(j)∑
p=1

(
ACTp − ECTp

)
ECTp

(2)

According to actual requirements, we divide behavior trust
into three levels. The values from 1 to 3 indicate that the
trust levels are poor, acceptable, and strongly recommended,
respectively. The first level is used to punish the resource
providers for poor performance. If a resource provider’s
behavior trust level is 1, its behavior is unreliable and it
is not recommended to be selected to perform a task. If a
resource provider’s behavior trust level is 2, it means that the
behavior of the resource provider is relatively reliable and can
be recommended to perform general tasks. Level 3 indicates
that the behavior of the resource provider is highly reliable
and it can be recommended to perform very important tasks
that are not allowed to fail or are very sensitive to latency.
The number of behavior trust levels can be further extended if
needed. After constructing the feature vector, we need to map
it to a discrete trust level ranging from 1 to 3. The behavior
trust level of j given by i can be expressed as Bt(i, j). We
use BTC(v(i, j)) to express the mapping from the trust feature
vector to a behavior trust level, that is, Bt(i, j) = BTC(v(i, j)).

IV. TRUST-AWARE TASK OFFLOADING FRAMEWORK
To reduce latency or energy consumption and ensure the trust-
worthiness of the services, we proposed a trust-aware task
offloading framework (TATOF) in MEC, as shown in Fig. 2.

Fig. 2 illustrates the overall structure of our framework.
There are mainly three modules, namely, trust evaluation
module, filtering module, and selection module. UIDi is
the relevant identification information of device i. Identity
model and behavior model in the trust evaluation module

FIGURE 2. Trust-aware task offloading framework.

are completed in the training phase. Based on these two
models, the identity trust and behavior trust levels of resource
providers can be predicted.

The trust evaluation module gives the predicted behavior
and identity trust levels of each provider and passes the
predicted results to the filtering module. Next, the filtering
module filters out the unqualified providers whose behavior
trust level is lower than that required by the user and whose
identity trust level is lower than task sensitivity level. This
step guarantees the trustworthiness of services by removing
these unqualified providers. Then, the filtering module hands
over the qualified providers to the selection module. Last,
the selection module calculates the cost of time and energy
overhead and selects an appropriate resource provider for
the task. It is important to note that we trust the behav-
ior and identity of the MEC servers provided by operators
by default.

A. TRUST EVALUATION
Our trust evaluation of resource providers includes two
aspects: identity trust and behavior trust, which can be
expressed as Tr = (It,Bt). Identity trust (It) comes from
the relationships that the owners of these devices establish at
the social layer. Behavior trust (Bt) refers to the evaluation of
resource providers’ behavior and performance over a period
of time.

We choose support vector machines (SVM) for classifi-
cation. In machine learning, support vector machines are
supervised learning models with associated learning algo-
rithms for classification and regression analysis. There are
two reasons why we choose SVM. On the one hand, since
there is no labeled dataset for this research, we have to label
the relevant data as dataset. Compared with other classifi-
cation algorithms, SVM requires a relatively small sample
size, which reduces our work on labeling data. On the other
hand, SVM can not only achieve good results in processing
linearly separable sample data, but also be good at dealing

150110 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

with linearly inseparable sample data. We cannot guarantee
that our labeled training data must be linearly separable.

The trust evaluation module is mainly composed of data
collection, feature extraction, model training, and trust level
prediction. In the data collection part, the behavior data is
obtained through a simulation tool.We obtain L records in the
format (UIDBi, UIDBj) generated by the simulation tool, and
label these records with different levels. After that, the feature
extraction sub-module will use UIDBi and UIDBj as parame-
ters to produce L pairs (vector(UIDBi,UIDBj),Bt(i, j)). Then,
these data will be sent to the model training sub-module and
used as training data. After the model is trained and tested, the
trust level prediction sub-module will predict the trust level of
any user pair on the basis of the trained model. The identity
data is captured from a provided API of a social network
application, and the processing steps are similar to behavior
trust. We will not repeat it here.

In general, the SVM-based trust evaluation process can be
summarized as follows.
• Collect a large number of trust feature vectors with the
corresponding trust levels, and put them as training data.

• Choose suitable parameters and kernel function for
SVM and train the classifier with training data.

• Test and validate our classifier. If the accuracy meets our
requirements, then proceed to the next step, or go back
to do some adjustment.

• Use the classifier to make inference, that is, when a
feature vector v(i, j) is given, the classifier can infer
which trust level i holds on j.

B. FILTERING
The filtering module is mainly used to filter out unqualified
nodes. If the task sensitivity level is higher than a provider’s
identity trust level, the provider is unqualified. If the behavior
trust level of a provider is lower than the user’s required
behavior level, the provider is unqualified.

For the convenience of description, a computation task
model is constructed here. For a computation task, we use
a five-tuple 〈Ii, Li, Oi, Si, Bi〉 to describe it. Ii is the input
data size of the task, which includes program code, input
parameters, and so on. Li is the amount of computing resource
(i.e., number of CPU cycles) required by the task. Oi is the
output data size of the task. Si represents the sensitivity level
of the task, which is obtained by analyzing the sensitivity of
the sensitive information set contained in the task. Bi repre-
sents the behavior trust level required by the user generating
the task.

