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ABSTRACT In highways, lane markings are undoubtedly the most widely used landmarks for vehicle
localization. However, they have a drawback in that they lack information on longitudinal position estimation
and ego-lane identification. To alleviate this drawback, this paper presents a practical vehicle localization
system for highways. The proposed system utilizes lane endpoints to enhance longitudinal position accuracy
and road signs to improve the ego-lane identification accuracy. This system efficiently fuses the lane
markings, lane endpoints and road signs along with a digital map and other low-cost sensors in a particle
filter framework. Since it only uses low-cost sensors such as amonocular front-view camera, in-vehicle wheel
speed and yaw rate sensors, as well as a low-end global positioning system (GPS), it is ready to mount on
mass-produced vehicles. In the experiment, the proposed system was quantitatively evaluated using a dataset
obtained while driving on 40 km stretch of highway, and outperformed previous approaches by showing a
lateral position error of less than 0.12 m and a longitudinal position error of less than 0.25 m in terms of root
mean square error (RMSE).

INDEX TERMS Highway autonomous driving, lane endpoint, particle filter, road sign, sensor fusion, vehicle
localization.

I. INTRODUCTION
In recent years, the technologies of advanced driver assistance
systems (ADAS) and autonomous driving have developed
rapidly. Vehicle localization is one of the key components of
these technologies with other components such as perception,
planning, and control. Therefore, precise vehicle localiza-
tion is attracting attention as an essential requirement for
autonomous vehicles [1]–[3]. Global navigation satellite sys-
tems (GNSS) are the most widely used technique for vehicle
localization. However, it can generate large localization errors
when signals are reflected or blocked in urban canyons or
tunnels. Many studies have been conducted to alleviate this
problem [4]–[6], and the fusion of GNSS and dead reckon-
ing (DR) has become a representative approach. However,
its performance can be degraded when its errors accumulate

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

when the GNSS signal is reflected or blocked for a long
period of time.

To overcome the drawbacks of the GNSS-DR, localization
methods utilizing a perception sensor with a digital map
have been extensively researched [7]–[11]. These methods
estimate the position of the ego-vehicle by matching the
landmarks found by the perception sensor and the corre-
sponding landmarks stored in the digital map. A variety of
landmarks have been used for vehicle localization, and road
surface markings are one of the most widely used landmarks.
From the viewpoint of the perception sensor, road surface
markings are easy to detect since their shapes are simple and
standardized and their color and reflectivity are distinctive
from those of the road surface. Among road surfacemarkings,
lane markings are undoubtedly the most widely used land-
marks [4], [6], [11]–[13]. Although lane markings provide
accurate in-lane lateral positions, it lacks information on
longitudinal position and ego-lane identification. To alleviate
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these drawbacks, methods utilizing other road surface mark-
ings such as stop lines, crosswalks, arrows, and letters have
been suggested. Since those road surface markings frequently
appear on urban roads, they are useful in urban situations.
However, in highway situations, stop lines and crosswalks
rarely exist, and arrows and letters only appear in specific
areas such as intersections [12], and their usability is quite
limited in highway situations.

Therefore, this paper proposes a practical vehicle localiza-
tion system that alleviates the drawbacks of lane markings
in highway situations. To enhance the longitudinal position
accuracy, the proposed system utilizes lane endpoints. Our
previous paper introduces a method to efficiently detect
lane endpoints but does not present a method to use them
for vehicle localization purposes [12]. Although lane mark-
ings and lane endpoints can improve in-lane position accu-
racy, it cannot enhance the ego-lane identification accuracy
because the lane endpoints appear in multiple lanes. In high-
way situations, the ego-lane identification task becomes
more difficult compared with urban situations due to a
large number of lanes, repetitive road structures, and a sim-
ple background. Two main approaches have been used to
identify ego-lanes. One approach recognizes road bound-
aries to identify ego-lanes [14]–[16]. But this approach
becomes infeasible if the road is too wide to capture in the
camera’s field-of-view or the road is too crowded for the
camera to observe the road boundaries. The other approach
detects types of arrows in ego and adjacent lanes and iden-
tifies ego-lanes based on their types [4], [10]. But in high-
way situations, since arrows seldom appear, and multiple
lanes have the same type of arrows, this approach becomes
impractical. To improve ego-lane identification accuracy,
the proposed system utilizes road signs. The road signs
are useful for ego-lane identification because their positions
are different in images when they are captured in different
lanes.

