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ABSTRACT The second generation of blockchain represented by smart contracts has been developing
vigorously in recent years. However, frequent smart contract vulnerability incidents pose a serious risk
to blockchain ecosystem security. Since current symbol execution tools often fall into path explosion and
thus lead to inefficient detection, this paper expands Mythril’s framework to optimize its performance.
Firstly, it finds out potential vulnerable code regions using static analysis and identifies critical paths
that may have security defects. Then, aiming at the problem that traditional search algorithms cannot
actively locate and explore critical paths, this paper presents a multi-objective oriented path search (MOPS)
strategy based on path priority. This strategy guides dynamic symbolic execution to cover critical paths
quickly, avoiding blind traversal of program execution paths. Finally, it describes security rules and proposes
corresponding detection logics for different vulnerability categories. This paper analyzes over 1000 smart
contracts extracted from Etherscan. Compared with existing tools based on symbolic execution, the proposed
method can reduce time consumption by around 35% while ensuring the accuracy of vulnerability detection.
Moreover, existing tools often issue warnings that do not actually cause financial losses. But the proposed
method only concentrates on code regions related to transfer of funds, so it can reduce the false alarm rate

to some extent.

INDEX TERMS Block chain security, smart contract, vulnerability mining.

I. INTRODUCTION

Smart contract expands the application of blockchain tech-
nology outside the financial sector, marking the arrival of the
Blockchain 2.0 era [1]. With the widespread use of Decen-
tralized Application (DApp), the number of smart contracts is
growing explosively. Smart contracts involve a large number
of digital assets and are immutable upon deployment, so they
face even more severe security situation than traditional soft-
ware [2]. Since 2016, various smart contract vulnerabilities
have been exposed in numerous security incidents, causing
huge property losses. At present, smart contract security
mainly depends on developers’ skill and code auditing expe-
rience. However, it is very laborious and time-consuming due
to the increasing number and complexity of smart contracts.
Thus, it has become a hot issue to develop a universal auto-
mated method for efficient vulnerability detection.
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A. RELATED WORK

Formal verification, symbolic execution, and fuzzy test are
the mainstream vulnerability detection methods for smart
contract.

Formal verification formalizes smart contract documents
and codes with formal language, and then checks their
functional correctness and security attributes through strict
mathematical logic and proof. It can also verify complex
business logic and advanced properties such as economic
problems and game theory. For smart contracts with small
scale but complex functional design, formal verification is a
suitable choice. Quantstamp [3] utilizes the traditional model
checking techniques, and it requires lots of human effort to
review the source code and write the specification manu-
ally. Securify [4] largely reduces manual effort. For each
security attribute, Securify defines a compliance mode and
a violation mode, and contract behaviors are classified as
violation, warning, and compliance accordingly. But Securify
can only check a list of fixed properties such as missing
input validation and mishandled exception, rather than the
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functional correctness. Furthermore, all these tools cannot
verify complex systems. Yale University and Columbia Uni-
versity Security Team developed CertiK [5], which decom-
poses the code into smaller proof tasks according to the
logical layer, and distributes these tasks to a distributed net-
work. Bhargavan et al. [6] introduced a framework to analyze
Ethereum contracts by translation into F*. The translation
supports only a fragment of the EVM bytecode and does not
come with a justifying semantic argument. Hildenbrandt et al.
presented KEVM [7], the first fully executable formal EVM
semantics in K, providing an executable and human read-
able model of a reference semantics for EVM programs.
Grishchenko et al. [8] presented the first complete small-step
semantics for EVM bytecode and formalized a large frag-
ment in the F* proof assistant. Moreover, they first defined
a number of salient security properties for smart contracts,
relying on a combination of hyper- and safety properties.
Additionally, tools such as Isabelle/HOL [9] and Why3 [10]
also implement the semantic representation of Ethereum Vir-
tual Machine (EVM) and perform some formal verification
work.

The symbolic execution technique symbolizes some vari-
ables on demand and then interprets the instructions in the
program with symbolic values. Based on whether the variable
values at specific program points satisfy the vulnerable con-
dition, security defects can be determined. Oyente [11] is the
first symbolic execution tool for smart contract. It supports
detection for transaction order dependency (TOD), timestamp
dependency, reentrancy, mishandled exception and integer
overflow. Oyente relies on simplified semantics and adopts
a pattern-based approach to define the concrete properties.
However the tool lacks a semantic characterization. In addi-
tion, it reduces path explosion by simply limiting the number
of loops, so it is difficult to report many security defects.
Manticore [12] is a symbolic execution framework for both
binaries and EVM bytecode. It can verify several common
security problems of smart contract, but it does not have full
supports on EVM instructions and handles storage access
addressing inefficiently with concretization. Mythril [13]
integrates several techniques, including symbol execution,
taint analysis and control flow checking. It can discover
a series of common security problems, but it is prone to
false positives due to strict detection logic. TEETHER [14]
not only supports vulnerability detection, but also realizes
the automatic exploitation of smart contract vulnerabilities.
It gives the definition of the vulnerable state, in which Ether
can be sent to an attacker-controlled address. By means of
program slicing and symbolic execution, it determines the
transaction sequence to the vulnerable state, which is used for
exploitation. However, it only supports detection of low-level
security violations within a single contract. MAIAN [15]
focuses on three classes of vulnerabilities: greedy contracts,
prodigal contracts and suicide contracts. It characterizes these
vulnerabilities as properties of execution traces, and identifies
bugs generated from a trace of invocations. However, sym-
bolic execution often suffers from path explosion problems
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when dealing with multiple loops and large-size contracts,
and results in inefficient detection.

The fuzzy test technique uses mutation strategies to quickly
change the seed input according to some heuristic methods.
Incorrect input may cause the program to crash, hang up
or lead to other unexpected behaviors. To the best of our
knowledge, very few fuzzy tests have been carried out on
smart contract. Related works include Echidna [16] and Con-
tractFuzzer [17]. However, they do not present satisfactory
results. The randomness of the input renders only a part of
the path space accessible, while many complex parts of the
program are protected by branch conditions. These branch
conditions cannot be satisfied by random mutations, leaving
the program far from fully explored.

B. CHALLENGES

The limitation of existing tools and platforms for smart con-
tract vulnerability detection lies in several aspects. Firstly,
they support only a few types of vulnerabilities, which results
in difficulties to achieve comprehensive security verification
with a single tool. Secondly, they generally have high false
positive rates and false negative rates. Thirdly, most of them
cannot be fully automated and thus rely on additional manual
review. At last, the excessive time consumption leads to poor
auditing efficiency. Therefore, the priority of this work is to
improve the accuracy, efficiency and degree of automation for
the vulnerability mining task.

C. SOLUTION

This paper takes a technical route that combines both static
analysis and dynamic analysis. Through static analysis,
potential vulnerable code regions are determined. Unlike
similar symbolic execution tools that analyze all program
paths, this work only focuses on paths that are related to Ether
transfer and performs dynamic analysis on them. In this way,
the method improves the efficiency of vulnerability mining.
With respect to dynamic analysis, symbolic execution and
taint analysis techniques are adopted. Existing tools mainly
use traditional search strategies in symbolic execution, while
this work preferentially explores more important paths. Dur-
ing the target-guided dynamic symbolic execution, critical
paths of the smart contract are covered and a set of path
constraints are recorded. At the same time, the taint analysis
module marks program inputs and operation results that may
lead to vulnerability as taint messages, and traces their flow so
as to determine whether the tainted value can reach a hazard
point. Furthermore, related works did not elaborate on how to
detect various vulnerabilities. This paper proposed targeted
detection logic to provide technical details for specific types
of vulnerabilities.

D. CONTRIBUTIONS
This paper has made the following contributions.

1. It defines the critical paths that have potential secu-
rity defects, and adds a static analysis module to the
LASER-Ethereum kernel of Mythril.

