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ABSTRACT Rotating machinery plays a key role in mechanical equipment, and the fault diagnosis of
rotating machinery is a popular research topic. To overcome the dependency on expert knowledge regarding
conventional time-frequency analysis diagnosis methods, machine learning (ML) and artificial intelligence
(AI)-based methods are commonly studied. Although these methods can achieve high-accuracy diagnosis
results, they are based on a large number of training samples. A generative adversarial network (GAN) is an
algorithm with the capability of generating realistic samples that are similar to the real samples, and it can be
applied to solve fault diagnosis problems with insufficient training data, which is called the small sample size
condition in this study. However, a single-GAN model cannot achieve a good diagnostic result. To achieve
adaptive feature extraction and high diagnosis accuracy, this study proposes an intelligent fault diagnosis
method for rotating machinery based on GANs under small sample size conditions. The effectiveness and
performance of the proposed method are validated using rolling bearing and gearbox datasets. In these
datasets, only 10% and 20% of the samples are selected as the training data. Samples associated with different
health conditions and various working conditions are included in the datasets. Compared with those of other
diagnosis methods, the high-accuracy and low-volatility diagnosis results indicate that the proposed method
can stably distinguish fault modes under different working conditions in an adaptive way, even though few
training samples are available.

INDEX TERMS Fault diagnosis, rotating machinery, generative adversarial network, small sample size
conditions.

I. INTRODUCTION
In industrial production, rotating machinery is an indispens-
able and important general-purpose component in mechan-
ical equipment and plays a crucial role in the operation
of such equipment. The reliability of rotating machinery is
challenged by poor working environments that include heavy
loads and variable working conditions. Moreover, the safe
operation of mechanical equipment is a core requirement in
the industrial production process, and equipment failure may
result in serious economic losses or even catastrophic acci-
dents. Therefore, it is necessary to monitor and diagnose the
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faults of rotating machinery, locate the faults in a timely man-
ner, and support the corresponding maintenance decisions.

There have been many studies of the fault diagnosis of
rotating machinery. The conventional diagnosis methods are
mainly based on vibration analysis and signal processing
and use time-frequency analysis and other techniques to
extract fault features from the vibration signals collected by
the sensors and diagnose the fault modes. Empirical mode
decomposition (EMD), which is a time-frequency analysis
technique, is widely used in rotating machinery diagnosis.
Studies by Loutridis [1] and Junsheng et al. [2] extracted
the fault features from the vibration signals collected from
gears and bearings, classified the fault modes and achieved
good results. In addition, as classical time-frequency analysis
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methods, wavelet package transform (WPT) [3] and local
mean decomposition (LMD) [4] have been fully studied for
diagnosis. However, conventional diagnosis methods based
on signal processing techniques often rely on expert knowl-
edge in vibration analysis, fault diagnosis and other fields,
which limits the broad application of such methods. With
the development of machine learning (ML) and artificial
intelligence (AI), AI-based methods have become increas-
ingly used to adaptively mine the fault-related information
from rotating machinery operating data in a data-driven
way to automatically diagnose fault modes. Support vector
machines (SVMs) have the capability of nonlinear multilabel
classification and are used in tasks related to the diagnosis
of rolling bearings [5], [6] and gears [7]. Artificial neu-
ral networks (ANNs) [7], [9], [10] simulate the biological
nervous system based on the connections among artificial
neurons simulated by activation functions considering the
relevant weights and biases. In addition, ANNs can extract
and combine nonlinear features and perform classification or
regression tasks, so they can be used in the fault diagnosis
of rotating machinery based on adaptive feature extraction
from vibration signals. Due to the structure of deep neural
networks (DNNs) and number of hidden neurons, DNNs
are capable of obtaining nonlinear representations of data.
They not only achieve results than conventional methods in
the fields of image classification [11] and natural language
processing [12] but also display excellent performance in
fault diagnosis tasks. Lu et al. [13] proposed a diagnosis
method based on the stacked denoising autoencoder, and it
achieved high accuracy in the diagnosis of rolling bearings.
Guo et al. [14] used a convolutional neural network (CNN)
to extract features from the vibration signals of bearings
and combine these features in a layer-by-layer method to
adaptively diagnose the fault modes. Yu et al. [15] performed
feature extraction based on the time-domain vibration signals
of rotating machinery for fault diagnosis with long short-term
memory (LSTM) neural networks. The fault diagnosis meth-
ods above based on ML and deep learning have a common
drawback: they require a large amount of training data to
automatically learn the intrinsic patterns of normal and fault
data. However, in practice, 1) it is difficult to collect real
operating data corresponding to different health conditions
due to the low frequency of fault occurrences [16], 2) the
cost and risk of fault injections to rotating machinery is
very high, and such experiments may injure researchers and
destroy property [17], and 3) even if large amounts of real
data are available, it is costly to label these data [18], and it is
generally not easy to obtain enough high-quality labeled data
for model training. Hence, it is urgently needed to develop a
fault diagnosis method that can achieve high-accuracy results
with only a few samples for training.