Other vehicles rarely occlude them because they are
installed in high positions. The proposed system efficiently
fuses lane markings, lane endpoints, and road signs along
with a digital map and other low-cost sensors in the par-
ticle filter framework. Here, lane endpoints are used to
enhance the longitudinal position accuracy and road signs
are used to improve the ego-lane identification accuracy.
Also, the landmarks used in the proposed system are detected
by our previously developed methods: the lane and lane
endpoint detection method [12], and the road sign detec-
tion method [17]. This system is ready to mount on mass-
produced vehicles since it only uses low-cost sensors such
as a monocular front-view camera, in-vehicle wheel speed
and yaw rate sensors, and a low-end global positioning
system (GPS). In the experiment, the proposed system
was quantitatively evaluated using a dataset obtained while
driving on 40 km of highway, and outperformed previous
methods by showing a localization accuracy of less than
0.3 m in root-mean square-error (RMSE) and execution time
of 4.34 ms.

The proposed system has the following contributions:
1) It suggests a method that efficiently combines lane

markings, lane endpoints, and road signs as landmarks for
vehicle localization purposes in highway situations.

2) It achieves accurate vehicle localization results (less
than 0.3 m) and ego-lane identification results (almost
100%) while requiring a small amount of computational cost
(4.34 ms).

3) It is ready to be applied to mass-produced vehicles
since it utilizes only low-cost sensors that have been already
mounted on off-the-shelf vehicles.

The rest of this paper is organized as follows:
Section 2 presents related research. Section 3 introduces an
overview of the proposed system. Sections 4 and 5 explain the
landmark detection method used for the proposed system and
the particle filtering-based vehicle localization, respectively.
Section 6 describes the experimental results and analyses.
Finally, this paper is concluded in Section 7.

II. RELATED WORK
According to information obtained by the perception sensor
and contained in the digital map, localization methods utiliz-
ing a perception sensor with a digital map can be categorized
into a feature point-based approach [5], [7]–[9] and a road
facility-based approach [4], [6], [10], [11], [17]–[24], [41].
The feature point-based approach finds feature points using
cameras and matches them with the corresponding feature
points contained in the digital map. When feature points are
reliably found and matched, it can achieve high localiza-
tion accuracy. However, its performance can be degraded by
appearance changes of surrounding obstacles and it needs a
large amount of storage for the digital map to contain numer-
ous feature points and their descriptors. The road facility-
based approach extracts road facilities such as road surface
markings [19]–[24], [41], traffic lights [18], traffic signs [25],
road signs [17], [40], and streetlights [26] and matches them
with the corresponding road facilities contained in the digital
map. This approach requires a small amount of storage for the
digital map compared with the feature point-based approach
because the digital map contains simplified shapes, types,
and locations of the road facilities. Since the road facilities
are designed to be visually distinctive and under government
control, they are relatively easy to be recognized by percep-
tion sensors and their locations and appearance are seldom
changed without permission. For these reasons, the road
facility-based approach can be considered more suitable for
vehicle localization in highway situations. Since the proposed
system is categorized into the road facility-based approach,
this section focuses on previous methods in this approach.

A variety of landmarks have been used for the road
facility-based approach, and road surface markings are one
of the most widely used landmarks for vehicle localiza-
tion [4], [11], [19]–[24], [41]. From the viewpoint of the
perception sensor, road surface markings are relatively easy
to detect since their shapes are simple and standardized, and
their color and reflectivity are distinctive from those of the
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road surface. But usability of these landmarks can decrease
when they are worn or covered with snow. The methods using
road surface markings can be categorized into signal-level,
feature-level, and symbol-level approaches based on the level
of information being used.

The signal-level approach [19], [20] utilizes raw data of
the road surface markings acquired by the perception sensor.
The feature-level approach [21]–[23] extracts features of the
road surface markings from raw data of the perception sensor.
The signal-level and feature-level approaches do not require
much effort to process the outputs of the perception sensors.
But they require a high computational cost for the matching
procedure and a large amount of storage for the digital map
because the raw data and features extracted from it includes
a lot of information. The symbol-level approach [4], [10],
[24], [41] detects various road surface markings and matches
them with those contained in the digital map. This approach
requires a low computational cost for the matching procedure
and a small amount of storage for the digital map because it
simplymatches and stores types and positions of the symbols.
However, it does require extra computational costs to detect
target symbols.

The most popular symbol used in the symbol-level
approach is lane markings. Nedevschi et al. [10],
Lu et al. [24], Gu et al. [41], and Suhr et al. [4] used
lane markings for vehicle localization purposes. In a similar
manner, curbs and guardrails have been used instead of
lane markings [27], [28]. However, lane markings have a
drawback in that they lack information on both longitudinal
position estimation and ego-lane identification. To alleviate
this drawback, crosswalks [29], stop lines [10], arrows [4],
and letters [30] have been utilized. These are useful in urban
situations because they are frequently observed on urban
roads. But in highway situations, crosswalks and stop lines
seldom exist, and arrows and letters rarely appear. In our
previous work [12], the distributions of road surfacemarkings
on approximately 40 km of Korean highway situations were
analyzed. It was found that there are no crosswalks and
stop lines on highways, and arrows and letters are observed
only in approximately 3% of the entire route. Furthermore,
the longest section that does not include any arrows and
letters was up to 7.8 km in length. This analysis shows that
crosswalks, stop lines, arrows, and letters have limitations
for alleviating the drawback of lane markings in highway
situations.