VOLUME 7, 2019



M. Fu et al.: Critical-Path-Coverage-Based Vulnerability Detection Method

IEEE Access

2. It proposes a heuristic path-priority-based search strat-
egy that allows dynamic symbol execution to quickly
approach critical code regions. The new strategy solves the
problems that traditional search algorithms may have.

3. According to Ethereum’s transaction execution model,
it presents the execution properties of several common types
of vulnerabilities and puts forward targeted detection logic.

4. Tt establishes a test set of smart contract source
code covering various types of vulnerabilities and obtained
1000 deployed contracts from Etherscan for experiments. The
results show that when compared to cutting-edge tools like
Oyente and Mythril, the proposed method consumes much
less detection time and incurs lower false positives to some
extent.

E. OUTLINE

The paper is structured as follows. Section II introduces the
technical background and research motivation. Section III
proposes the optimization strategies based on Mythril and
elaborates on each module of the improved vulnerability
mining framework. Section IV describes eight types of vul-
nerabilities that occur most frequently, defines their execution
properties, and designs detection logic accordingly. Section V
verifies the effectiveness of the proposed method by experi-
ments and makes comparison with current mainstream tools.
Section VI makes a conclusion, pointing out the merits and
limitations of this work and looking ahead to future work.

Il. BACKGROUND

A. SYMBOLIC EXECUTION

Symbolic execution technique was first raised by C. James
and King in 1976 [18]. It symbolizes program parameters
or other uncertain variables on demand. Instruction operands
can be replaced by expressions consisting of symbolic vari-
ables and constants. Then it interprets program instructions
one by one, updates the execution state and collects path
constraints. Whenever the execution runs into a branch node,
a fork is performed in order to complete the exploration of all
executable paths.

Dynamic symbol execution, also called concolic execu-
tion, is an optimization of traditional static symbol execution.
It maintains a concrete state and a symbolic state. Concolic
execution first runs the program with concrete values, and
collects the symbolic constraints of conditional statements
during execution. Then it infers input changes with constraint
solver so as to direct the next execution to another path.
Famous concolic execution tools include DART [19], CUTE
[20], KLEE [21] for source code, and S2E [22], Mayhem
[23], angr [24] for binary. At present, the constraint solving
technique has become a part of symbolic execution, playing
an important role in test case generation and program path
exploration.

Symbolic execution has some inevitable defects in prac-
tice. On the one hand, it is laborious and time-consuming
to find all feasible execution paths for a relatively complex
program. The biggest barricade is path explosion [25], which
is mainly caused by: (1) In theory, there may be 2" paths when
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FIGURE 1. Transaction model.

n is the number of branch nodes. The analysis system may
run out of computation and memory resources; (2) If the loop
variable or the recursive controlling variable is a symbolic
value, symbolic execution will explore all the states in the
variable state space. Large increase in path may lead to system
failure after exhaustion. On the other hand, it is difficult to
model operating system features such as file systems, sockets,
and multithreading.

However, compared with the desktop operating system or
mobile operating system, the operating mechanism of EVM is
much simpler. So it is particularly relevant to smart contracts
and can achieve complete path coverage in theory.

B. TAINT ANALYSIS

Taint analysis is essentially a data flow analysis of taint
variables. The general process of dynamic taint analysis is
to dynamically obtain all executable paths in the program
and determine the taint variables, express all instructions
with intermediate language, perform forward or backward
data dependency analysis according to propagation rule, and
finally obtain a set of instructions which rely on taint vari-
ables or have impact on taint variables. Schwartz et al. [26]
elaborated on dynamic taint analysis and forward symbol exe-
cution, and proposed a general language that standardizes the
representation of taint propagation rule. Newsome et al. [27]
first applied dynamic taint analysis to attack detection,
and published BitBlaze [28], which is one of the earliest
open source program analysis work. Modern platforms often
integrate multiple program analysis methods, breaking the
boundary between classical techniques. Zhang et al. [29]
proposed a dynamic taint analysis method assisted by static
disassembly information. In addition, dynamic taint analysis
often works with symbolic execution to perform better pro-
gram analysis [30], [31].

C. TRANSACTION MODELLING

Ethereum can be regarded as a transaction-based state
machine according to the Ethereum Yellow Book [32]. Once
a new transaction is recognized by blockchain, it causes a
state transition. Fig. 1 presents the structure of Ethereum
Global State, which consists of three kinds of state variables,
the World State, the Machine State and the Environment State
respectively [32].
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World State is also called account state and represents a
mapping from 160-bit address to the account. Machine State
indicates the running state of EVM. It is defined as a tuple
(g, pc, m, i, s), where g is the amount of available gas, pc is
the program counter, m is the memory content, i is the active
word in the memory, and s is the stack content. Environment
State is the execution environment associated with current
transaction, including variables such as the address of transi-
tion originator /,,, the value of Ether sent to current account 7,
and the depth of current message call or contract creation /.
These state variables in the transaction model may play a
role in constraint collection during symbolic execution and
vulnerability detection in the text below.

D. MOTIVATION
Fig. 2 shows the main process of smart contract vulnerabil-
ity mining based on symbolic execution: Conduct symbolic
execution on contract bytecodes. For specific types of vulner-
ability, analyze potential exploitable paths and obtain their
condition constraints. If there exists a solution, the path is
considered to be reachable and there is a vulnerability.
Mythril is a notable smart contract security tool. It obtains
the abstract program state and possible execution paths
through its symbolic execution engine LASER-Ethereum.
The path condition can be expressed as constraints on the
symbolic values. With the symbolic description of the state
on each program point and corresponding constraints, the vul-
nerability property can be represented as an expression about
the value of variables. By detecting whether the conditional
expression can be satisfied under the current constraint,
Mythril can determine the possibility of vulnerability. How-
ever, smart contract introduces more instructions due to wider
application prospects. Its increasing complexity inevitably
causes path explosion. Accordingly, it becomes more difficult
to symbolically execute smart contracts.

Ill. CRITICAL-PATH-COVERAGE-BASED VULNERABILITY
DETECTION METHOD

In order to reduce time consumption and improve the effi-
ciency of vulnerability mining, it is necessary to select a
part of contract paths to analyze. Assuming that an execution
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path containing the code region that should be cared about is
a critical path, there is no need to consider the upper-level
branches at the beginning and branch node. It is better to
just direct execution traces to go through the path below
the code region. Otherwise, each branch node is traversed to
obtain a new execution path, which is likely to cause a space
explosion. To avoid the blind search of path and improve the
efficiency of vulnerability mining, this section improves the
vulnerability mining process shown in Fig. 2 with a critical-
path-coverage-based method. Fig. 3 presents the basic
workflow.

Firstly, the control flow graph (CFG) of smart contract is
constructed from EVM bytecode, and the sensitive instruc-
tions in the program are identified through static analysis.
According to the basic block where the sensitive instruc-
tion is located, the code regions of interest are extracted.
Then, dynamic symbolic execution is performed guided by
multi-objective oriented path search (MOPS) strategy. This
step records path constraints and marks certain program
inputs or calculation results as taint messages based on the
dynamic taint analysis scheme. The taint diffusion path is
tracked until the taint value reaches a hazard point. Finally,
the smart contract is automatically tested by different detec-
tion modules. Constraint solving technique is employed to
calculate the input of potential exploitable path.

A. OVERALL ARCHITECTURE
The optimizations are implemented on the basis of Mythril’s
framework. Fig. 4 presents the overall architecture.

There are five main components, among which the com-
ponents in grey are optimized: (1) a static analyzer module
is added into LASER-Ethereum; (2) the Symbolic Execu-
tion Engine module is modified; (3) the Detector module
is mended. The other components, including Disassembler,
Web Explorer and CFG Constructer, has been implemented
by Mythril and other existing tools. These techniques are
relatively mature, so we employ related modules of Mythril to
avoid repeating previous works. The details of each module
are described below.