A Generative adversarial networks (GAN) is a
ML algorithm with the capability of generating sam-
ples in an unsupervised way. GAN was proposed by
Goodfellow et al. [19] and can adaptively learn samples to
construct a mapping from a prior random noise distribution to

the intrinsic distribution hidden in real samples based on the
adversarial training between the generator and discriminator.
When the generator and discriminator are both well trained,
the generator can output generated samples that are very sim-
ilar to the real samples with random noise as the input data.
The vanilla GAN and its variants, including DC-GAN [20],
AC-GAN [21] and WGAN [22], etc. have achieved good
generating performance on some large-scale image datasets,
such as ImageNet. Because the training process of a GAN
does not require a large amount of labeled data, these net-
works can be applied in fault diagnosis tasks with insufficient
training data, which is called the small sample size condition
in this study. Lee et al. [23] applied a GAN based method
instead of other conventional resampling methods to augment
an imbalanced dataset for an inductionmotor. Compared with
other resampling methods, the GAN-based method generated
more realistic samples, which increased the fault diagnosis
accuracy in contrast to using an imbalanced dataset. However,
this method only used the GAN for data augmentation,
so the quality of the generated samples greatly influenced the
accuracy of fault diagnosis. Wang et al. [24] proposed a fault
diagnosis method based on a stacked denoising autoencoder
and generative adversarial network (SDAE-GAN), which not
only outputted a 0/1 flag but also the category labels of sam-
ples. This approach enables the discriminator to determine
the fault mode of the sample and whether the input data
come from the real data distribution. However, the difficulty
of learning several distributions simultaneously is very high.
According to a case study in that paper, the SDAE-GAN-
based method achieved an accuracy of 90% in a 5-category
fault diagnosis of a planetary gearbox, and the training set
contained 500 real samples. A fault diagnosis model with
only a single GAN will struggle to learn the distributions of
several health conditions simultaneously with high accuracy.

These problems can be summarized into two conclusions.
1) The existing AI-based fault diagnosis methods often rely
on a large amount of training data, which is practically dif-
ficult to obtain for rotating machinery. 2) The GAN-based
method is a solution to the problem of fault diagnosis under
the small sample size condition, but a single-GANmodel may
not produce a high-accuracy result. To solve these problems,
this study proposes a fault diagnosis method for rotating
machinery based on an ensembleGANmethod. The proposed
method uses multiple GANs to learn the data distribution
of each health condition and then uses a semi-supervised
method to enhance the feature extraction capability of the dis-
criminator of each GAN. Amulticategory fault diagnosis task
is finally completed by integrating all the enhanced discrim-
inators corresponding to the health conditions. The specific
implementation process is as follows. 1) Each GAN is trained
by adversarial training. During this process, the discrimi-
nators are pretrained in an unsupervised way to determine
whether the input sample comes from the learned distribution.
2) The discriminators are enhanced in a semi-supervised
way to improve the determination capability using the super-
vised training set chosen from the original small sample size

VOLUME 7, 2019 149737



Y. Ding et al.: GAN-Based Intelligent Fault Diagnosis Method for Rotating Machinery Under Small Sample Size Conditions

FIGURE 1. The fundamental principle of a GAN.

training set. 3) All enhanced discriminators are integrated.
When a sample is obtained, it is fed into the ensemble
model, and the discriminator that outputs the largest value
corresponds to the predicted health condition. Compared
with conventional AI-based methods, the proposed method
achieves a high-accuracy diagnosis result under the small
sample size condition, which overcomes the dependency on
a large amount of training data. Compared to multicategory
classification with a single GAN, the proposed method uses
an ensemble strategy that controls each GAN to learn the rel-
evant data distributions. Thus, the learned distributions match
the real distributions, and the diagnosis accuracy is high.
Moreover, the proposed discriminating ability enhancement
method (DAEM) is employed for the discriminators, which
further improves the performance of the diagnosis model. The
main contributions of the proposed methods are as follow:

(1) Different from the idea of using data augmentation
methods or resampling methods to expand the number of
training samples, the proposed method can map the relation-
ship between the corresponding measured signals and the
different health conditions of the rotating machinery with
only a small number of samples.