To establish the relationship between the candidate
resource providers and the devices generating tasks, we need
to construct three related graphs, which are described in detail
as follows.

Specifically, we introduce the device identity trust graph
Gtru to model the social tie among the devices, as shown
in Fig. 3. Each node represents a device. If there is a directed
edge from node i to node j, it indicates that the owner of
device i has an identity trust relationship with the owner of

FIGURE 3. Device identity trust graph.

FIGURE 4. D2D connection graph.

FIGURE 5. D2D connection associated with behavior trust graph.

device j, and the weight of the directed edge represents the
level of identity trust. In particular, when a device and another
device belong to the same user, theweight of the directed edge
between the two devices is 3.

Next, we introduce the D2D connection graph and the
D2D connection associated with behavior trust graph. Based
on the technology of D2D communication, we can acquire
the devices in the current D2D communication range in real
time. These devices within the communication range can
form a connectable graph, which is a D2D connection graph,
as shown in Fig. 4. Each node represents a device. If there
is a connection between two devices, it means that the two
devices are in the range of communication with each other.
If there is a small blue ellipse in a node, it indicates that a task
is generated on the device node. The small ellipse has a task
sensitivity attribute Si which indicates that the sensitivity level
of the task is r . On the basis of Fig. 4, we introduce behavior
trust between devices, and form a D2D connection associated
with behavior trust graph, as shown in Fig. 5. If there is a
directed edge from node i to node j, the weight of the edge
represents the behavior trust level of j given by i.

VOLUME 7, 2019 150111

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

After constructing the above diagrams, we can perform
filtering in the nodes filtering sub-module to remove those
unqualified nodes.

For a task Ti = 〈Ii, Li, Oi, Si, Bi〉 on device i, the filtering
module will remove the nodes that can not meet the require-
ments of Si and Bi. Si determines the required identity trust
level, while Bi determines the required behavior trust level.
According to whether the task contains sensitive information,
there are two cases.

In one case, when the task does not contain any sensitive
information, we think that the sensitivity level of the task is
0. We no longer need to consider identity trust. For a task
Ti on device i, the qualified node j in the array d2dTrust[]
must satisfy the following requirement: In Fig. 5, there is an
edge from i to j and the weight of the edge is greater than or
equal to Bi (i.e., Bi <= Bt(i, j)). In this case, the qualified
nodes in the array d2dTrust[] are within the range of its D2D
communication and meet the required behavior trust level at
the same time.

In the other case, when the task contains sensitive infor-
mation, the sensitivity level of the task is Si. We need to
combine Fig. 3 and Fig. 5 for filtering. For a task Ti on device
i, the qualified node j in the array d2dTrust[] must satisfy the
following requirements: In Fig. 5, there is an edge from i to
j and the weight of the edge is greater than or equal to Bi
(i.e., Bi <= Bt(i, j)); in Fig. 3, there is an edge from i to j
and the weight of the edge is greater than or equal to the Si of
the task in Fig. 5 (i.e., Si <= It(i, j)).
We give the corresponding trust-based filtering algorithm 1

as follows.

C. SELECTION
Qualified nodes after filtering are considered to be trusted by
the user both in identity and behavior. For one thing, they
will not illegally obtain our sensitive information; for another,
they behave well during the task offloading process.

Faced with a large number of candidate nodes, how to
select a corresponding node to complete the task is gener-
ally determined by an offloading policy. In an offloading
policy, there may be only one execution mode or several
optional execution modes. In this module, we adopt a hybrid
offloading policy, which mainly provides four alternative
modes of task execution, as shown in Fig. 6. This policy
mainly refers to the work of Chen et al. [29] and we expand
latency on this basis. The fourmodes it provides are described
as follows.
• Local execution: Users can choose to perform tasks
on their mobile devices without the overhead of task
offloading.

• D2D offloaded execution: Devices in proximity at the
network edge can share their computing resources
through D2D communication to help other devices com-
plete their tasks, and these devices can benefit from the
mode.

• Direct edge server offloaded execution: A device can
offload its tasks directly to an edge server.

Algorithm 1 Trust-Based Filtering Algorithm 1
Input: a task Ti, task’s id: task_id
Output: d2dTrust[]
1: get device number device_i via task_id
2: get the position location_i of devicei
3: get the array d2dConnection [] of devices within the

D2D communication range of devicei via location_i
4: si =getTaskSensitivity(Ti)
5: bi=getBehaviorLevel(Ti)
6: if si=0 then
7: for each d2d_j in d2dConnection [] do
8: Bt=getBehaviorTrust(device_i, d2d_j)
9: if Bt > bi then
10: d2dTrust [counter]=d2d_j
11: counter++
12: end if
13: end for
14: else
15: get the owner deviceIOwner of device i by device_i
16: get the array social_person [] of human who have

social relationship with deviceIOwner
17: trustPerson[]=returnTrustPerson(si, social_person[])

18: for each d2d_j in d2dConnection [] do
19: Bt=getBehaviorTrust(device_i, d2d_j)
20: if Bt > bi then
21: deviceJOwner=getOwnerOfDevice(d2d_j)
22: if deviceIOwner==deviceJOwner then
23: d2dTrust [counter]=d2d_j
24: counter++
25: end if
26: for each trust_id in trustPerson [] do
27: if deviceJOwner==trust_id then
28: d2dTrust [counter]=d2d_j
29: counter++
30: end if
31: end for
32: end if
33: end for
34: end if
35: return d2dTrust []

• D2D-Assisted edge server offloaded execution: A
device with poor cellular connection first transmits its
computation task to a neighboring device through D2D
communication. The neighboring device has a strong
cellular connection, which can help it to offload the
task to an edge server for execution. After the task
is completed, the output can be obtained through the
neighboring device.