Road facilities other than road surface markings have also
been utilized for vehicle localization purposes. Traffic signs
and streetlights have been used as landmarks for enhancing
localization accuracy. Those landmarks are less occluded
because they are located higher than the surrounding vehicles.
Unlike road surface markings, they are not easily worn and
are seldom covered with snow. However, it is difficult to
obtain accurate vehicle localization results when using traffic
signs or streetlights alone because they do not frequently
appear on the road like lane markings. Although streetlights
appear on the road more often than traffic signs, high-end

FIGURE 1. Overview of the proposed system.

perception sensors such as lidars are required to reliably
detect them [26]. Li et al. [25] calculated the 3D position of
a traffic sign detected by a monocular camera using a digital
map and proposed a particle filter-based localization method
using lane markings and traffic signs. Kim and Park [16]
suggested a method that detects traffic signs using a stereo
camera and identified ego-lanes based on lateral offsets from
the detected traffic signs. Kim et al. [26] presented a method
that uses streetlights detected by a lidar as well as lane
markings.

To develop a practical vehicle localization system, this
paper proposes a system that only uses landmarks that can
be detected by a low-cost monocular front-view camera,
which has already been mounted on numerous off-the-shelf
vehicles. To improve the localization accuracy, the proposed
system utilizes a combination of lane endpoints and road
signs that has not been utilized for vehicle localization pur-
poses. Although the proposed system uses only low-cost
sensors and requires a small amount of computational cost,
it achieves accurate vehicle localization results in highway
situations.

III. SYSTEM OVERVIEW
Fig. 1 shows a block diagram of the proposed system. The left
part of this diagram shows low-cost sensors and a digital map
used for the proposed system. Its right part shows the particle
filter-based vehicle localization that consists of four steps:
time update, measurement update, position estimation, and
resampling. The time update step predicts the distribution of
the vehicle state using the wheel speed and yaw rate sensors.
The measurement update step corrects the distribution of the
vehicle state using a low-cost GPS, landmarks (lanes, lane
endpoints, and road signs) detected by the monocular front-
view camera, and a digital map. The position estimation step
determines the vehicle position based on the distribution of
the vehicle states. The resampling step resamples particles to
prevent the situation where the probability mass is concen-
trated on a few particles.

IV. LANDMARK DETECTION
A. LANE AND LANE ENDPOINT DETECTION
Lanes and lane endpoints are detected based on the method
proposed in [12]. This method first extracts lane candidate
pixels using a top-hat filter and detects left and right lanes
based on random sample consensus (RANSAC)-based line
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FIGURE 2. Lane endpoint detection procedure.

FIGURE 3. Road sign detection procedure.

estimation. Yellow lines in Fig. 2(a) show a lane detection
result. More sophisticated methods can also be used for lane
detection [42]. After detecting left and right lanes, profiles
of the top-hat filter response are acquired along the left and
right lanes. Lane endpoint candidates are found by extracting
local minima and maxima from differentiation results of the
profiles because they indicate the locations where bright val-
ues abruptly change. Red and blue crosses in Fig. 2(b) shows
an example of the lane endpoint candidates generated by
the lane endpoint hypothesis generation (HG). Neighboring
areas around the lane endpoint candidates are converted into
bird’s-eye view images and verified by a simple but efficient
classifier that uses a histogram of oriented gradients (HOG)
and the support vector machine (SVM). Green rectangles in
Fig. 2(c) show the neighboring area of lane endpoint candi-
dates used for the lane endpoint hypothesis verification (HV).
Red and blue circles in Fig. 2(d) show the final lane endpoint
detection result after the verification. Finally, the positions of
the detected lane endpoints are estimated by using intrinsic
and extrinsic parameters of the front-view camera.