(2) The proposed method can eliminate the interaction
between the intrinsic distributions of different fault modes in
the training process. Thus, compared with the single-GAN
based fault diagnosis method, the proposed method has
stronger generalization ability.

The remainder of this paper is organized as follows.
Section 2 introduces the structure of the GAN and the adver-
sarial training method. Section 3 describes the ensemble
GAN-based method proposed in this study, including the
adversarial training, DAEM and ensemble diagnosis meth-
ods. Section 4 uses rolling bearing and gearbox datasets to
validate the effectiveness and performance of the proposed
method separately. The conclusions are drawn in section 5.

II. A BRIEF INTRODUCTION TO THE GAN
A GAN is composed of one generator and one discrimina-
tor. Inspired by binomial zero-sum game theory, the goal

of training a GAN is for the generator and discriminator to
reach Nash equilibrium. Any differentiable function that can
be optimized using gradient-based methods can be selected
as the generator and discriminator in a GAN. xr represents
the real sample, and z represents the random noise vector,
such as Gaussian random noise. The goal of the generator
is to capture the potential distribution hidden in real samples
taking z as input. Thus, the generator outputs a ‘‘fake’’ sample
xf that is as similar as possible to xr to confuse the discrimi-
nator. Moreover, the goal of discriminator is to distinguish xf
and xr and identify the real samples and generated samples.
Because the goals of the generator and discriminator are
contradictive, the two parts of a GAN are in competition and
become gradually stronger during training. As long as the
GAN is well trained, the distribution of generated samples
will match the distribution of real samples, and the discrimi-
nator will struggle to tell the difference between xf and xr .
Because the output of the discriminator is the probability
that the sample is a true/generated sample, the discriminator
eventually becomes ‘‘confused’’ and predicts 0.5 for both the
real and generated samples. From another perspective, since
a GAN can capture the distribution of real samples, the dis-
criminator can differentiate between the training samples and
other samples. This capability of a GAN inspired us to design
a novel fault diagnosis method under the condition of a small
sample.

The fundamental principle of a GAN is shown in Fig. 1.
The nonlinear functions approximated by the generator and
discriminator are denoted as D(·) and G(·), respectively. The
distribution of the real samples and random noise are denoted
as Pdata and Pn, respectively. Because the training goals of
the generator and discriminator are different, the objective
functions are defined separately. The objective functions of
and are defined as (1) and (2), respectively.

min
G

{
LG (D,G) = Ez∼Pn

[
log (1− D (G (z)))

]}
(1)

max
D
{LD (D,G) = Ex∼Pdata

[
logD (x)

]
+Ez∼Pn

[
log (1− D (G (z)))

]
} (2)
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In the equations above, LG (D,G) and LD (D,G) are
the objective functions of the generator and discriminator,
respectively. z ∼ Pn indicates that the noise vector is from
the distribution Pn. Additionally, x ∼ Pdata suggests that
the input sample is from the distribution Pdata. G(·) and
D(·) are the output values of the generator and discriminator,
respectively.

Since the training process of a GAN is a game between
the generator and the discriminator, the two parts of a GAN
are alternately trained. Furthermore, (1) indicates that during
the training process of the generator, no real samples are
needed. Therefore, the first part in (2), Ex∼Pdata

[
logD (x)

]
,

is redundant and can be added to (1) without affecting the
training process of the generator. Thus, (1) and (2) can be
integrated into a single objective function for the overall
training process of the GAN, and the integrated function is
shown in (3).

min
G

max
D
{LD (D,G) = Ex∼Pdata

[
logD (x)

]
+Ez∼Pn

[
log (1− D (G (z)))

]
} (3)

During the adversarial training process, the generator and
the discriminator are trained by the mini-batch gradient
descent alternately. Notably, the optimizing speed of D and
G is controlled by a hyperparameter q, which means that the
generator is trained once when the discriminator is trained for
q times.

III. DIAGNOSIS METHOD BASED ON THE GAN
Based on the GAN, this study proposes a novel intelligent
fault diagnosis method that can effectively classify fault
modes using a small set of samples. Unlike the classification-
and clustering algorithm-based diagnosis methods, a GAN
is a generative learning algorithm that can effectively mine
the intrinsic distribution of a dataset using few samples.
Furthermore, the discrimination ability of a GAN discrimi-
nator makes it possible to build an ensemble fault diagnosis
model. Because a DNN is capable of approximating arbitrary
nonlinear functions, it can be used to build the generator and
discriminator in a GAN. The DNN of the generator is able
to establish a nonlinear mapping from random noise to the
generated samples, and the DNN in the discriminator can
determine whether the input sample comes from the real data
distribution. The proposed method includes the following
4 steps.