It is noteworthy that we think for users from users’ point of
view to minimize the consumption of all users in the system.
Edge servers (also known as MEC servers) generally have
constant power supply. Therefore, we do not add the energy
consumption of MEC servers to the cost of execution modes.

150112 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

FIGURE 6. An illustration of four different task execution modes.

According to the task five-tuple 〈Ii, Li, Oi, Si, Bi〉, the latency
and energy consumption in the above four different execution
modes can be given as follows, which are realized by the cost
prediction sub-module.
• Local execution: In this mode, the time spent mainly
comes from the task’s local computation time. The exe-
cution time for computation is given by T li = Li/ci and
the energy consumption is given by E li = ρ

c
i Li. Among

them, ci = (1− δi)Zi represents the CPU computing
power provided by device i per unit time and Zi repre-
sents the CPU working frequency. Besides, δi represents
the current load ratio (device i may need to run some
background loads) and ρci is the energy cost per CPU
cycle for computation. Accordingly, we can obtain the
cost of the local execution mode in terms of both time
and energy overhead as θ li = λ

t
iT

l
i +λ

e
iE

l
i . λ

e
i , λ

t
i ∈ [0, 1]

denote the weights of time and energy for device i’s
selection and λei + λ

t
i = 1. The user can adjust the two

weight parameters according to different situations. For
example, when a user is running some applications that
are sensitive to latency, the user can set λei = 0 and
λti = 1 in the selection process. In contrast, when a
device is at a low battery state and the user cares about
energy consumption, the user can set λei = 1 and λti = 0.

• D2D offloaded execution: In this mode, the cost of time
and energy is mainly derived from the transmission of
a task and the execution of the task. The time spent
is given by T d1ij + T d2ij and the energy consumption is
given by Ed1ij + Ed2ij . In this case, the time spent in
transmitting input and output data between two devices
is given by T d1ij = Ii/Dij + Oi/Dji and energy con-
sumption of transmitting input and output data between
two devices is given by Ed1ij =

(
Pdit + P

d
jr

)
Ii/Dij +(

Pdjt + P
d
ir

)
Oi/Dji. The time for executing the offloaded

task by device j is given by T d2ij = Li/cj and the energy
for executing the offloaded task by device j is given

by Ed2ij = ρcj Li. Among them, Pdit and Pdir represent
the energy consumption of device i in transmitting and
receiving data via D2D per unit time, respectively, and
Dij represents the rate when data is transmitted from i to
j through D2D. cj and ρcj are similar to those mentioned
in local execution. Accordingly, we can obtain the cost
of the D2D offloaded execution mode in terms of both
time and energy overhead as θdij = λti

(
T d1ij + T

d2
ij

)
+

λei

(
Ed1ij + E

d2
ij

)
.

• Direct edge server offloaded execution: In this mode,
the cost of energy for device i is mainly derived from
the transmission of the task, and the cost of time is
mainly derived from transmission and execution of the
task. The time consumption is given by T c1i + T c2i and
the energy consumption is given by Eci . In this case,
the time consumption of transmitting input and output
data between the device and an edge server is given by
T c1i = Ii/Dti +Oi/D

r
i and energy consumption of trans-

mitting input and output data between the device and
an edge server is given by Eci = Pcit Ii/D

t
i + PcirOi/D

r
i .

The time for executing the offloaded task in the edge
server is given by T c2i = Li/Km. Among them, Dti and
Dri represent the speed of uploading and downloading
data between i and the edge server, respectively, and Km
represents the CPU operating frequency of the virtual
machine m assigned to the task by the server. Accord-
ingly, we can obtain the cost of the Direct edge server
offloaded execution mode in terms of time and energy
overhead as θcim = λ

t
i

(
T c1i + T

c2
i

)
+ λeiE

c
i .

• D2D-Assisted edge server offloaded execution: In this
mode, the cost of energy for devices is mainly derived
from the transmission of a task, and the cost of time is
mainly derived from the transmission and execution of
the task. The time consumption is given by T dc1ij + T

dc2
j

and the energy consumption is given by Edc1ij + Edc2j .
In this case, the time consumption of transmitting input
and output data is given by T dc1ij = Ii/Dij + Oi/Dji +
Ii/Dtj +Oi/D

r
j . The time consumption of task execution

is given by T dc2j = Li/Km. Km is similar to hat men-
tioned in the above execution mode. The energy con-
sumption of transmitting input and output data between
two devices is given by Edc1ij =

(
Pdit + P

d
jr

)
Ii/Dij +(

Pdir + P
d
jt

)
Oi/Dji. Besides, the energy consumption of

transmitting input and output data between device j and
an edge server is given by Edc2j = Pcjt Ii/D

t
j + P

c
jrOi/D

r
j .