B. ROAD SIGN DETECTION
Road signs are detected based on the method proposed
in [17]. The road sign detection procedure consists of six steps
as shown in Fig. 3. In order to reduce the computational cost,

this method first selects regions of interest (ROIs). Corners
are extracted by the method called features from accelerated
segment test (FAST) and the regions around the extracted cor-
ners are set to ROIs.White squares in Fig. 3(a) are the selected
ROIs. The corner HG step is conducted based on the selected
ROIs. In this step, a Viola-Jones detector with local binary
pattern (LBP) features finds four types of corners within the
selected corner ROIs [31], [32]. The Viola-Jones detector is
trained to find four types of corners: in Fig. 3(b), top-left, top-
right, bottom-left, and bottom-right corners depictedwith red,
blue, white, and yellow dots, respectively. Once four types
of corners are found, the road sign HG step combines sev-
eral corners that satisfy predetermined geometric constraints
and produces road sign hypotheses. Yellow rectangles shown
in Fig. 3(c) indicate the generated road sign hypotheses. After
the road sign HG step, the corner HV step examines the
corners composing the road sign hypotheses by using the
SVM classifier with HOG features [33], [34]. The dots and
rectangles shown in Fig. 3(d) show the corner and road sign
hypotheses remained after corner verification. The road sign
HV step examines the road sign hypotheses remained after
corner verification by using the SVM classifier with HOG
features. Two rectangles in Fig. 3(e) indicate the road sign
hypotheses remained after the road sign verification. Finally,
the non-maximum suppression (NMS) step determines the
most reliable road sign when multiple road signs overlap.
Fig. 3(f) shows an example result of the road sign detection.

V. PARTICLE FILTERING-BASED VEHICLE LOCALIZATION
The proposed system utilizes the particle filter to localize
the ego-vehicle by fusing in-vehicle motion sensors, low-cost
GPS, monocular front-view camera, and a digital map. The
particle filter has been widely used for vehicle localization
purposes because it can fuse various sensors in a simple way
and be applied to nonlinear or non-Gaussian system [4], [6].
As aforementioned in Fig. 1, the particle filter consists of four
steps: time update, measurement update, position estimation,
and resampling. The system repeats these four steps. This
chapter explains all those four steps in detail.

The particle filter estimates the probability distribution of
the current state variables from the measured information.
The probability distribution is represented by a set of M
particles. In this paper, the n-th particle at time t is denoted
by xnt (1 ≤ n ≤ M ) and consists of three values as

x nt =
[
x nt y nt θ nt

]T (1)

where xnt and ynt indicate the 2D location and θnt indicates
the heading angle. Initial particles are generated based on
the probability density function of the initial state, which
is derived by the ego-vehicle location and heading angle
provided by the low-cost GPS.

A. TIME UPDATE
The time update step predicts the distribution of the vehi-
cle state based on the velocity motion model [35]. This
motion model utilizes two velocities: a translational velocity
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(vehicle speed, v) and a rotational velocity (yaw rate, ω)
acquired by the wheel speed and yaw rate sensors, respec-
tively. Predicted particle x̂ nt|t−1 is generated as

x̂nt|t−1

=

 x̂
n
t|t−1
ŷnt|t−1
θ̂nt|t−1



=


x̂nt−1|t−1−ṽ/ω̃ sin

(
θ̂nt−1|t−1

)
+ṽ/ω̃ sin

(
θ̂nt−1|t−1+ω̃1t

)
ŷnt−1|t−1+ṽ/ω̃ cos

(
θ̂nt−1|t−1

)
−ṽ/ω̃ cos

(
θ̂nt−1|t−1+ω̃1t

)
θ̂nt−1|t−1+ω̃1t


ṽ= v+ sample

(
σ 2
v

)
, ω̃ = ω + sample

(
σ 2
ω

)
(2)

where the overhead tilde (∼) represents a variable perturbed
by an additional random noise and sample(σ 2) is a function
that generates a random sample from a zero-mean Gaussian
distribution with variance σ 2. σ 2

v and σ 2
ω are variances for

wheel speed and yaw rate noises, respectively. Since the parti-
cle filter uses a finite number of particles, it has a limitation of
representing a high-dimensional probability distribution. Due
to this limitation, the particle filter can suffer from the particle
degeneracy problem [36], [37]. To avoid this problem, this
paper uses a jittering technique [36].

B. MEASUREMENT UPDATE
The measurement update step corrects the distribution of the
vehicle state using a low-cost GPS, landmarks detected by
the camera, and a digital map. As landmarks, this paper uses
lanes, lane endpoints, and road signs. The goal of the mea-
surement update can be thought of as calculating the weight
for each particle. The final weight (w n

t ) of the predicted
particle (x̂ nt|t−1) is calculated as

w n
t = w n

t−1 · w
n
G, t · w

n
L, t · w

n
E, t · w

n
S, t (3)

where w n
G, t , w

n
L, t , w

n
E, t , and w

n
S, t are the weights obtained

from the low-cost GPS, lane, lane endpoint, and road sign,
respectively. If some landmarks are unobservable, corre-
sponding weights are set to 1.0. It means that the particles are
updated only using the observed landmarks. If no landmark is
observable, the proposed system estimates the vehicle posi-
tion based on GPS and in-vehicle motion sensors.