1) The first step is preprocessing the vibration signals col-
lected from the rotating machinery. The preprocessing tasks
include frequency-domain decomposition and normaliza-
tion. Frequency-domain decomposition obtains the frequency
spectra of vibration signals based on fast Fourier transform
(FFT). The normalization task involves using min-max nor-
malization to normalize all values to the range of [0, 1], where
the normalization parameters are theminimum andmaximum
of the whole dataset, which contains samples under all health
conditions.

2) The second step is training multiple GANs for all the
health conditions. During adversarial training, the discrimina-
tor is trained through an unsupervised approach. The training
process is stopped when the generator and the discriminator
reach Nash equilibrium. A detailed training process will be
described in III-A.
3) The third step is enhancing the discrimination ability

of the discriminators in a semi-supervised way. Based on
the training mechanism of a GAN, the discriminator cannot
assess the correct samples with a probability close to 1. Thus,
the discriminating ability enhancement of each discriminator
can further improve the performance of the integrated diag-
nosis model. A detailed process of DAEM will be described
in III-B.

4) Finally, the integrated fault diagnosis model is obtained
by combining all the discriminators based on voting.

The remainder of Chapter III describes the adversarial
training process of the GAN model, the DAEM process of
the discriminator, and the integration process of the fault
diagnosis model using all well-trained discriminators. It is
noted that in the following description, k health conditions
are used to further illustrate the training process.

A. ADVERSARIAL TRAINING OF THE GAN
Assuming that the training set is denoted as {x(i)

k }
m
i=1, where

k is the number of health conditions, x(i)
k is the ith frequency

spectra of the health conditions k , and M is the number of
training samples. The GAN model of the health conditions
k is built with structurally symmetrical forms of Gk and Dk .
The input dimension of Gk is the same as the dimension of
the random vector, and the output dimension is the same as
that of the real samples. Moreover, the input dimension of
Dk is the same as that of the real samples, and the output
dimension is one, indicating the probability value of the input
vector coming from the real data distribution.

The noise distribution Pn should be chosen from a prior
distribution, such as a uniform distribution, Gaussian dis-
tribution, or another distribution. The mini-batch denoted
as {z(i)}mi=1 is sampled from Pn as the input of the gener-
ator, where m is the size of the mini-batch. Then, {z(i)}mi=1
is inputted into Gk to obtain the generated samples of
mini-batch {Gk

(
z(i)
)
}
m
i=1 through forward propagation. Addi-

tionally, the mini-batch denoted as {x(i)
k }

m
i=1 is sampled

from the real data distribution. Both {z(i)}mi=1 and {x(i)
k }

m
i=1

should be labeled to form the training set, where label 0 is
assigned to {z(i)}mi=1 and label 0 is assigned to {x(i)

k }
m
i=1

correspondingly. The training set is grouped as {X; y} =
{x(1)
k , . . . , x(m)

k ,Gk
(
z(1)
)
, . . . ,Gk

(
z(m)

)
; 1, . . . , 1,0, . . . , 0}.

The cross-entropy between the predicted values ofDk and the
labels is used as the loss function for the training ofDk , which
is shown in (4), since it can measure the difference between
the distributions of two random variables.

LD = −E
[
logD (xk)+ log

(
1− D

(
xf
))]

= −
1
m

m∑
i=1

[
logD

(
x(i)
k

)
+ log 1− D

(
x(i)
f

)]
(4)
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To update the parameters in Dk , a backpropagation algo-
rithm is utilized to calculate the gradient of the loss function.
The updated values of the parameters of Dk , denoted as 2∗D,
are obtained by implementing stochastic gradient descent,
as shown in (5).

2∗D = 2D −∇2DLD (5)

Then, a complete GAN is formed by connecting Gk and
Dk , and the loss function defined to train the generator is
based on cross-entropy, as is that for training the discrimi-
nator. The corresponding function is denoted in (6).

LG = −E
[
log (1− D (G (z)))

]
= −

1
m

m∑
i=1

[
log

(
1− D

(
G
(
z(i)
)))]

(6)

Similarly, the gradient of the loss function for each parame-
ter of the DNN ofGk is calculated using the backpropagation
algorithm. Then, the updated values of the parameters of Gk ,
denoted as 2∗G, are obtained by implementing a stochastic
gradient descent method, as shown in (7), while keeping the
parameters of Dk constant.