The Disassembler module is used to compile the source
code and transform bytecode into opcode. Web explorer
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receives the address provided by users and searches for
corresponding contract from the Internet. LASER-Ethereum
is the core component of Mythril that performs symbolic
execution. This work adds a new module, static analyzer,
to this component. As explained in subsection B of section
111, This module identifies sensitive instructions and marks
critical nodes. In LASER-Ethereum, this work also changes
the path search strategy of its original Symbolic Execution
Engine, with technical details clarified in subsection C of
section III. Z3 [33] SMT (Satisfiability Modulo Theories)
solver is applied to perform constraint solving tasks. Detector
is the component that carries out vulnerability detection. This
work changes this module with better detection logic which
is elaborated in section IV.

B. EXTRACT CONTROL FLOW GRAPH
The CFG can be represented by a quad G = (N, E, E,, E;),
where N is a set of nodes, each standing for a basic block.
E is a set of edges, indicating the branch structure and loop
structure of the program. Given a smart contract, building a
CFG involves the following steps [34].

(1) Convert the source code or bytecode into a sequence of
readable opcode instructions by solidity compiler.

(2) Decompose the opcode instructions into basic blocks.
The entry and exit boundaries of the basic blocks are deter-
mined according to some special opcode instructions.

(3) Determine the connection relationships of the basic
blocks and construct the edges of CFG.

(4) Solve hanging blocks by stack simulation.

C. DEFINE CRITICAL PATHS

Hackers exploit smart contract vulnerabilities for the pur-
pose of economic benefits, such as stealing tokens or freez-
ing funds. Smart contracts usually only allow authorized
Ethereum accounts to accept tokens. If a contract allows
Ether to be sent to an address controlled by an attacker, it is
considered to be vulnerable. Accordingly, paths involved in
Ether transfer are defined as critical paths.

1) SENSITIVE INSTRUCTION
A critical path must contain sensitive instruction that can
implement or affect Ether transfer. Although all instructions
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TABLE 1. Sensitive instruction list.

Opcode Instruction
0x55 SSTORE
0xf1 CALL

0xf2 CALLCODE

Description

Save word to storage

Message-call into an account
Message-call into this account with
alternative account’s code
Message-call into this account with
an alternative account’s code, but
persisting into this account with an
alternative account’s code

Similar to CALL, but does not mod-
ify state

Halt execution and register account
for later deletion

0xf4 DELEGATECALL

Oxfa STATICCALL

Oxff SELFDESTRUCT

require gas, technically making them related to Ether transfer,
they are not regarded as sensitive instructions as gas con-
sumption does not constitute a vulnerability in most cases.
Referring to the smart contract OPCODE instruction set [35]
on GitHub, the instructions in Table 1 are defined as sensitive
ones.

Storage saves the state variables of smart contracts perma-
nently, and it can only be modified by SSTORE. Attacker may
write to certain storage index through SSTORE to realize an
illegal transfer.

Solidity functions such as send(), transfer(), and
call().value() are compiled into CALL series bytecodes to
transfer Ether. CALL series instructions include CALL,
STATICCALL, CALLCODE, and DELEGATECALL.
If their parameter ““add’ can be controlled, the caller contract
may send the Ether to an address specified by the attacker,
or be injected into any malicious code.

SELFDESTRUCT destroys the current contract and sends
its balance to the specified account provided by the parameter
“address”. If an attacker is able to direct the contract to
execute this and control the “address’, all the Ether of the
victim contract will be lost.

2) CRITICAL PATH

Paths concerning with Ether transfer are regarded as the crit-
ical path. When constructing CFG, a flag _is_Critical_Node
is set for each node to indicate whether the basic block
contains sensitive instructions. If a node contains any one of
SSTORE, CALL, CALLCODE, DELEGATECALL, STAT-
ICCALL, and SELFDESTRUCT, the flag _is_Critical_Node
is set to 1, and the node is called Critical Node (CN). A pro-
gram path that goes through CN is a critical path.

D. TARGET-GUIDED SMART CONTRACT AUTOMATED
TESTING

To cover all critical paths as quickly as possible in automated
testing, this paper designs a target-guided automated testing
algorithm, as shown in Algorithm 1. First, the candidate
path set 8 and the input vector of the program A (randomly
initialized to Ag) are initialized. When path w is executed
under the input vector A, the state of the target node CovCN
is overwritten. Then the symbol execution engine collects
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all the candidate paths (i.e., path prefixes). According to the
target critical node set that has not been covered, the unrelated
candidate paths are eliminated, and the qualified candidate
paths are added to the path set. Afterwards, according to
the path search strategy specified in advance, a candidate
path P is selected as the next one to explore. By solving
the path constraint of P, a new test input A can be obtained.
The previous steps are repeated until all candidate paths have
been traversed, or code coverage has reached the expected
value. The final output includes test cases that meet the target
coverage.

Algorithm 1 Target-Guided Automated Testing Algorithm
Input: g: candidate path set, G: CFG, A: input vector,
Y path search strategy, CovCN: already covered CN,
UncovCN': uncovered CN
Output: T': test cases
I: B <« 0,CovCN <« @, UncovCN <« CN,L <« Ao
[*initialization™®/
2: repeat
3 ® <« DSE_EXEC(}\)
cution*/
CovCN <«Update(CovCN, w)
UncovCN <« CN — CovCN
path<«— SelectPath (w) /*collect candidate paths*/

/*dynamic symbolic exe-

[*update*/

7. B < FilterPath (UncovCN, w, path)
/*unrelated path pruning*/
8: P <« NextPath(B, V)
on ¥ */
9: A <SolveConstraints(P) /*new testcase generation */

/*select the next path based

100 T <« T+{}\}
11: until B = @ v UncovCN = (v CoveragePercent >
Gexpet

The key modules in the automated testing process are
unrelated path pruning and path search strategy.

1) MULTI-OBJECTIVE ORIENTED PATH SEARCH STRATEGY
Path search is the core part of dynamic symbol execution.
Its function is to select the program state that needs to be
executed first until reaching the target. The default path
search strategy for most existing symbol execution tools such
as Mythril is depth-first search (DFS). DFS traverses the
program paths from the root of CFG. Whenever a branch node
is reached, the symbolic execution engine clones the current
program state and goes along one of the branches. The search
process is terminated if all paths are explored or the target
location is approached. DFS algorithm is exhaustive in a
given state space and is suitable for complete coverage testing
of program paths. It lacks active positioning and exploration
for critical paths prone to defects, resulting in low efficiency.
Heuristic search is more adaptive to approaching sen-
sitive instructions and covering critical paths quickly.
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Such algorithms are similar to breadth-first search (BFS),
except that they evaluate each location and search from the
best one. In other words, heuristic search algorithms preferen-
tially explores along the nodes with inspirational information
[36]. These nodes may be the best way to reach the target.
The key to a heuristic search algorithm is valuation function,
which is usually designed for a specific problem. The valua-
tion function estimates the cost from a particular node to the
destination node. Employing heuristic search can avoid much
unnecessary path and improve the efficiency of exploration.

Considering the situation that one execution path passes by
several targets, or the shortest path of multiple targets goes
through the same branch of the current execution path, that
is to say, there is an overlapping area. If there are multiple
candidate program paths, choosing those paths that can reach
more targets can speed up the coverage testing. Therefore,
this paper proposes a heuristic path search strategy based on
path priority, called MOPS.