The weight for the low-cost GPS, w n
G, t is calculated based

on the difference between the 2D location measured by the
low-cost GPS and that of the predicted particle. This weight
is modeled by a multivariate Gaussian distribution as

w n
G,t=

1

2π
√
det (6G)

exp
{
−
1
2

(
p̂nt −pG,t

)T
6−1G

(
p̂nt −pG,t

)}
(4)

where pG,t (=
[
xGPS,t yGPS,t

]T ) is a 2D location measured

by the low-cost GPS and p̂ nt (=
[
x̂ nt|t−1 ŷ

n
t|t−1

]T
) is a 2D

location of the predicted particle.6G is set to a 2×2 diagonal
matrix. Fig. 4(a) shows an example of the probability density

FIGURE 4. Probability distribution functions for the (a) low-cost
GPS-based measurement update, (b) lane-based measurement update,
(c) lane endpoint-based measurement update, and (d) road sign-based
measurement update. The heading angles of the predicted particles are
assumed to be parallel with the lane direction when drawing these
figures for convenience.

distribution of the low-cost GPS-based measurement update
in orange. Vivid orange-colored locations have large values.
In this figure, a three-lane road with dashed lane markings is
depicted, and the center of the distribution indicates the 2D
location measured by the low-cost GPS.

The weights for the landmarks are calculated by matching
the landmarks detected by the camera and those stored in the
digital map. In the case of a lane, the lateral offset of the ego-
vehicle with respect to the driving lane is used. The weight for
the lane, w n

L, t is calculated based on the difference between
the lateral offset measured by the camera, lD,t and the lateral
offset of the predicted particle in the digital map, l̂nt as

w n
L,t =

1√
2πσ 2

L

exp

−
(
l̂nt − lD,t

)2
2σ 2

L

 (5)

The lateral offset of the predicted particle, l̂nt is calculated
by using the predicted particle and the lane that includes the
predicted particle in the digital map. σ 2

L is the variance for
the lateral offset of the lane. Fig. 4(b) shows an example of the
probability density distribution of the lane-based measure-
ment update in the case where lD,t is measured to be at the
center of the driving lane. This distribution has larger values
at the centers of all lanes.

In case of the lane endpoint, the lateral and longitudinal
offsets of the lane endpoint with respect to the ego-vehicle
are used. The weight for the lane endpoint, w n

E, t is calculated
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based on the difference between the 2D offset measured by
the camera, eD,t and the 2D offset of the predicted particle in
the digital map, ê nt as

w n
E,t=

1

2π
√
det (6E)

exp
{
−
1
2

(
ê nt −eD,t

)T
6−1E

(
ê nt −eD,t

)}
(6)

The 2D offset of the predicted particle, ê nt is calculated using
the predicted particle and the lane endpoint in the digital
map, which corresponds to the lane endpoint detected by
the camera. The nearest neighbor matching is used when
pairing the lane endpoints detected by the camera and stored
in the digital map. Only lane endpoints of the same type are
matched. 6E is the covariance matrix for the 2D offset of the
lane endpoint. Fig. 4(c) shows an example of the probability
density distribution of the lane endpoint-based measurement
update in cases where two lane endpoints are detected. This
distribution has larger values at the locations that give the 2D
offsets similar to the 2D offset measured by the camera.

In the case of the road sign, unlike the lane and lane
endpoint, it is difficult to use the offset to the road sign.
This is because the 3D position of the road sign cannot
be reliably calculated when using the monocular front-view
camera. Lanes and lane endpoints are located on the ground
plane and they can be captured by the camera when their
locations are close to the camera. However, the road signs
are usually located at 5.0 m above the ground plane and their
sizes are relatively large. Thus, the whole road sign can be
captured by the camera with limited field-of-view only when
its location is far from the camera. In the case of using a
monocular camera, 3D position estimation error dramatically
increases while the distance to the target object from the cam-
era increases. We have tried to estimate the 3D positions of
the road signs and used them for the measurement update, but
this approach produces a relatively large vehicle localization
error due to the aforementioned problem. Therefore, instead
of using the 3D position of the road sign, we decided to
use the directional information of the road sign that is the
angle between the driving direction of the ego-vehicle and the
incidence angle of the road sign’s center point. This approach
produces reliable results because the monocular camera has
an advantage in angle estimation thanks to its high angular
resolution. The weight for the road sign, w n