Accordingly, we can obtain the cost of the D2D-Assisted
edge server offloaded execution mode in terms of both
time and energy overhead as θdcij = λ

t
i

(
T dc1ij + T

dc2
j

)
+

λei

(
Edc1ij + E

dc2
j

)
.

Based on the above analysis, we can predict the latency and
energy consumption under different task execution modes,
and select an appropriate mode for a user. However, when
multiple users in the system have tasks waiting for offloading,

VOLUME 7, 2019 150113

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

FIGURE 7. An illustration of bipartite graph of task execution modes.

how to choose an appropriate execution mode for each user?
The node selection sub-module can also help us to solve this
problem.

To face the multi-user scenario in MEC, the multi-user
offloading problem is reduced to a matching problem of
bipartite graph. To minimize the overhead of the whole sys-
tem, we use the minimum-weight bipartite perfect matching
solution over the bipartite graph to select a suitable node for
each user device to complete a task.

The nodes left by the common action of the three graphs
of the filtering module are qualified. If users request the
behavior trust level of resource providers to be acceptable,
a bipartite graph consisting of the candidate nodes (edge
servers or qualified devices) and the tasks nodes waiting to
select execution modes is shown in Fig. 7. The graph is
divided into the side of task generation (referred to as the
initial side) and the side of optional executionmodes (referred
to as the execution side). A node i of the initial side indicates
that device i has a task, and a node j of the execution side
represents an optional object for task offloading. The weight
of one edge represents the time and energy consumption
when a task chooses this execution mode. The construction
method of the bipartite graph is given as follows. By using the
minimum-weight bipartite perfect matching method, we can
choose an appropriate node for each task. For our prob-
lem, the number of edges is proportional to the number of
nodes N, and hence our bipartite matching method has a
low complexity of O(N 2), which can scale well for practical
implementation.
• Local execution: There is an edge between a task node i
and its corresponding local node i, and the weight of this
edge is θ li .

• D2D offloaded execution: There is an edge between a
task node i and a node j if node j is in i’s d2dTrust[] after
filtering for device i, and the weight of this edge is θdij .

• Direct edge server offloaded execution: There is an edge
between a task node i and its subscribed server node, and
the weight of this edge is θcim.

• D2D-Assisted edge server offloaded execution: There is
an edge between a task node i and a bundled node (j and
the edge server serving for j) if node j is in i’s d2dTrust[]
after filtering for device i, and the weight of this
edge is θdcij .

V. PERFORMANCE EVALUATION
To verify the effectiveness of our proposed framework,
we have carried out some experiments. We mainly used
LIBSVM tool [30] for model training in trust evaluation
module and EdgeCloudSim [31], [32] for simulating mobile
edge computing environment. LIBSVM tool is an integrated
toolkit developed for supported vector machine and has
been widely used. EdgeCloudSim is a simulation tool that
supports the modeling of both computational and networking
resources to handle the edge computing scenarios and it
has good extensibility. It includes task generation module,
mobility module, network environment simulation module,
offloading policy module and so on. User devices include
smart bracelet, wearable glasses, wearable medical devices,
mobile phones, tablets, computers, etc., covering a wide
range. D2D connections between devices will change with
movement of devices, which depends on mobility mod-
ule in the EdgeCloudSim. Meanwhile, the cellular data
rate decreases with the increase of the number of devices
in the hotspot, because we simulate the network environ-
ment by this tool. We modified and extended this tool
to test the effectiveness of our framework. In particular,
we searched for answers to the following three research
questions:
• RQ1: How does the classification of machine learning
perform in trust evaluation (i.e., identity trust and behav-
ior trust)?

• RQ2: After introducing behavior trust evaluation, can
the misbehaving nodes be filtered out for users to
improve the performance of task offloading?

• RQ3: What is the performance of our framework in
reducing latency or energy consumption for users?

A. EXPERIMENTS ON RQ1
1) EXPERIMENTAL DESIGN OF PREDICTION PERFORMANCE
Firstly, we need to collect relevant data, and then label them
with different levels. Secondly, after the dataset is ready,
to give full play to its performance, SVM needs to select an
appropriate kernel, the kernel’s parameters, and soft margin
parameter C . Since there may be linearly inseparable in trust
evaluation, we choose the RBF kernel. The best combination
of C and γ is often selected by a grid search with expo-
nentially growing sequences of C and the kernel’s parameter
γ . Finally, there are several measures commonly used in
machine learning. For each category, a confusion matrix is
shown in Tab. 3, where m1 represents the number of items
correctly predicted for the category,m2 represents the number
of items that should fall into this category but are predicted
to fall outside that category, m3 represents the number of
items that do not belong to this category but are predicted
to fall into this category, and m4 represents the number of
items that do not belong to this category and are correctly
predicted. In our experiments, three measures are taken into
consideration: precision, recall and F-measure. The precision
P is P = m1/ (m1 + m3). The recall R is R = m1/ (m1 + m2),
and the F-measure is defined as F = 2PR/ (P+ R).

150114 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

TABLE 3. Confusion matrix.

Weibo, one of the most popular social networks in China,
was selected as the data source for user identity trust evalu-
ation. With the API of Weibo which is open for developers
to build applications, a lot of information can be obtained,
including user configuration, relationships, and so on.