(1) Priority evaluation of candidate path

For each branch node of an already executed path, evaluate
the density of the remaining target nodes along its local
area, and the density stands for the priority of corresponding
candidate path. The priority is actually a heuristic estimate,
defined as the number of targets that may be reached after the
candidate path is executed, expressed as

priority(P) = UncoveredCN (Br, SearchCN (Br, y))

In the formula, Br is the end node of the candidate path.
Function SearchCN (Br, y) serves to start from Br and step
forward for y levels, counting the number of unrecovered
CNs that may be reached. If [ is the height of Br in the CFG,
the searched area will be limited to layer [/, [ + y]. The
layer range can be adjusted by setting the value y. Since the
prediction of the local area is intuitively less expensive than
a global prediction, a smaller value is generally selected.

(2) Candidate path selection

In order to reach as many coverage targets as possible
during a single execution, candidate path with the largest
priority value is first selected. That is to say, the paths are
ranked based on their contribution degree to target nodes
coverage. If two candidate paths share the same priority value,
the shorter one is preferred. After a program iteration, the pri-
ority values of all remaining candidate paths are updated.

As shown in Fig. 5, nodes marked with shadow are CNs.
If path 1-2-3-5-8 is executed, two candidate paths are added
along the path branch, namely 1-2-3-6 and 1- 2-4. Under the
MOPS policy, if y is set to 3, the path 1-2-4 has a higher
execution priority because it may reach 2 uncovered CNs.

2) UNRELATED PATH PRUNING

In order to distinguish the candidate paths, the following
definition is made: if a candidate path is likely to reach a
critical node that has not been covered in the tested contract,
then it is the relevant path, otherwise, it is an unrelated path.
Algorithm 2 shows the method of unrelated paths pruning.
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Algorithm 2 Unrelated Path Pruning Algorithm

Input: S: candidate path set, UncovCN: uncovered CN,
path: newly collected candidate path set

Output: §: candidate path set after path pruning

1: for all P € path do

2:  [*Pis path prefix, rather than a complete path*/

3 if isRelevant( )==True then

4 B.push(P)

5. endif

6

7

8

9

: end for
. function isRelevant(Path P):
. if Const.solve()== ¢ then
. return False
10: end if
11: if P.SuccsNUncovCN == () then
12:  return False
13: end if
14: return True

stack, stackes,

opl PC: 1234 opl X op2 + TAINTVAR_1234

op2 opcode: MUL

path, pathy
constraints, constraints,,

-t TAINTVAR,1234| ‘ + TAINTVAR_ 1234 ‘

FIGURE 6. Taint tracking.

E. TAINT ANALYSIS

The taint analysis technique is applied to assist the detection
module. For certain program input or operation result that
may generate vulnerabilities, a specially named symbolic
variable is added to it as a taint tag. This symbolic variable
takes a value of 0 and is named “TAINTVAR_PC”, in which
“PC” is the value of program counter.

As shown in Fig. 6, the taint tag spreads to subsequent
branches along with the potential dangerous data, participat-
ing in computation without changing the results. The process
of taint tracking is to perform data flow analysis accord-
ing to the propagation rule. The propagation rule defines
a list of operations that may propagate taint messages or
may lead to new taint messages during execution. At certain
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program points, security-critical parameters or state variables
are judged tainted or not on demand, according to whether
they carry taint tags or not. If the security-critical data of
a hazard point is tainted, its taint source can be determined
according to the taint tag.

F. CONSTRAINTS GENERATION

The Z3 SMT solver is applied to solve constraints and aid the
symbolic execution engine. Fixed-length elements, such as
call value or caller address, are represented with fixed-length
bitvector. Variable-length elements, such as calling data,
memory and storage, are modeled with Z3 array expres-
sions. When the execution reaches a sensitive instruction,
parameters in the stack are obtained from the current state
space and will be used for later analysis. For a given path P,
the constraint expression is the logical AND of all branch
conditions on the path. The final output of the constraint
generation module is the formula for variables in the Machine
state (u) and the Execution environment (7).

IV. VULNERABILITY DESCRIPTION AND DETECTION
LOGIC

The previous section discussed the basic framework of smart
contract vulnerability detection based on critical path cover-
age. Constraints for critical paths and taint propagation infor-
mation were obtained through symbolic execution. On this
basis, the vulnerability detection module performs security
verification. Combined with smart contract audit experience
and security incidents, this paper selects eight types of vul-
nerabilities, describes their execution properties, and designs
detection logic accordingly in this section.

A. REENTRANCY

1) DESCRIPTION

Reentrancy is one of the most common vulnerabilities
for smart contract. The world-shaking DAO (Decentralized
Autonomous Organization) [37] incident exploited the reen-
trancy vulnerability in the contract, stealing 3.6 million ETH
(Ether). When contract A calls another contract B, A will wait
for the call to complete execution before moving on to the
next instruction under normal conditions. But if the callee
contract B interrupts this invocation by calling A’s fallback
function, making contract A run under an inconsistent inter-
nal state, which obviously violates the developer’s intention
and may produce unexpected behavior. In the sample pro-
gram shown in Appendix 1, an attacker can utilize the contract
BankAttack to interact with the victim contract Bank. The
attack process is illustrated in Fig. 7.

(1) Call the function deposit() in BankAttack and send
100 Wei to Bank. In this way, function addToBalance() in
Bank is invoked.

(2) The first withdrawal: call BankAttack’s function
withdraw() to withdraw funds (takes 10 Wei). At the same
time, function withdrawalBalance() in contract Bank is
triggered.
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FIGURE 7. Reentrancy attack.

(3) The function withdrawBalance() in Bank sends
100 Wei to BankAttack, which triggers the fallback function
of BankAttack.

(4) The second withdrawal: BankAttack’s fallback func-
tion calls the function withdrawBalance() in the Bank again
to withdraw money. This is equivalent to a recursive call.
Since the first withdrawal has not yet completed, the value
of variable userBalances in the Bank has not been updated.
Therefore, when withdrawing money for the second time,
Bank mistakenly thinks that BankAttack still had 100 Wei,
which successfully performs two withdrawal operations.

Based on multiple vulnerability cases and related literature,
three reentrancy modes are summed up [38].

(1) Same-function reentrancy

Same-function reentrancy means that the same function of
a contract is reentered. This is the most common reentrancy
attack method. The case given above pertains to this mode.

(2) Cross function reentrancy

Cross-function reentrancy means that the same contract
is reentered in different functions. Smart contracts typically
provide multiple interfaces that can read or write the same
internal state variables, making cross-function reentrancy
attacks as dangerous as same-function reentrancy attacks.

(3) Contract-creation reentrancy

In Solidity, a new contract can be created with the keyword
“new”’, and implemented by the CREATE command at EVM
level. Once a new contract is created, the contract constructor
will execute immediately, during which it may make calls
to other malicious contracts. A possible attack manner is:
the victim contract intends to create a new contract and then
updates its internal state. However, the constructor of the new
contract issues an external call to an address controlled by
the attacker, re-entering the victim contract and exploiting the
inconsistent internal state.
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Regardless of the reentrancy mode, the key point is that
the contract is executed in an inconsistent internal state
after malicious reentrancy. Thus, three conditions constitute
a reentrancy vulnerability: (1) an external call to another
contract; (2) the storage variable that causes an inconsistency
is used to control the flow decision during an external call;
(3) the variable is updated after the external call returns.

2) DETECTION LOGIC

Among existing smart contract vulnerability mining tools,
Oyente only supports same-function reentrancy detection
[11], Securify and Mythril can detect partial cross-function
reentrancy [4], [13], while these tools cannot detect the
contract-creation reentrancy vulnerability.

According to the vulnerability description above, checking
for state updates is the key to discovering reentrancy vulner-
abilities. Mythril takes the following strategy: detect all mes-
sage calls that are sent to the user-supplied address and deliver
gas. Note that Solidity’s send() and transfer() functions set
gas to 2300 and this setting can prevent reentrancy attacks.
If an external call to an untrusted address is detected, analyze
the CFG to determine if a state change may occur after the
call returns. A warning is issued if a state update is detected.
However, this strategy is too conservative. It marks any state
update after an external call as a vulnerability, regardless
of whether the state update actually causes a hazard. Hence
many false positives are generated.