S, t is calculated
based on the difference between the angle of the road sign
measured by the camera, φD,t and the angle of the road sign
calculated by the predicted particle in the digital map, φ̂ nt as

w n
S,t =

1√
2πσ 2

S

exp

−
(
φ̂ nt − φD,t

)2
2σ 2

S

 (7)

φ̂ nt is calculated using the predicted particle and the road sign
in the digital map, that corresponds to the road sign detected
by the camera. When multiple road signs are presented, a
Hungarian algorithm is used for paring them [38]. σ 2

S is the
variance for the angle of the road sign. Fig. 4(d) shows an

example of the probability density distribution of the road
sign-based measurement update when the road sign appears
on the right side of the ego-vehicle. This distribution has
larger values at the center of the line that connects the center
point of a road sign and the camera. If only a road sign is used
for vehicle localization, it is impossible to determine the ego-
lane. However, if the road sign is combined by lane endpoints
that provide a precise longitudinal position, the ego-lane can
clearly be identified.

In case where multiple road signs exist at similar locations,
this system still properly works because it can detect mul-
tiple road signs and matches them with nearby road signs
in the digital map. In detail, the road sign detector finds
all road signs captured by a front-view camera. Once road
signs are detected, reference road sign locations near the ego-
vehicle location are retrieved from the digital map. After that,
the detected road signs and retrieved road signs are matched
by their locations. Finally, the matching results are used for
calculating the road sign-based weight in (7).

C. POSITION ESTIMATION AND RESAMPLING
The position estimation step determines the position of the
ego-vehicle based on the distribution of the vehicle states.
In this paper, the ego-vehicle position is determined by the
minimum mean square error (MMSE) estimator that can be
approximated by the weighted mean of the particles [6]. The
resampling step resamples particles to prevent a situation
where the probability mass is concentrated on a few parti-
cles. This paper uses a low-variance sampling method for
resampling [4].

VI. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
The proposed system was evaluated using a dataset that
includes a total of 40 km of driving on Korean highways.
In detail, this route is from the Seoul tollgate to the Hobeop
junction of the Yeongdong and Gyeongbu highway in South
Korea as shown in the first row of Fig. 5. Since the test route
is quite long, it is divided into two subsets: DB 1 and DB 2.
In the first row of Fig. 5, blue and red points indicate the
routes for DB 1 and DB 2, respectively. Detailed explanations
on DB 1 and DB 2 are presented in Table 1. The second
and third rows of Fig. 5 show example images for DB 1 and
DB 2, respectively, taken from the monocular front-view
camera. It can be seen that the test dataset includes various
real driving situations such as tunnels, ramps, curves, and
traffic congestions. Labels shown at the top of the images
correspond to those shown on the map above the images.
As shown in Table 1 and the images of Fig. 5, DB 2 is
more complicated than DB 1, as there are more lane changes,
longer tunnels, and traffic congestion. The digital map was
built by a mobile mapping system (MMS). 3D points were
automatically acquired by the MMS and landmark locations
were manually designated using the 3D points. The detailed
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FIGURE 5. Test route and driving situations included in the test dataset.
Blue and red points indicate the routes for DB 1 ((a), (b), and (c)) and
DB 2 ((d), (e), and (f)), respectively. Labels shown at the top of the images
correspond to those shown on the map above the images.

TABLE 1. Detailed explanations on the test dataset.

explanations on the MMS and designation procedure are
presented in [12].

The proposed systemwas quantitatively evaluated by com-
paring its localization results with outputs of a high-end
positioning sensor (Applanix POS LV210 [39]). This posi-
tioning sensor consists of a real-time kinematic (RTK) GPS,
high precision inertial measurement unit (IMU), and distance
measurement indicator (DMI). This high-end positioning
sensor was also used for the emulating GPS, wheel speed
sensor, and yaw rate sensor. To this end, specifications of
low-cost sensors presented in [6] were used. Frequency and
horizontal position accuracy of the GPS were set to 1 Hz
and 2.0 m, respectively. Sensor Fusion and Tracking Toolbox
in MATLAB was used for GPS emulation. Noise (RMS) of
the wheel speed and yaw rate sensors were set to 0.3 m/s
and 0.5◦/s, respectively, and their frequencies were set to
15 Hz. A monocular front-view camera located behind the
windshield was used as a perception sensor. Its resolution,

horizontal field of view, and acquisition frequency are 1280×
1024 pixels, 60◦, and 15 Hz, respectively. The digital map
was constructed by using a mobile mapping system (MMS)
introduced in [12]. This digital map contains locations of lane
markings, lane endpoints, and road sign centers and the types
for each landmark.