In the data collection part of identity trust evaluation,
the data we employ is originated fromWeibo dataset of KDD-
Cup2012 track one [33]. The dataset represents a sampled
snapshot of Weibo, and provides standardized format and
abundant information in multiple domains. There are 7 txt
files in all. Our experiment makes use of the information
in three of them which include: user_profile.txt, user_sns.txt
and user_action.txt. Because we only consider the identity
trust levels that one user has on its followers, Dis(m, n) in the
identity trust feature vector is set to be 1 here. To ensure the
quality of training data, we randomly selected 1920 records
and invited three experts in the field of trust evaluation to label
these records at the level of 1 to 3. After labeling the records,
we used 1728 records as training data and the remaining
192 records as test data. In the experiment of identity trust,
we obtained the best accuracy under the combination of
C = 512 and γ = 8. We compared our identity trust
evaluation method with the AUTrust method of Yin et al.
(refer to [27]). AUTrust is a trust evaluation method of social
networks by assigning weights to trust factors. The trust
factors in this method are basically the same as those in our
identity trust evaluation method. The author divides these
trust factors into three categories and assigns equal weight
to each category.

In the data collection part of behavior trust evaluation,
we modified and extended EdgeCloudSim to collect data
that needs to be used. To ensure the quality of training data,
we invited three experts who have studied mobile edge com-
puting to label these data. We divided behavior trust into
three levels, and labeled 1920 records, of which 1728 records
were used as training data, and the remaining 192 records
were used as test data. In the experiment of behavior trust,
we obtained the best accuracy with the combination of
C = 32 and γ = 8. We compared our behavior trust eval-
uation method with theMSTrust method of Yuan et al. (refer
to [17]). MSTrust is a trust evaluation method for service
behavior in edge computing and the author gives a formula
for aggregating global trust. This method mainly considers
three trust factors: success rate, direct feedback and overall
reputation.

2) THE RESULT
RQ1: How does the classification of machine learning per-
form in trust evaluation (i.e., identity trust and behavior
trust)?

TABLE 4. Measurement of identity trust classifier.

TABLE 5. Measurement of behavior trust classifier.

FIGURE 8. Changes in accuracy of identity trust.

Tab. 4 shows the results of threemeasuresmentioned above
for each level in identity trust evaluation, and Tab. 5 shows the
results of three measures mentioned above for each level in
behavior trust evaluation. They verify the usability and good
performance of the trust classifiers we trained.

To verify the accuracy of the classifiers we trained,
we added some data and have performed experiments on
different test data sizes.

The comparison result of identity trust evaluation is shown
in Fig. 8. ITC is our identity trust classifier. To compare
our identity classifier and AUTrust , the experts analyzed the
global trust value and divided the range of [0, 1] into three
intervals [0, 0.3), [0.3, 0.6), and [0.6, 1] according to their
experience. These three intervals correspond to level 1, 2 and
3 of identity trust respectively. As shown in the figure, our
classifier can achieve better accuracy. Because in theAUTrust
method, each category of trust factor is given the sameweight,
which is inaccurate and unrealistic.

The comparison result of behavior trust evaluation is
shown in Fig. 9. BTC is our identity trust classifier. To com-
pare our behavior classifier and MSTrust , the experts ana-
lyzed the global trust value and divided the range of [0, 1] into
three intervals [0, 0.35), [0.35, 0.6), and [0.6, 1] according to
their experience. These three intervals correspond to level 1,
2 and 3 of behavior trust respectively. As shown in the figure,
our classifier can achieve better accuracy. Because in the
MSTrust method, only three trust factors, namely success
rate, direct feedback and overall reputation, are considered.

VOLUME 7, 2019 150115

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

FIGURE 9. Changes in accuracy of behavior trust.

Our behavior trust evaluation method includes not only the
above trust factors, but also the total number of providing
services (i.e., ANum(j)) and the time deviation rate (i.e.,
TD_rate(j)). These two trust factors can help us better
evaluate the behavior of resource providers. For example,
one provider provided and successfully completed 10 times
service while the other provided and successfully completed
90 times service. Although both providers have a 100% suc-
cess rate, we have a higher trust level for the provider that
completed service 90 times. The time deviation rate can help
us identify whether the provider reduces a large amount of
resources in the service process without agreement.

B. EXPERIMENTS ON RQ2
1) EXPERIMENTAL DESIGN OF THE IMPACT AFTER
INTRODUCING TRUST EVALUATION
We invited three experts in edge computing to inject several
misbehaving devices that reduce a lot of resources or inten-
tionally fail to perform tasks correctly during service into the
simulation tool. When tasks are assigned to these devices,
they may fail because of their improper behavior. By intro-
ducing our behavior trust evaluation, we can filter out these
misbehaving devices and reduce the failure rate of tasks in the
system. We compared the task failure rate in three cases: our
TATOF using BTC trust classifier (i.e., TATOF_BTC), only
selection module (i.e., Selection_only), and another ATATOF
that replaces our TATOF’s behavior trust evaluation mecha-
nism with MSTrust (i.e., ATATOF_MSTrust).

2) THE RESULT
RQ2: After introducing behavior trust evaluation, can the
misbehaving nodes be filtered out for users to improve the
performance of task offloading?