2∗G = 2G −∇2GLG (7)

The training process discussed above is repeated until Gk
and Dk reach Nash equilibrium. At the end of the adversarial
training process, Gk can generate samples that are very sim-
ilar to real samples, and Dk can determine whether the input
samples are from the real data distribution.

B. DISCRIMINATING ABILITY ENHANCEMENT METHOD
FOR THE DISCRIMINATOR
To improve the performance of the final fault diagnosis
model, the trained discriminators need to be enhanced before
being integrated. During the adversarial training process,
the discriminators are trained with both real and generated
samples in an unsupervised way. As a result, each discrimina-
torDk has the ability to distinguish whether the input samples
are actually from the kth health condition. Because Dk and
Gk from the trained GAN have reached a Nash equilibrium
state,Dk tends to predict a probability value of 0.5 for samples
based on the k-th health condition. For samples that are not
associated with the kth health condition, Dk tends to predict
a probability value as close to 0 as possible.

However, for the purpose of fault diagnosis, each discrim-
inator Dk should output a probability value as close to 1 as
possible if the input sample is associated with the kth health
condition and a probability value as close to 0 as possible
if the input sample is not associated with the kth health
condition. Moreover, because Dk is trained with the sam-
ples for health condition k , it has never processed samples
from other health conditions. Thus, to further enhance the
performance of the discriminators, DAEM is proposed for
training them in a supervised way using a small number
of labeled true samples. Because the discriminating ability
enhancement process involves combining both unsupervised

and supervised training, it could be regarded as a method of
semi-supervised training. The purpose of this method is to
enhance the ability of discriminators to tell whether the input
is associated with the corresponding health condition.

To further illustrate the process of DAEM, the enhanced
discriminator corresponding to the kth health condition is
denoted as D∗k . The samples from the kth health condition
are labeled positive samples (labeled as 1), and the samples
from all other health conditions are labeled negative samples
(labeled as 0). Assuming that the number of samples from the
jth health condition used for DAEM is denoted as nj, the neg-

ative samples can be denoted as
(
{x(i)
j }

nj
i=1

)
, j = 1, . . . ,N ∧

j 6= k , and the positive samples can be denoted as
(
{x(i)
k }

nk
i=1

)
,

where the subscript refers to the health condition. Further-
more, D∗k is trained using the above positive and negative
samples in a supervised way based on the stochastic gradient
descent approach until the loss converges to a minimum
value. A schematic diagram of the DAEM process is shown
in Fig. 2. Fig. 2 illustrates the DAEM process for a single
discriminator, and the other discriminators can be similarly
enhanced.

FIGURE 2. The schematic diagram of the DAEM process for D∗

k .

C. INTEGRATING THE ENHANCED DISCRIMINATORS FOR
FAULT DIAGNOSIS
From the perspective of ensemble learning, the major concept
involves building and training several weak classifiers and
then integrating them to obtain a classifier that outperforms
any one of them individually [25]. In this study, all enhanced
discriminators can be regarded as weak classifiers. All the
samples are pretrained in an unsupervised way using both
real samples and generated samples for different health con-
ditions, which enables them to distinguish samples associated
with different health conditions. In other words, the discrim-
inators are highly diverse in performing classification tasks,
so the performance of the integrated model should theoreti-
cally surpass that of any of the weak classifiers [25].

In the proposed method, we use the voting method to
predict the category of input samples. After discriminating
ability enhancement, the output value of D∗k represents the
probability that an input sample is from the dataset for the kth
health condition. The Softmax function is used to normalize
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all the output values of the discriminators, as shown in (8).

Softmax (p)k =
exp

(
D∗k (x)

)∑n
i=1 exp

(
D∗i (x)

) (8)

where D∗j (·) represents the output value of the jth discrimi-
nator and Softmax (p)j represents the normalized probability
that the input sample is associated with the jth health condi-
tion. The ensemble methodology is shown in Fig. 3.

FIGURE 3. The schematic diagram of the ensemble methodology.

Additionally, the structure shown in Fig. 3 denotes the
fault diagnosis process based on the proposed method. For
any of the frequency spectra of a sample for a certain health
condition, the integrated model predicts the classification
probability value of each health condition in an end-to-end
approach. Furthermore, the certain health condition corre-
sponding to the largest probability value is the predicted
category from the diagnosis model.

IV. CASE STUDY
A. CASE 1: FAULT DIAGNOSIS OF ROLLING BEARINGS
Rolling bearings are key components in rotating machin-
ery. Severe working conditions often cause failures such as
cracks, thus affecting the performance, reliability and service
life of the machinery. Therefore, it is of vital importance
to perform effective diagnoses of rolling bearings, provide
a decision-making basis for maintenance and reduce break-
downs and economic losses. We take the diagnosis of rolling
bearings as a case study to validate the performance of the
proposed method.