To make an improvement, more reasonable detection logic
is to check whether the updated state can influence control
flow decisions, presented in Fig. 8. Since the shared variables
between contracts are always stored in storage, and storage
variable is the only internal state variable that can affect the
control flow when reentering the contract, the detection only
needs to pay attention to variables in the storage. Therefore,
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contract B

contract A

FIGURE 8. Detection logic for reentrancy.

the taint analysis technique is employed. The storage vari-
ables are marked as taint messages and are tracked in the
program. If the control flow decision at a conditional jump
instruction JMPI depends on some storage variables, then the
attacker may manipulate the branch direction by reentering
the contract, thereby manipulating the contract’s behavior.
The set of storage variables used to control the flow decision
is then recorded and assigned the tag VAR_FLAG=I1. If a
previous call to the contract attempts to update a variable with
a tag value of 1, a reentrancy vulnerability warning is issued.

B. INTEGER OVERFLOW

1) DESCRIPTION

Integer overflow includes overflow and underflow. The cor-
responding opcodes are ADD, MUL, and SUB. For SUB,
if op1>0p0, an underflow may occur. For ADD or MUL
instructions, if opl + 0p0>23%2 — 1 or op0 x op1>232 — 1,
an overflow may occur. Whether these operations can actually
cause a vulnerability depends on two aspects. The first is
whether an overflow check or input limit is conducted in the
program context, that is, whether the overflow operation can
be successfully executed and thereby generates an overflow
point. The second is how this overflow value is used, that
is, whether the value can cause harm. If the overflow value
is applied at a critical location, it can lead to serious conse-
quences and even trigger other vulnerabilities. such a critical
location is defined as a hazard point. The hazard points of
integer overflow are usually divided into the following three
categories.

(1) Writing to memory: the tainted data is permanently
stored by the contract as a global state variable, such as
account balance.

(2) Branch statement: in the branch conditional statement,
the overflow value controls the direction of the branch, caus-
ing the data to bypass the security check or cause the program
to implement an illegal operation. Related cases include the
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FIGURE 9. Detection logic for integer overflow.

famous SMT (SmartMesh Token) and BEC (Beauty Chain)
vulnerability incidents.

(3) Data transfer: the tainted data is transmitted to an
external function for unknown operations.

2) DETECTION LOGIC
Fig. 9 shows the detection logic of integer overflow, which
takes three steps.

(1) Overflow point detection

Overflow point detection is carried out on the basis of
ADD, MUL, and SUB instructions. To determine whether
their related operations will produce overflow, two operands,
op0 and opl are obtained from the top of the stack, and
then the integer operands are converted into 256-bit bitvec-
tor. Afterwards, overflow judgment expression is constructed
according to the operation instruction. Finally, the Z3 solver
is used to calculate whether the expression has a solution. The
following are overflow expressions conforming to Z3 syntax.

Overflow: Or(And(ULT (expr, op0), op1! = 0), And(

ULT (expr, opl), op0! = 0))

Where, for ADD instruction, expr = op0 4+ op1; for MUL
instruction, expr = op1 x opO.

Underflow: UGT (op1, op0)

If the path constraints of the current state and the overflow
expression can be satisfied at the same time, this is an over-
flow point.

(2) Taint tracking

The operation result of an overflow point does not nec-
essarily cause harm. Therefore, upon an overflow point is
found, it is marked as the source point for taint analysis and
tracked according to the taint propagation rule. In this step,
all the taint information in the program is obtained.

(3) Hazard point identification

Hazard point identification is the detection of critical
operations at critical program points (sink points) that are
affected by taint information. A hazard point is where the
overflow value actually takes effect. According to the analysis
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of hazard point above, program points operating SSTORE
instruction and the JMPI instruction are regarded as the sink
point. If an SSTORE instruction writes to the storage with
tainted data, or the jump condition of JMPI is not independent
of tainted data, it is considered to exist an integer overflow
vulnerability.

C. DELEGATECALL ABUSE

1) DESCRIPTION

The prototype of function delegatecall can be presented as
(address) .delegatecall(. . .) returns(bool). It calls a function
of address under the identity of the caller contract and returns
false if the execution fails. By default, all available gas is
transmitted and the amount of gas is adjustable. The value of
the built-in variable msg.sender after the call is not modified
to the caller, but the execution environment is the caller’s
runtime environment. Improper use of delegatecall will allow
the contract to use the code of other contracts without trans-
ferring its own state (such as balance, storage), resulting in
the execution of unexpected code. For example, if the target
address to be called and the sequence of characters are both
passed by the user, then the function of any address can be
called. In addition, if the caller and the callee have the same
variable, and the called function modifies this variable value,
the variable of caller rather than callee is modified since the
execution environment of delegatecall is the caller’s environ-
ment. The second attack on the Parity Multisig wallet [39] is
a representative case of the abuse of delegatecall.

I | Contract Wallet{

2 function () payable{

3 if (msg.value>0)

4 Deposit(msg.sender, msg.value);

5 else if (msg.data. length>0)

6 _walletLibrary . delegatecall (msg.data);

}
8 |}
9 | Contract WalletLibrary {
10 function initWallet (address [] _owners, uint _required,
uint _daylimit){
11 initDaylimit (_daylimit);
12 initMultiowned (_owners, _required);
13 }
14 |}

// fallback function

In the Wallet contract above, LINE6 executes a delegatecall
and passes a parameter msg.data, so that any public function
in the walletLibrary can be called. Therefore, the attacker can
call function initWallet() at LINE11 and become the contract
owner. After then he can send Ether from the wallet to his
own address.

2) DETECTION LOGIC

Algorithm 3 shows the detection logic of delegatecall abuse.
For all external calls in the form of DELEGATECALL,
if the called function is a fallback function, the third element
s[—3] can be obtained at the top of the stack. This element
refers to the starting address of required parameters stored in
memory, which can be presented as w,, [us[—3]] according
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to the transaction model. If the address variable is a concrete
value, check the string from memory location. If the string
contains calldata, the contract passes the calldata through
DELEGATECALL in the fallback function, which means that
any function in the called contract can be executed and the
called contract can modify the storage of the caller contract.
If the callee contract is a symbolic value, this indicates that
the target address of delegatecall is provided by the user. The
next step is to determine whether the address is obtained from
calldata or from the storage, in both cases the callee con-
tract can access the state variable of caller contract without
restriction.

Algorithm 3 Detection Logic for Delegatecall Abuse

Input: statespace, issues| |
Output: issues| ]: security defects
1: issues[] < 0
2: for all delegatecall .func_name == fallback do
3. ifis(_Concrete(u,, [s[—3]1])==True) and
(Search(calldata, |4y, [ps[—3]11)==True) then

4 issues.Push(Dele_issuel)

5 else

6: if “calldata” in str(call.to) then

7 issues.Push(Dele_issue2)

8 end if

9 if Storage_Write(str(call .to),storage_idx) then
10: issues.Push(Dele_issue3)

11: end if

12 endif

13: end for

14: report(issues)

D. TRANSACTION ORDER DEPENDENCY

1) DESCRIPTION

Each block contains a collection of multiple transactions.
For users, the order of transactions within the same block is
invisible (only miners have access to it). Therefore, the state
of the block is also uncertain. Suppose the block is currently
in state o and contains two transactions, T1 and T2. T1 and
T2 call the same contract at the same time. Under these
circumstances, the user cannot know the state of the contract,
as it depends on the execution order of T1 and T2.