The average task failure rate in the system is shown
in Fig. 10. The Selection_only indicates that it has only
selection module but no trust evaluation and filtering mod-
ules. In this case, task failure rate is high because of some
misbehaved nodes. When behavior trust evaluation is intro-
duced, the nodes with poor performance are filtered out,
so the task failure rate of the system is reduced. At the same
time, our TATOF_BTC has a lower task failure rate than

FIGURE 10. Average task failure rate.

that of ATATOF_MSTrust because our behavior trust eval-
uation mechanism takes more behavior factors into account
and can better identify some improper behaviors. Task fail-
ure occurs in two cases. In one case, when misbehaving
devices incorrectly complete some tasks, these tasks will
fail. In the other case, because this paper does not deal
with the mobility management of task migration, we also
assume that a task will fail when two devices are out of
communication range with each other. Task migration means
that the virtual machine shoule be migrated if a user roam
from one network region to another. In fact, we will do
further research on task migration in the future. When a
device is beyond the original communication range due
to mobility, we will choose an appropriate approach to
transmit output data to the user to ensure the continuity
of service.

C. EXPERIMENTS ON RQ3
1) EXPERIMENTAL DESIGN OF REDUCING LATENCY
AND ENERGY CONSUMPTION
The main purpose of this experiment is to verify the perfor-
mance of the proposed task offloading framework in reducing
latency and energy consumption as the number of devices
increases. After adding task sensitivity computation, trust
evaluation and filtering, these processes will introduce some
time overhead. In this case, can our framework reduce latency
or energy consumption for users during task offloading? To
better observe the effect of our framework, we set up three
offloading scenarios (i.e., local computation, only offloaded
to the edge server (only_edge), and our proposed TATOF).
The average reduction rates of time and energy of another
two scenarios are compared by using the local computation
as a benchmark.

The levels of identity and behavior trust between devices
is invariable in this experiment. Tab. 6 shows the simulation
settings, most of which are consistent with the actual mea-
sured values in practice [34], [35]. The number of computing
resources required by a task is expressed in terms of theMIPS
and 1Mips = 4MHz.

150116 VOLUME 7, 2019

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

TABLE 6. Simulation setting.

For better observation, when we focus on the performance
of reducing latency, we assume that users’ weight of energy
consumption in task offloading is 0. Conversely, when we
focus on the performance of reducing energy consumption,
we assume that users’ weight of latency is 0.

2) THE RESULT
RQ3: What is the performance of our framework in reducing
latency or energy consumption for users?

In Web services, users need to provide some personal
information required by services as input when enjoying
services. Similar to Web services, a task generated by an
application needs to collect some personal information as
input to complete a specific function. The information items
that need to be collected are predetermined, predefined, and
limited in number. For the computation of task sensitivity,
if there are n personal information items needed in a task,
the number of relevant sensitivity composed of each two
personal information items is C2

n . Therefore, combined with
the analysis of the task sensitivity formula, the computation
of task sensitivity has a low complexity of O(n2). For the
trust evaluation, once the model is completed in the training
phase, the trust classifier is obtained. In practice, the time
cost of predicting trust level based on the classifier is low.
For the filtering process, if the number of devices in the
communication range of device i is N , the process has a
low complexity of O(N 2) because the identity trust level and
behavior trust level of these N devices need to be considered
at the same time. Therefore, our framework does not cause
too much time overhead.

As the number of devices in the system increases, the aver-
age time reduction rate of the two scenarios is shown
in Fig. 11. When the number of devices in the system
increases gradually, the cellular data rate between a device
in a hotspot and an edge server decreases, and the trans-
mission time increases. At the same time, as the number of
devices increases, edge servers have to handle more tasks,
so the servers’ response time to tasks increases. Due to the
above two reasons, the time reduction rate of only_edge is
gradually reduced, and our TATOF , with the help of D2D
and D2D-Assist execution modes, can still maintain a better
performance than only_edge.

FIGURE 11. Time reduction rate.

FIGURE 12. Energy reduction rate.

The average energy reduction rate of the two scenarios
is shown in Fig. 12. As the number of devices increases,
the number of alternative devices for D2D connections
increases, so the energy reduction rate increases a little under
TATOF . As the number of devices continues to grow, the cel-
lular data rate between devices in a hotspot and edge servers
decreases. As a result, transmission time increases and energy
reduction rate in the system decreases. Under TATOF , with
the help of D2D and D2D-Assist execution modes, the energy
reduction rate is superior to that of only_edge scenario.

In conclusion, although our TATOF takes into account trust
evaluation mechanism and filters out unqualified resource
providers to ensure service trustworthiness, it can still reduce
latency or energy consumption for users.

VI. CONCLUSION AND FUTURE WORK
We introduce online social networks into mobile edge com-
puting and propose a trust-aware task offloading framework.
To ensure the trustworthiness of services, we introduce iden-
tity trust and behavior trust into trust evaluation in mobile
edge computing. To address the challenge that it is difficult to
assign an appropriate weight to each trust factor, we formalize
trust evaluation of mobile edge computing into a classifica-
tion problem. Then, we filter out unqualified nodes that do not
meet the requirements of tasks. Finally, the selection module
selects one of the qualified providers for a user to execute the
task based on the offloading policy. Based on our framework,

VOLUME 7, 2019 150117

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

we are able to reduce latency or energy consumption and
ensure the trustworthiness of the services for users.