1) DATASET DESCRIPTION
The fault data for rolling bearings used in our study were
provided by Case Western Reserve University (CWRU) [26].
The data were collected from a test bench consisting of a
two-hp motor, a torque transducer/encoder, a dynamometer,
and control electronics, as shown in Fig. 4. The data were

FIGURE 4. The CWRU bearing testing bench.

collected under 3 different loads (1 hp, 2 hp, and 3 hp) with
a sampling frequency of 48 kHz. Four different types of fault
data were collected, including normal condition (N), inner
race fault (IR), rolling ball fault (B), and outer race fault (OR)
data. Moreover, the fault degree was varied by using dif-
ferent fault diameters, including 0.007 inches, 0.014 inches,
0.021 inches, and 0.028 inches.

In this study, datasets are used to test the performance of the
proposedmethod. Datasets A, B, and C contain vibration data
collected under working loads of 1, 2 and 3 hp, where each
dataset has 10 different health conditions (normal conditions
and an IR, a B, or an OR fault considering different fault
diameters). A detailed description of the datasets is shown
in Table 1.

Because the data were collected with a sampling frequency
of 48 kHz for 10 second, the vibration signal of each health
condition has 480,000 points. The vibration signal of each
health condition is spilt into 200 subsamples so that each sub-
sample contains 2400 data points. Then, FFT was employed
to obtain the 2400 Fourier coefficients of each subsample.
Because the coefficients are symmetric, the first half of the
coefficients are used in each subsample. Thus, each dataset
A/B/C has 2000 samples under 10 different health conditions,
and each health condition is associated with 200 samples.

2) DESCRIPTION OF THE PARAMETERS IN THE GAN
The designed generator and discriminator are structurally
symmetric. The dimension of the input layer of the generator
depends on the dimension of the random noise vector. The
numbers of nodes in the hidden layers are 256 and 768. The
output dimension of the generator is 1201, which is the same
as the dimension of the spectrum samples. Correspondingly,
the input dimension and the numbers of nodes in the first
and second hidden layers of the discriminator are 1201,
768 and 256. The output dimension is 1 for the discriminant
result. The rectified linear unit (ReLU) is employed as the
activation function of the hidden layers in the generator and
discriminator, and the activation functions of the output layers
are sigmoid functions. To validate the performance of the
proposed GAN-basedmethod under small sample conditions,
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TABLE 1. Description of the datasets.

FIGURE 5. The diagnosis results of 10 independent trials using the proposed method: (a) dataset A, (b) dataset B, and
(c) dataset C.

datasets A/B/C are divided into a training set and a testing set
at a ratio of 1:9. Therefore, in each dataset, only 200 samples
are used for training and adjusting theGAN, and the diagnosis
performance is validated on 1800 unknown samples. All
samples are normalized in the range of 0-1 using a min-max
scaler, which takes the maximum and minimum values of the
training set as the normalization parameters.

The uniform distribution was used as the prior noise dis-
tribution, and the random noise vector dimension was set
to 128. The size of a mini-batch was 16. The ratio of the
training times of D and G in one adversarial training epoch
was 3, which means that the generator is updated once after
the discriminator is updated three times. The stochastic gra-
dient descent method was employed to update the GAN
for 10000 adversarial training epochs with a learning rate
of 0.01 and momentum of 0.2.

In the DAEM process of D∗k , all 20 training samples for
health condition k were selected as positive samples. To bal-
ance the numbers of positive and negative samples, 2 samples
were selected from the other 9 health conditions individu-
ally as negative samples. The number of training epochs in
the DAEM process was 2000. To eliminate the interference
associated with other factors, ten independent experimental
trials were conducted to test the performance of the proposed
method.

3) EXPERIMENT RESULTS
The diagnosis results for the testing sets of datasets A, B
and C using the proposed method under the parameter setting

described in IV-A.2 are shown in Fig. 5. The pretrained
model, which is the model after adversarial training without
being enhanced, can achieve a high diagnosis accuracy for
datasets A and C. As Fig. 5 shows, the diagnosis accuracy
using the enhanced model is greater than 95%. A detailed
description of the experimental results is given in Table. 2.
The results in Table 2 indicate that the average testing

accuracy of the ten independent trials is high and the standard
deviations are below 1.2%, which suggests that the proposed
method is able to effectively distinguish each of the ten health
conditions. It is worth noting that the high accuracy of testing
is achieved under the condition that the number of training
samples only accounts for 10% of all the samples. Thus,
the proposed method can effectively classify different fault
modes under a small sample size condition.