TOD vulnerability is characterized by the fact that the user
can change the state of the current contract (modify the
variables in the storage) by issuing a transaction, and the
variable can affect the destination address or the token value
transferred of the external call.

2) DETECTION LOGIC

Algorithm 4 shows the detection logic of TOD. For all exter-
nal calls, first find all the storage variables that can affect
the call value or call address, and then determine whether
they are likely to change under the current node constraints.
If possible, add the variable to the interesting storage list
Instor. Then for each element in Instor, get the SSTORE
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operation that can modify it, and record the corresponding
(state, node) tuple. If such SSTORE operation exists, there is
a TOD vulnerability.

Algorithm 4 Detection Logic for TOD
Input: statespace, issues| |
Output: issues| ]: security defects
1: issues[] < @, Instor[] < @
2: for all statespace.calls do
3:  Instor < Relevant_storage(call.val, call .to)
4 sstore_tupple < Write_to(Instor)
5. if sstore_tupple then
6
7

issues.Push(TOD_issue)
end if
8: end for
9: report(issues)

E. SUICIDE CONTRACT VULNERABILITY
1) DESCRIPTION
If a contract meets any of the following characteristics, it is
considered as a suicide contract.

(1) SELFDESTRUCT instructions can be accessed by any-
one.

(2) The storage index, where the parameter address of
SELFDESTRUCT instruction is stored, is not restricted by
msg.sender.

2) DETECTION LOGIC
The detection logic of suicide vulnerability can be expressed
as the formula below.

Instruction(pe) == SELFDESTRUCT A
ws[=11! = Ic A Solve(node(ipe).constraints)! =

For SELFDESTRUCT instruction, get the top element of
the stack wg[—1], and determine where the balance is sent
after executing the suicide command (including the caller’s
address, an address stored in storage, in function parameter
passed through calldata, a specified address, etc.). Then get
the constraint that the caller is not the contract creator I¢.
If the caller is restricted by contract creator, no warnings will
be issued. Conversely, if the caller is unrestricted, a suicide
vulnerability is reported and the hazard level is determined
based on the destination address s[—1] of token transfer.

F. PREDICTABLE VARIABLE DEPENDENCY

1) DESCRIPTION

To write a random number generation function, contract
developers often utilize parameters related to block head-
ers such as block.gaslimit, block .number, block .timestamp,
block difficulty and block.coinbase (the miner address of
current block), or other block information such as data stored
in contracts, to generate random numbers. However, the prop-
erties of the block header parameters can be learned by the
miners. Furthermore, the data on chain is often transparent.

VOLUME 7, 2019

Thus, random numbers depending on those predictable vari-
ables are actually predictable, giving the attacker a chance to
take advantage of it.

If the contract sends Ether with an amount greater than
0 based on the calculation of predictable variables, there is
a predictable variable dependency vulnerability.

2) DETECTION LOGIC
Algorithm 5 shows the detection logic of predictable variable
dependency.

Algorithm 5 Detection Logic for Predictable Variable
Dependency

Input: statespace, issues| |
Output: issues| ]: security defects
1: issues[] <« @, Predvar <[‘“coinbase”, “gaslimit”,
“timestamp”’, ‘“‘number”’, “difficulty’’]
2: for all statespace.calls do
3 if is_Concrete(call .value) or call .value == 0 then
4 continue
5 end if
6: Var_List <Search(Prevar, call.to+node.constraints)
7 for Var in Var_List do
8 Reso < Solve(node.constraints)
9

: if Reso then
10: issues.Push(PVD_issue)
11: end if
12:  end for

13:  Bh < Search(“‘blockhash”, call.to+node.constraints)
14:  for Var in Bh do

15: Reso < Solve(node.constraints)

16: if Reso then

17: Find_Blocknum(‘‘blockhash’ str(node.
constraints))

18: issues.Push(PVD_issue)

19: end if

20:  end for

21: end for

22: report(issues)

For all CALL series instructions in the state space, filter
out the refund function as well as those with a call .value that
is specified or equals to O (do not send Ether). For each of the
remaining instructions, a two-step test is performed.

First, search for the predictable state variables mentioned
above in the path constraint of the current instruction or
constraint of the callee object. If there exists such a variable,
add the corresponding node to a list. For each item in the list,
invocate the constraint solver for a solution, and finally report
the vulnerability and point out which environment variable it
depends on.

Second, look for Ether recipient that depends on the block
hash. In constraint string of current instruction or callee
object, if the string “blockhash™ can be matched, further
judge the hash of which block is used and issue a warning.
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Usually, the related block is several blocks ahead of the cur-
rent block, which can be calculated by block.number minus
a specified integer or a number stored at a storage index.

G. MISHANDLED EXCEPTION

1) DESCRIPTION

Solidity provides two functions, assert and require, to check
for conditions and throw an exception if the condition is not
satisfied. The function assert should be used to detect internal
errors and to check invariants. The function require should
be used to ensure conditions, such as user inputs and contract
state variables are met, or to validate return values from calls
to external contracts [40]. Solidity executes a revert operation
(opcode Oxfd) for a require-style exception and performs
an invalid operation (opcode Oxfe) to throw an assert-style
exception. In both cases, the EVM will undo all changes
made to the state in the current call and its sub-calls, and also
issue an error to the caller. Assert-style exceptions are usually
caused by type errors, division by zero, out-of-bounds array
access, calling a zero-initialized variable of internal function
type, etc. A properly functioning contract will never approach
afailing assert statement. Otherwise, a failing assert can make
it unable to achieve the original purpose.

2) DETECTION LOGIC

To prevent such vulnerabilities, the security tools should
verify that the contract will never execute the invalid opcodes.
Therefore, the detection method is to solve the path con-
straints at each opcode Oxfe. If there is solution, the condition
of failing assert can be met, and a warning should be reported.
The detection logic can be expressed as the formula below.

Instruction(ppe) == Oxfe

ASolve(node(jipc).constraints)! = ()

H. UNCHECKED RETURN VALUES

1) DESCRIPTION

External function calls will fail if they exceed the maxi-
mum call stack of 1024 or run out of gas. In such cases,
Solidity throws an exception, which usually ‘“‘bubbles up”
automatically when occurring in a sub-call. But this does
not apply to function send() and the low-level functions,
including call(), delegatecall(), callcode(), and staticcall().
These functions do not throw an exception, but rather return
a Boolean “False”, and the contract will continue execution
as if the call succeeded. Therefore, whether the contract is
successfully executed can not be judged by the existence of
exceptions only.

2) DETECTION LOGIC

As shown in Algorithm 6, the main idea of this detection
module is to look for whether the return value of external
function call is ignored or not. For all call-return nodes,
check for instruction “ISZERO” in corresponding block. For
each “ISZERO” instruction, obtain the element at the top of
the stack wg[—1], and then determine whether the element
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contains a retval. If above condition is satisfied, it means
IZSERO(retval) is performed. When retval is equal to O,
the state is reverted. Otherwise, check for return value is
omitted and a warning should be issued.

Algorithm 6 Detection Logic for Unchecked Return Values

Input: statespace, issues| |
Output: issues| ]: security defects
1: issues[] < 0,
2: for node in CallRet_node do
3:  if “ISZERO” in node.opcode and Search(“‘retval”,
us[—1]) then

4: retcheck<«True

5. end if

6:  retcheck<False

7 issues.Push(RET_issue)
8: end for

9: report(issues)

V. EVALUATION

A. EXPERIMENTAL SETTINGS

1) EXPERIMENTAL ENVIRONMENT

The experiment is conducted in a 64bit Ubuntu 16.10 system
running on VMware Workstation virtual machine, which is
configured with 2GB memory and four processor cores.

2) EXPERIMENTAL SCHEME

a: COMPARISON WITH SIMILAR METHODS

Mythril and Oyente are the most representative and widely
used symbolic execution tools for smart contract security.
Considering the limitations of these similar tools, the experi-
ment focuses on the following issues.