In future work, we plan to add more related factors into a
trust feature vector and conduct experiments on larger dataset.
Meanwhile, we will conduct further research on mobility
management of task migration. When a device is out of the
original communication range due to movement, we want to
choose an appropriate way to return the output data of the task
to the device.

REFERENCES
[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile cloud

computing: Architecture, applications, and approaches,’’ Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

[2] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, ‘‘MAUI: Making smartphones last longer
with code offload,’’ in Proc. MobiSys, San Francisco, CA, USA, 2010,
pp. 49–62.

[3] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, ‘‘State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control sys-
tems,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455,
4th Quart., 2017.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[5] F. Bonomi, R. A. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and
its role in the Internet of Things,’’ in Proc. MCC SIGCOMM, Helsinki,
Finland, 2012, pp. 13–16.

[6] J. Zhang, B. Chen, and Y. Zhao, ‘‘Data security and privacy-preserving in
edge computing paradigm: Survey and open issues,’’ IEEE Access, vol. 6,
pp. 18209–18237, 2018.

[7] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, ‘‘Security
and privacy in device-to-device (D2D) communication: A review,’’ IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 1054–1079, 2nd Quart., 2017.

[8] R. Roman, J. López, and M. Mambo, ‘‘Mobile edge computing, fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comp. Syst., vol. 78, pp. 680–698, Jan. 2018.

[9] G. Shang-Fu and Z. Jian-Lei, ‘‘A survey of reputation and trust mechanism
in peer-to-peer network,’’ in Proc. Int. Conf. Ind. Control Electron. Eng.,
Aug. 2012, pp. 116–119.

[10] Z. Yan, P. Zhang, and A. V. Vasilakos, ‘‘A survey on trust management
for Internet of Things,’’ J. Netw. Comput. Appl., vol. 42, pp. 120–134,
Jun. 2014.

[11] W. Li, J. Cao, K. Hu, J. Xu, and R. Buyya, ‘‘A trust-based agent learning
model for service composition in mobile cloud computing environments,’’
IEEE Access, vol. 7, pp. 34207–34226, 2019.

[12] X. Lin, R. Lu, X. Liang, and X. Shen, ‘‘STAP: A social-tier-assisted packet
forwarding protocol for achieving receiver-location privacy preservation
in VANETs,’’ in Proc. IEEE Comput. Commun. Soc., Shanghai, China,
Apr. 2011, pp. 2147–2155.

[13] M. Hussain and B. M. Almourad, ‘‘Trust in mobile cloud computing with
LTE-based deployment,’’ in Proc. IEEE 14th Int. Conf. Commun. Assoc.
Workshops, Bali, Indonesia, Dec. 2014, pp. 643–648.

[14] W. Ahmad, S. Wang, A. Ullah, Sheharyar, and Z. Mahmood, ‘‘Reputation-
aware trust and privacy-preservation for mobile cloud computing,’’ IEEE
Access, vol. 6, pp. 46363–46381, 2018.

[15] P. Zhou, K. Wang, J. Xu, and D. Wu, ‘‘Differentially-private and trustwor-
thy online social multimedia big data retrieval in edge computing,’’ IEEE
Trans. Multimedia, vol. 21, no. 3, pp. 539–554, Mar. 2019.

[16] J. Xu, S. Wang, B. K. Bhargava, and F. Yang, ‘‘A blockchain-enabled
trustless crowd-intelligence ecosystem on mobile edge computing,’’
IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3538–3547, Jun. 2019.
doi: 10.1109/TII.2019.2896965.

[17] J. Yuan and X. Li, ‘‘A multi-source feedback based trust calculation
mechanism for edge computing,’’ in Proc. IEEE INFOCOM, Honolulu,
HI, USA, Apr. 2018, pp. 819–824.

[18] M.-H. Chen, B. Liang, and M. Dong, ‘‘Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,’’ in Proc. IEEE
ICC, Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[19] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, ‘‘Optimal delay
constrained offloading for vehicular edge computing networks,’’ in Proc.
ICC, Paris, France, May 2017, pp. 1–6.

[20] F. Liu, Z. Huang, and L. Wang, ‘‘Energy-efficient collaborative task com-
putation offloading in cloud-assisted edge computing for IoT sensors,’’
Sensors, vol. 19, no. 5, p. 1105, Mar. 2019.

[21] C. Dong and W. Wen, ‘‘Joint optimization for task offloading in edge
computing: An evolutionary game approach,’’ Sensors, vol. 19, no. 3,
p. 740, Feb. 2019.

[22] K. Li, M. Tao, and Z. Chen, ‘‘Exploiting computation replication for
mobile edge computing: A fundamental computation-communication
tradeoff study,’’ 2019, arXiv:1903.10837. [Online]. Available: https://
arxiv.org/abs/1903.10837

[23] A. Al-Shuwaili and O. Simeone, ‘‘Energy-efficient resource alloca-
tion for mobile edge computing-based augmented reality applica-
tions,’’ IEEE Wireless Commun. Lett., vol. 6, no. 3, pp. 398–401,
Jun. 2017.

[24] Standards for Privacy of Individually Identifiable Health Information,
Standard 45 CFR Parts 160 and 164, HIPAA, Dec. 2000.

[25] J. R. Weible, ‘‘Privacy and data: An empirical study of the influence
of types of data and situational context upon privacy perceptions,’’
Ph.D. dissertation, Dept. Elect. Eng., Mississippi State Univ., Starkville,
MS, USA, 1993.