To further validate the performance of the proposed
method under small sample conditions, experiments with
different sample ratios of the training set to the test set
were performed. For each dataset, the proportion of training
samples to all samples was set from to 10% to 50% with an
interval of 10%. Ten independent trials were conducted for
each experimental setting. The experimental results shown
in Fig. 6 indicate that as the size of the training set decreases,
the diagnosis accuracy remains high instead of decreasing
significantly. Such a result further illustrates the effectiveness
of the proposed method under the condition of a small sample
size.

Moreover, comparative experiments were performed under
the same condition of a small sample size to illustrate the
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TABLE 2. Diagnosis accuracy using the pretrained and enhanced model for datasets A/B/C, Ten trials were conducted for each dataset.

TABLE 3. The experiment results for datasets A/B/C using 3 different methods.

FIGURE 6. The fault diagnosis accuracy of three groups of datasets under
different sizes of training sets.

effectiveness of the proposed method. The methods selected
as the comparison methods were the SVM-based fault diag-
nosis method [5] and the stacked autoencoder (SAE)-based
fault diagnosis method [13]. The percentage of training
samples was selected as 10%. The configuration of the
SVM-based method is obtained by a grid-search process. The
penalty parameter of the error term is 1000. The SVM model
uses an RBF kernel. The SAE-Softmax-based method uses
an autoencoder structure containing 2 hidden layers, which
has 784 and 512 neurons respectively. ReLU is chosen to
be the activation function, and the optimizer is Adam. The
batch-size is 32 and the model is trained for 100 epochs. The
experimental results of the 3 methods are shown in Table 3.

As shown in Table 3, the proposed fault diagnosis
method achieved higher accuracies and lower standard devi-
ations than the SVM-based method and SAE-Softmax-based
method. For the SVM-based method, the dimension of the
inputs is too large for the traditional ML method to handle.
For the SAE-Softmax-based method, the number of training
samples is not sufficient for the supervised learning-based
method to learn effective fault information, which makes it
unable to effectively diagnose the fault modes.

4) ANALYSIS AND DISCUSSION
In this section, we first show and analyze the samples gener-
ated by the generator of the GAN. Then, the fault features
extracted by the pretrained and enhanced diagnosis model
are presented. Finally, the reason why the proposed method
achieves good performance under small sample size condi-
tions is discussed.

The original purpose of the GAN was to generate samples
that have a similar distribution to real samples. Therefore,
one key indicator of the effectiveness of adversarial training
is the similarity between the generated samples and the real
samples. Under the condition of using 10% of all samples
in dataset A for training, the generated samples and the cor-
responding real samples for ten health conditions are shown
in Fig. 7.

The generators are able to capture the distributions of the
real samples accurately, enabling them to generate samples
with high similarity to the real samples. In particular, the gen-
erators can learn the characteristic frequencies that have a
critical impact on fault diagnosis, which helps to obtain a high
diagnosis accuracy.
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FIGURE 7. The generated samples and the corresponding real samples
for (a) NORMAL, (b) IR007, (c) IR014, (d) IR021, (e) B007, (f) B014,
(g) B021, (h) OR007, (i) OR014, and (j) OR021 in dataset A.

Based on the structure of the GANs introduced in
section II, the discriminator receives a 1201-dimensional
spectra vector as the input and extracts a 256-dimensional
compressed feature vector before outputting the diagnosis
result. To provide an intuitive understanding of the learn-
ing effect of the model, t-distributed stochastic neighbor
embedding (t-SNE) was implemented for the feature vector
to reduce the feature dimension to 3 for visualization. The
scatter diagrams of the extracted features obtained by the
enhanced discriminator corresponding to the normal health
condition are displayed in Fig. 8. Notably, the feature points
for the same health condition are clustered, and those for
different health conditions are clearly separated. The visu-
alization result based on t-SNE indicates that the enhanced
discriminator can effectively extract the key information from
the data, which enables it to effectively classify the data asso-
ciated with different fault modes. Furthermore, the enhanced
discriminator, which is trained for one specific health mode,
can classify different fault modes, even though that it has
only received one label corresponding to the current health
mode and one other label covering all other fault modes. The
reason for this high level of effectiveness is that the adver-
sarial training and DAEM process forces the GAN to mine
the differences among different categories of input samples

FIGURE 8. Scatter diagrams of the features extracted by the enhanced
discriminator corresponding to the NORMAL health condition for
(a) dataset A, (b) dataset B, and (c) dataset C.

instead of directly obtaining the label of each failure mode
based on supervised learning.