Ql: For large-size contracts with abundant instructions,
detection is usually inefficient or even crash to failure.
Whether the proposed method can make an improvement in
large-size contract testing.

Q2: Whether the proposed method can ensure the accuracy
of vulnerability detection under the premise of shortening the
running time.

Q3: Whether the proposed method can exclude some false
warnings by only focusing on code area involved in Ether
transfer.

In order to answer these questions, three test sets are con-
structed. The first consists of 13 Solidity contracts, covering
all vulnerability categories mentioned above, so that the test
results can be analyzed manually according to the source
codes. The second test set contains 4 large-size contracts with
over 500 LOC (line of code). To verify whether the method is
suitable for vulnerability detection of mass contracts, the third
test set contains 1000 real-world on-chain contracts by crawl-
ing EVM bytecode from Etherscan.

b: COMPARISON WITH OTHER METHODS
As for other methods, this paper selects the formal verifi-
cation tool Securify and the fuzzy test tool Contractfuzzer
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TABLE 2. Detection capability.

Tool Vulnerability categories
reentrancy, integer overflow, delegatecall abuse,
TOD, suicide, predictable variable dependency,
mishandled exception, unchecked return values
reentrancy, locked ether, missing input validation,
TOD, mishandled exception, unrestricted ether flow
reentrancy, TOD, mishandled exception, timestamp
dependency, integer overflow(version 2018.3.27)
reentrancy, multiple sends, integer overflow,
delegatecall to untrusted contract, TOD, suicide,
predictable variable dependency, mishandled
exception, use of tx.origin, unchecked retval
gasless send, mishandled exception, reentrancy,
timestamp dependency, block number dependency,
delegatecall abuse, locked ether

This work

Securify

Oyente

Mythril

Contractfuzzer

to make a comparison. Since these tools support detecting
different types of vulnerabilities, the experiment only con-
siders types in common. The 1000 contracts from Ether-
scan are used for detection. Number of false negatives
and false positives are the performance metrics to be
compared.

B. EXPERIMENT AND COMPARISON

1) DETECTION CAPABILITY

Users require security tools to detect as many types of vul-
nerabilities as possible. Table 2 lists the detection capability
of these typical tools.

This work supports eight types of vulnerabilities described
in section IV, covering most of the prevalent security issues.
In the following text, experiments are carried out to evaluate
its detection efficiency. Since the tools to be compared sup-
port different vulnerability types, only types in common are
focused on to analyze detection accuracy.

2) COMPARISON WITH SIMILAR METHODS

In order to verify whether the proposed method can ease the
problems of similar methods and answer the three questions
above, the experiments take the following steps.

a: SOLIDITY CONTRACT TESTING

Firstly, 13 typical source code contracts containing different
vulnerability categories are selected. The proposed method
sets the maximum recursive depth of call stack to avoid
getting stuck with a single complex program. Since this
parameter has an impact on detection results, it is necessary
to determine a proper value for it. Fig. 10 shows the number
of warnings reported by this work when this value is set from
12 to 30.

As shown in Fig. 10, since the number of warnings flattens
out after maximum recursive depth exceeds 22, this parameter
is set to 22 for default.

Afterwards, Oyente and Mythril are also employed to ana-
lyze these solidity contracts. The experimental results are
shown in Table 3 below. Indicators TP, FN, and FP represent
true positives, false negatives, and false positives respectively.
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FIGURE 10. Number of warnings under different settings.

TABLE 3. Experimental results.

Execution time  Report TP FN FP
Our Method 261s 37 32 1 5
Mythril 427s 58 31 2 26
Oyente 294s 13 6 27 7

This work costs less time than Oyente and Mythril. Oyente
can only detect 5 types of vulnerabilities, so it issues the
least security problems with many false negatives. Compar-
ing the reports of Mythril and this work, it is found that
10 of the 13 contracts were identical. For the contracts with
inconsistent results, Mythril reports 22 more security warn-
ings than the proposed methods on contract BECToken.sol
and Wallletlibrary.sol. Among them, there are 16 for inte-
ger overflow and 6 for unexpected state. Referring to the
corresponding source code, we find that these warnings are
mostly due to nonstandard coding and excessive detection
logic.

Take the code fragment of BECToken.sol shown below as
an example. The function add() is concluded in the SafeMath
library and is invocated multiple times by several functions
in the contract. Mythril reports an overflow vulnerability
on statement ‘“uint256 c=a-+b”. In fact, SafeMath’s built-in
assertion is used here to check if the operation actually
overflows. If an overflow occurs, the code contained in the
assertion will cause the transaction to roll back. Many warn-
ings originate from similar code and are proved to be false
positive.

I | function add (uint256 a, uint256 b) internal constant
returns (uint256) {

uint256 ¢ = a + b;

assert (c >=a);

return c;

[P I SV I ]

}

According to the indicator FP in Table 3, both methods
have some false alarms. But the proposed method avoids
analysis of unimportant paths and reduces many unnecessary
false warnings. Appendix 2 shows a ticketing contract. When
the ticket is sold out, a competitor will be randomly selected
to win a reward of 2.5 ETH. The winning address is calcu-
lated according to block.coinbase, block .difficulty, an avail-
able constant totalTickets and msg.sender. In other word,
it depends on predictable environment variables. Therefore,
an attacker can take advantage of this weak randomness and
speculate the winningNumber, call the fallback function and
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TABLE 4. Experimental results.

TABLE 6. Statistics of paths.

Contract KiddyToys EtherConsole CBToken StandardBounty Total Path Critical Path Uncritical Path ~ Vulnerable Path
This work 95s 70s 183s 277s 11272 3720 (33%) 7552 (67%) 127
Oyente 136s 101s 245s 249s
Mythril 184s 158s 296s -
80
TABLE 5. Experimental results. Zg
= — = 50
Vulnerability Type TP FP Precision 2
reentrancy 20 2 90.9% g 40
integer overflow 22 7 75.9% = 30
delegatecall abuse 16 9 64% 20
TOD 8 0 100% 10
suicide 7 0 100% 0 -
predictable variable dependency 24 3 88.9% Reentrancy TOD Suicide Integer Mishandled
mishandled exception 30 13 69.8% overflow exception
unchecked return values 5 0 100% . )
m QOyente ®Mythril ®this work

get the reward. However, Mythril did not find this problem,
and the reason may be that when symbol execution comes into
the loop “while” (up to 50 cycles), it fell into path explosion
and failed to reach the dangerous state during the timeout
setting. The method proposed in this paper firstly identified
the CALL instruction, which corresponding to the function
winningaddress.transfer (prize) in the source code, and then
adopted the path search strategy to guide the execution to
quickly approach the critical code, and found this security
defect at last.

b: LARGE-SIZE CONTRACT TESTING

Most of the contracts tested above are small and medium-size
contracts with a scale of no more than 100 LOC. The average
detection time per contract is less than one minute, which is
acceptable. In order to verify the performance on large-size
contracts, four contracts with codes greater than 500 LOC are
selected for further tests, and timeout for symbolic execution
is set to 10000s (equivalent to no time limit). The results are
shown in Table 4.

Compared with Mythril, this work demonstrates an obvi-
ous advantage, reducing detection time by nearly half when
dealing with large-size contracts. This work also costs less
time than Oyente for 3 of the 4 contracts. Particularly,
the detection result of the StandardBounty contract was still
not obtained by Mythril after ten minutes’ analysis, while
the proposed method discovered a TOD vulnerability with
277 seconds.

c: MASS TESTING

To verify the performance of the proposed method in mass
testing, 1000 real-world contracts in the form of bytecode are
obtained from Etherscan. Timeout for symbolic execution is
set to 600s per contract. Table 5 shows the detection results
of this work.