[26] W. Sherchan, S. Nepal, and C. Paris, ‘‘A survey of trust in social
networks,’’ ACM Comput. Surv., vol. 45, no. 4, pp. 47:1–47:33,
Aug. 2013.

[27] G. Yin, F. Jiang, S. Cheng, X. Li, and X. He, ‘‘AUTrust: A practical trust
measurement for adjacent users in social networks,’’ in Proc. CGC, Hunan,
China, Nov. 2012, pp. 360–367.

[28] K. Zhao and L. Pan, ‘‘Amachine learning based trust evaluation framework
for online social networks,’’ in Proc. IEEE TrustCom, Beijing, China,
Sep. 2014, pp. 69–74.

[29] X. Chen, Z. Zhou,W.Wu, D.Wu, and J. Zhang, ‘‘Socially-motivated coop-
erative mobile edge computing,’’ IEEE Netw., vol. 32, no. 6, pp. 177–183,
Nov./Dec. 2018.

[30] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27,
2011.

[31] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘‘EdgeCloudSim: An envi-
ronment for performance evaluation of edge computing systems,’’
Trans. Emerg. Telecommun. Technol., vol. 29, no. 11, Aug. 2018,
Art. no. e3493.

[32] Simulation Tools: EdgeCloudSim. Accessed: Oct. 16, 2019. [Online].
Available: http://github.com/CagataySonmez/EdgeCloudSim

[33] Kddcup. Accessed: Oct. 16, 2019. [Online]. Available: http://www.
kddcup2012.org/c/kddcup2012-track1

[34] X. Chen and J. Zhang, ‘‘When D2D meets cloud: Hybrid mobile
task offloadings in fog computing,’’ in Proc. IEEE ICC, Paris, France,
May 2017, pp. 1–6.

[35] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, ‘‘Exploiting massive D2D
collaboration for energy-efficient mobile edge computing,’’ IEEEWireless
Commun., vol. 24, no. 4, pp. 64–71, Aug. 2017.

DEXIANG WU received the B.S. degree in com-
puter science from Jiangsu Normal University.
She is currently pursuing the M.S. degree with
the Computer Science Department, Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing.
Her current research interests include mobile edge
computing, cloud computing, access control, pri-
vacy preservation, and service composition.

150118 VOLUME 7, 2019

http://dx.doi.org/10.1109/TII.2019.2896965

D. Wu et al.: Trust-Aware Task Offloading Framework in MEC

GUOHUA SHEN received the M.S. and Ph.D.
degrees in computer science from theNanjingUni-
versity of Aeronautics and Astronautics, China.
He is currently an Associate Professor with the
College of Computer Science and Engineering,
Nanjing University of Aeronautics and Astronau-
tics. His research interests include requirement
traceability, fog computing, description logic,
semantic web, and web services and ontology.

ZHIQIU HUANG received the Ph.D. degree in
computer science from the Nanjing University
of Aeronautics and Astronautics. He is currently
a Professor with the College of Computer Sci-
ence and Engineering, Nanjing University of
Aeronautics and Astronautics. He is also the
Director of software safety in computer science
with the Nanjing University of Aeronautics and
Astronautics. His research interests include formal
method, cloud computing, edge computing, web

security, and privacy preservation.

YAN CAO is currently pursuing the Ph.D. degree
with the Computer Science Department, Nanjing
University of Aeronautics and Astronautics, Nan-
jing. Her research interests include formal method,
access control, cyber physical systems, informa-
tion security and privacy preservation, and mobile
edge computing.

TIANBAO DU is currently pursuing the M.S.
degree with the Computer Science Department,
Nanjing University of Aeronautics and Astro-
nautics, Nanjing. His research interests include
requirement traceability, machine learning, soft-
ware engineering, and edge computing.

VOLUME 7, 2019 150119

	INTRODUCTION
	RELATED WORK
	TRUST EVALUATION IN MOBILE EDGE COMPUTING
	TASK OFFLOADING POLICIES IN MOBILE EDGE COMPUTING

	PRELIMINARIES
	DEFINITION OF SOCIAL COLLABORATIVE MOIBLE EDGE COMPUTING
	RELATED THEORIES IN SOCIAL COLLABORATIVE MOIBLE EDGE COMPUTING
	TASK SENSITIVITY
	IDENTITY TRUST EVALUATION
	BEHAVIOR TRUST EVALUATION

	TRUST-AWARE TASK OFFLOADING FRAMEWORK
	TRUST EVALUATION
	 FILTERING
	SELECTION

	PERFORMANCE EVALUATION
	EXPERIMENTS ON RQ1
	EXPERIMENTAL DESIGN OF PREDICTION PERFORMANCE
	THE RESULT

	EXPERIMENTS ON RQ2
	EXPERIMENTAL DESIGN OF THE IMPACT AFTER INTRODUCING TRUST EVALUATION
	THE RESULT

	EXPERIMENTS ON RQ3
	EXPERIMENTAL DESIGN OF REDUCING LATENCY AND ENERGY CONSUMPTION
	THE RESULT

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	DEXIANG WU
	GUOHUA SHEN
	ZHIQIU HUANG
	YAN CAO
	TIANBAO DU