B. PERFORMANCE EVALUATION AND COMPARISON
The proposed system was quantitatively evaluated and com-
pared with previous approaches based on three positioning
error criteria (lateral, longitudinal, Euclidean errors in terms
of RMSE) and ego-lane identification accuracy. The lateral
error indicates the position error in the direction perpendicu-
lar to the vehicle traveling direction, the longitudinal error
indicates the position error in the vehicle traveling direc-
tion, and the Euclidean error indicates the Euclidean distance
between the estimated and ground truth positions. In order to
calculate the ego-lane identification accuracy, ego-lanes are
assumed to be correctly identified when the lateral error is
less than 1.75 m, which is half the minimum road width of
a Korean highway (3.5 m). This is reasonable because the
ego-vehicle mostly moves along the centerline of the lane.
Since the particle filter involves randomness, the proposed
system was applied to the test dataset 50 times and all evalu-
ation results presented in this section were obtained from all
50 trials. As aforementioned, the proposed system identifies
the ego-lane with the help of road signs. Thus, this system
started at the location where road signs can be observed by
the camera. Initial positions of the ego-vehicle were set by
using a low-cost GPS, and initial particles were uniformly
distributed with a width and height of 10 m centered around
the ego-vehicle. The number of particles used for the particle
filter was set to 1000.

Table 2 shows the performance evaluation result of the pro-
posed system in both DB 1 and DB 2. This system gives less
than 0.12m for the lateral error, less than 0.25m for the longi-
tudinal error, less than 0.27 m for the Euclidean error in both
DB 1 and DB 2. This accuracy can be considered sufficient
for highway autonomous driving because the autonomous
driving was successfully carried out with a Euclidean error
of 0.54 m in [6]. The Euclidean error of DB 2 is slightly
larger than that of DB 1. Compared with DB 1, DB 2 includes
more roads (such as tunnels) with solid line lane markings
where no lane endpoints are provided. Since the longitudinal
positioning accuracy depends on the lane endpoints, their
absence increases the longitudinal error of DB 2 and con-
sequently increases its Euclidean error. In terms of the ego-
lane identification rate, the proposed system achieves nearly
100%, which means it almost always provides a lateral error
of less than 1.75 m in both DB 1 and DB 2.

Fig. 6 shows example localization results of the proposed
system in DB 1 and DB 2. In this figure, (a) and (b) are from
DB 1, and (c) and (d) are fromDB 2. Upper and lower images
in each figure show a driving situation and corresponding
localization result, respectively. In the lower images, red
points, blue crosses, and magenta triangles are localization
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TABLE 2. Performance evaluation results of the proposed system.

FIGURE 6. Example localization results of the proposed system. (a) and
(b) are example results in DB 1, and (c) and (d) are example results in DB
2. Upper and lower images in each figure show a driving situation and
corresponding localization result, respectively. In the lower images, red
points, blue crosses, and magenta triangles are localization results of the
proposed system, high precision positioning sensor, and low-cost GPS,
respectively.

results of the proposed system, high precision positioning
sensor, and low-cost GPS, respectively. Figures 6(a) to (d)
shows a sloping road, tunnel, curved road, and congested
road, respectively. The results in Table 2 and Fig. 6 reveal that
precise lateral and longitudinal positions of the ego-vehicle
can be obtained by the proposed system in various highway
situations.

Fig. 7 shows detailed localization result of the proposed
system in DB 1. In this figure, red and blue lines indicate
the lateral and longitudinal errors, respectively. This system
always achieves a lateral error less than 0.28 m thanks to
road signs and lane markings. The road signs help ego-lane

FIGURE 7. Detailed localization result of the proposed system in DB 1.
Red and blue lines indicate the lateral and longitudinal errors,
respectively.

identification and lane markings help in-lane lateral localiza-
tion. Except for a yellow region between 630 and 670 sec-
onds, this system mostly achieves a longitudinal error of less
than 0.50 m thanks to the lane endpoints that help in-lane
longitudinal localization. The yellow region between 630 and
670 seconds indicates the tunnel shown in Fig. 5(b), where
only solid line lane markings exist. It can be noticed that the
longitudinal error increases due to the absence of the lane
endpoints. However, the longitudinal error decreases after the
ego-vehicle exits the tunnel and observes the lane endpoints
again. The longitudinal error can also increase when the lane
endpoints are falsely detected. At 810 seconds in Fig. 7,
some lane endpoints were false detected because of repainted
lane markings and this increased the longitudinal error up
to 0.81 m.