In total, 166 security defects are detected within 37538s,
among which 132 are true positives. The most vulnerabilities
found are mishandled exception, predictable variable depen-
dency, integer overflow and reentrancy. And the detection of
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FIGURE 11. Amount of warnings reported.

delegatecall abuse, integer overflow, and mishandled excep-
tion has lower precision relatively.

The static analysis tool SASC points out that the exe-
cution time is almost linearly depends on the number of
executed paths, blocks or opcodes, i.e., the complexity of
program [41], [42]. So we look into the 1000 contracts
for the detailed statistics of paths. The number of paths
for these contracts ranges from 1 to 1694, with an average
of 11 and a median of 5. Among them, 113 contracts do
not expose a critical path, although our definition of critical
paths is broad. Table 6 presents some statistics of paths in this
test.

Uncritical paths take up about 67% of all paths. The num-
ber of paths explored per contract by this work is around
4. So much time is saved by reducing the amount of paths
to be symbolic executed. Among the critical paths, 127 are
found vulnerable. Among these vulnerable paths, 87.9% of
them contain CALL, SSTORE and DELEGATECALL, while
only a small number of SELFDESTRUCT, CALLCODE and
STATICCALL instructions are found.

To further analyze the performance of this work, the exper-
iment compares its detection efficiency with similar methods
for several common vulnerability types. Fig. 11 shows the
amount of warning reported by these symbolic execution
tools.

Afterwards, the reported warnings are analyzed manually
and classified as true positive or false positive. The results
are summarized in Fig. 12. Bars A, B, and C are results for
Oyente, Mythril, and this work respectively.

Mythril spends about 70 seconds per contract on average,
and Oyente spends 40 seconds. This work consumes less time
than both tools while performs better according to Fig. 12.
Through inspecting the detection report, it can be observed
that although Mythril can discover most of the vulnerabilities,
it suffers from a high false positive rate, especially on reen-
trancy, integer overflow and mishandled exception. Oyente
only supports a few vulnerability categories, and also has
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FIGURE 12. Results comparison.

TABLE 7. Experimental results.

Vulnerability Reentrancy Mishandled Exception
Indicator FP FN FP FN
Securify 1 3 1 5

Contractfuzzer 0 6 0 10
This work 2 0 13 1

many false warnings on reentrancy and missing reports on
TOD. This work takes about 37 seconds for each contract,
and make considerable progress in false positive and false
negative.

3) COMPARISON WITH OTHER METHODS

Above contents discuss the performance of this work and
similar works based on symbolic execution. This section
compares this work with tools based on other methods. They
are the state-of-the-art formal verification tool Securify and
fuzzy test tool Contractfuzzer.

As shown in Table 2, all of them can detect reentrancy and
mishandled exception, so the 1000 contracts above are tested
for these two types of vulnerabilities to make a comparison.
Table 7 shows the performance of these tools.

Results show that Contractfuzzer does not report false
positives. It generates fuzzing inputs and triggers the vul-
nerabilities directly, so its results have very high preci-
sion. However, it is hard for ContractFuzzer to pass some
complex condition checks before transferring ether, so it
have the most false negatives. On the contrary, this work
issues the most false positives but has the least missing
reports.

VI. CONCLUSIONS
A. MERITS
This paper proposes a critical-path-coverage-based vulnera-
bility detection method for smart contracts, and implements it
based on Mythril’s symbolic execution framework. Overall,
it enjoys the following merits.

1. It realizes the fast approximation to the code region of
interest, reducing much time consumption.
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contract Bank{
mapping(address=>uint) userBalances;
function getUserBalance(address user) constant returns

WM =

(uint) {
4 return userBalances[user ];
5 }
6
7 function addToBalance() {
8 userBalances [msg.sender] = userBalances[msg.sender]
+ msg.value;

9 }

11 function withdrawBalance() {
uint amountToWithdraw = userBalances[msg.sender];

13 if (msg.sender. call . value (amountToWithdraw)() ==
false) {

14 throw;

15 }

16 userBalances [msg.sender] = 0;

17 }

18 |}

21 | contract BankAttacker{

23 bool is_attack ;
24 address bankAddress;

26 function BankAttacker(address _bankAddress, bool
_is_attack ){

27 bankAddress=_bankAddress;

28 is_attack =_is_attack ;

29 }

30

31 function () {

32 if ( is_attack ==true)

33 {

34 is_attack =false ;

35 if (bankAddress. call (bytes4 (sha3("withdrawBalance()

"D |

36 throw;

37 }

38 }

39 |}

40

41 function deposit () {

42 if (bankAddress. call . value (2) . gas(20764)(bytes4 (sha3(
"addToBalance()")))==false) {

43 throw;

44 }

45 }

46

47 function withdraw(){

48 if (bankAddress. call (bytes4 (sha3("withdrawBalance()")
))==false ) {

49 throw;

50 }

51 }

52 |}

Listing 1. Reentrancy attack.

2. It excludes some false alarms that do not actually cause
financial losses by only focusing on code regions involved in
Ether transfer.

3. It releases the difficulty of verifying large-size contracts.

4. It supports a comprehensive test of common vulnerabil-
ity categories based on targeted detection logic.
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1 | contract WeakRandom {
2 struct Contestant
3 address addr;
4 uint gameld;
5 }
6
7 uint public constant prize = 2.5 ether;
8 uint public constant totalTickets = 50;
9 uint public constant pricePerTicket = prize /
totalTickets ;
10
11 uint public gameld = 1;
12 uint public nextTicket = 0;
13 mapping (uint => Contestant) public contestants ;
14
15 function () payable public {
16 uint moneySent = msg.value;
17
18 while (moneySent >= pricePerTicket && nextTicket <
totalTickets ) {
19 uint currTicket = nextTicket++;
20 contestants [ currTicket ] = Contestant (msg.sender,
gameld);
21 moneySent —= pricePerTicket;
22 }
24 if (nextTicket == totalTickets ) {
25 chooseWinner();
26 }
27
28 /I Send back leftover money
29 if (moneySent > 0) {
30 msg.sender. transfer (moneySent);
31 }
32 }
34 function chooseWinner() private {
35 address seedl = contestants [ uint (block.coinbase) %
totalTickets ].addr;
36 address seed2 = contestants [ uint (msg.sender) %
totalTickets ].addr;
37 uint seed3 = block. difficulty ;
38 bytes32 randHash = keccak256(seed1, seed2, seed3);
39
40 uint winningNumber = uint(randHash) % totalTickets ;
41 address winningAddress = contestants [winningNumber
].addr;
42
43 gameld++;
14 nextTicket = 0;
45 winningAddress. transfer ( prize );
46 }
47 |}

Listing 2. A ticketing contract.

B. LIMITATIONS AND FUTURE WORK

1) USER-DEFINED REGULATIONS MODULE FOR LOGICAL
FLAWS

This work and existing symbolic execution tools concentrate
on common functional and security properties of smart con-
tracts, while the detection of complex business logic such as
fairness is a weak spot. To deal with logical flaws, future
study should introduce a module that enables user-defined
rules in vulnerability mining tools. By verifying whether
the customized rules can be violated, logical flaws can be
detected.
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2) RISK GRADING

This work does not distinguish the hazard of security defects.
For the sake of safety assessment and bug fixing, it is nec-
essary to provide risk grade for the reported warnings in
line with their potential hazard. For example, the risk of
state change after calling a user-supplied address is more
dangerous than that of a fixed address.

3) THE SETTING OF EXECUTION PARAMETERS

This work limits execution duration by setting parameters like
timeout and recursive depth. However, contracts often cannot
reach that state due to running out of gas in reality. To avoid
unnecessary losses, future work can take the gas provided into
consideration.

APPENDIX. 1
See Listing].

APPENDIX. 2
See Listing2.
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