In general highway driving situations, the most frequent
landmark is lane markings. Thus, the ego-vehicle can easily
estimate its in-lane lateral position based on lane markings.
The second most frequent landmark is lane endpoints. The
ego-vehicle can estimate its in-lane longitudinal position
based on lane endpoints. Road signs are less common than the
other landmarks. However, road signs almost always appear
at highway entrances. Thus, the ego-lane can be identified
based on road signs soon after the ego-vehicle enters the
highway. Once the ego-lane is identified, the ego-vehicle can
keep its positioning accuracy by updating the particles based
on lanemarkings, lane endpoints, GPS, and in-vehicle motion
sensors, even though road signs are unobservable for a while.

The proposed system was compared with two represen-
tative vehicle localization approaches. One approach uses
GPS with DR, and the other approach utilizes GPS, DR,
lane markings, and a digital map. These approaches are
abbreviated as GPS-DR and GPS-DR-LANE in this section,
respectively. For fair comparison, the proposed system,
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TABLE 3. Performance evaluation results of the three approaches.

GPS-DR, and GPS-DR-LANE were performed under the
same conditions using the particle filter. Table 3 shows per-
formance comparison results of three approaches. In both
DB 1 and DB 2, GPS-DR shows the worst performance,
GPS-DR-LANE shows the next worst performance, and the
proposed system shows the best performance in terms of
Euclidean error. Performance difference between GPS-DR
and GPS-DR-LANE is caused by the decrease of the lat-
eral error when using lane markings. In DB 1, the use of
lane markings decreases the lateral error from 2.45 m to
1.64 m while the longitudinal error remains almost the same
(1.41 m and 1.44 m). Although lane markings are utilized,
GPS-DR-LANE gives large lateral and longitudinal errors.
This is because lane markings have a drawback of lack-
ing information on ego-lane identification and longitudinal
position estimation. This is the reason why the proposed
system tries to utilize the lane endpoints and road signs.
As shown in Table 3, the proposed system dramatically
increases the localization performance compared with GPS-
DR-LANE. This performance difference is caused by the
decrease of the lateral error with the help of the road signs
and the decrease of the longitudinal error with the help
of the lane endpoints. In DB 1, the use of the road signs
decreases the lateral error from 1.64 m to 0.12 m and the use
of the lane endpoints decreases the longitudinal error from
1.44 m to 0.18 m. In terms of the ego-lane identification rate,
the proposed system outperforms the other two approaches
by showing 100 %while GPS-DR and GPS-DR-LANE show
58.22 % and 81.92 % in DB 1, respectively. Since the ego-
lane identification rate highly depends on the lateral error, this
result shows that road signs and lane markings can increase
lateral positioning performance and consequently help ego-
lane identification. As shown in Table 3, the performance
differences between the three approaches in DB 2 are almost
the same as those in DB 1.

Recently, Kim et al. [26] performed vehicle localization
in Korean motorway roads, which are similar to our test
environment. Their system utilizes lane markings detected
by the monocular front-view camera and streetlights detected
by a high-end Lidar with 16 layers, which has never been
mass-produced by attaching them to off-the-shelf vehicles.
It achieves a lateral error of 0.21 m and longitudinal error
of 0.63 m. Compared with this system, the proposed sys-
tem achieves more accurate results despite using only a

TABLE 4. Execution time of the proposed system.

monocular front-view camera, which is a low-end perception
sensor that has been widely attached to various off-the-shelf
vehicles.

C. EXECUTION TIME
Execution times of the proposed system are presented
in Table 4. These times were measured on an Intel Core
i7-7700 CPU with 16 GB RAM using only a single core.
An average execution time of 4.34 ms was required for the
proposed system, which means that 230 frames can be pro-
cessed per second in real time. Processing times for detecting
lane markings, lane endpoints, and road signs are excluded
in Table 4 because these tasks are conducted not by a vehi-
cle localization module but by a multi-functional front-view
camera module. Since only a small amount of computation
cost is required for the proposed system, this system can
readily be applied to off-the-shelf vehicles.

VII. CONCLUSIONS
This paper proposes a practical and low-cost vehicle local-
ization system targeted to highway situations. The proposed
system effectively fuses various low-cost sensors such as a
monocular front-view camera, low-end GPS, and in-vehicle
motion sensors along with a digital map in the particle filter
framework. Compared with previous approaches, this sys-
tem utilizes two additional landmarks (lane endpoints and
road signs) to improve both longitudinal positioning and
ego-lane identification accuracies. Experimental results show
that the proposed system achieves vehicle localization results
sufficient for highway autonomous driving and outperforms
previous approaches while requiring only a tiny amount of
computational cost. Furthermore, this system uses only low-
cost sensors that have been widely mounted on off-the-shelf
vehicles. Because it has obvious advantages from a practi-
cal viewpoint, we are currently modifying and optimizing
the whole system including landmark detection and vehicle
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localization and will implement it using a low-cost embedded
board such as NXP330Q processor, an automotive multime-
dia application processor.
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