As shown in Table 2 and Table 3, the proposed method can
achieve an average accuracy of 99.41%, 97.80%, and 98.29%
for datasets A, B, and C, respectively, under the condition
of only taking 10% of all samples as the training set and
performing tests based on the remaining 90% of samples.
Such performance under small sample size conditions is due
to the generation ability of the GAN.

During the adversarial training process, the effectiveness
of the generator is gradually enhanced. Fig. 9 shows the
loss trends of both the generator and discriminator during
the adversarial training process and the generated samples in
certain epochs. Fig. 9 shows the results obtained under normal
conditions, and the ratio of the training samples to all samples
is 10%. As shown in Fig. 9, the generated samples become
increasingly real as the number of training epochs increases.
At epoch 30, the generated samples are almost the same as the
real samples, and the loss is stable regardless of the training
process. Subsequently, because the generator can generate
samples that are similar to the real ones, such samples can
be used as augmented samples to further improve training.
In Fig. 9, the generated samples obtained from epochs 30 to
100 were then used in the training process. Thus, the training
set can be expanded by the generated samples. Therefore,
the generating ability of the proposed method contributes to
the accuracy and stability of the diagnosis.

B. CASE 2: FAULT DIAGNOSIS OF A GEARBOX
As a common transmission component, the gearbox has
many advantages, such as a large transmission torque and
an accurate transmission ratio. To ensure the reliability and
safety of the transmission, fault diagnosis of the gearbox is
necessary. In this study, to further validate the effectiveness
and performance of the proposedmethod, another experiment
was conducted using the vibration signals collected from the
gearbox test bench.

1) DATASET DESCRIPTION
The test bench used to collect the data in case 2 is a power
transmission fault prediction test bench manufactured by
Spectra Quest, USA. It is composed of a driver (the con-
trol cabinet), a lubrication system, a driving motor, a test
planetary gearbox, a test parallel gearbox, two load-parallel
gearboxes, a load motor, torque sensors and force sensors.
The structure of the gearbox test bench is shown in Fig. 10.

In this case, faults were injected into the planetary gear of
the gearbox and included a tooth root crack, wear, one miss-
ing tooth, and a broken gear. The faulty gears corresponding
to the four fault modes are shown in Fig. 11.

The rotating speed of the gears was 20 Hz, and the loads
were 0 Nm (no load), 0.6 Nm, 1.2 Nm. Three different
datasets, A, B, and C, were used according to different
working conditions. The vibration sensor was attached to
the outer end cap of the input shaft of the tested planetary
gearbox via a thread connection. For each set of working
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FIGURE 9. The loss trends of both the generator and discriminator during the adversarial training process.

FIGURE 10. The gearbox test bench used to collect the gear fault data.

conditions, the vibration signals of the gearbox were sampled
at 12.8 kHz for 40 seconds, so there were 512,000 data
points for each health condition and set of working condi-
tions. Each signal was then divided into 400 subsamples,
and each subsample included 1280 data points. Furthermore,
FFT was used to obtain the Fourier coefficients. Because the
coefficients are symmetric, the first 641 coefficients were
kept as the frequency-domain sample. Thus, each dataset
included frequency-domain samples for 5 health conditions,
and each health condition had 400 samples, with each sample
as a 641-dimensional frequency spectrum. The details of the
datasets are summarized in Table 4.

2) DESCRIPTION OF THE PARAMETERS IN THE GAN
The input dimension of the generator was equal to the dimen-
sion of the random noise vectors. The two hidden layers in
the networks have 256 and 512 neurons, respectively, and
the output dimension is 641, which equals the dimension
of the real samples. The discriminator is symmetrical to the

FIGURE 11. The gears corresponding to the four fault modes:(a) One
missing tooth, (b) Broken, (c) Wear, and (d) Tooth root crack.

generator, except that the output dimension is 1, which rep-
resents the output probability value. The activation functions
of the hidden layers used in the generator and discriminator
are ReLUs, and the activation functions of the output layers
are sigmoid functions.

Each dataset was divided into a training set and a testing
set based on a ratio of 1:4. The samples in the training set
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FIGURE 12. The diagnosis results of 10 independent trials using the gearbox datasets: (a) dataset A, (b) dataset B, and
(c) dataset C.

TABLE 4. The details of the gearbox datasets.

and the testing set were normalized to the range of 0 1 using
the maximum and minimum values in the training set. The
random noise obeyed a uniform distribution between 0 and 1,
and the dimension was 128. The size of themini-batch used in
the training process was 32. The ratio of the training times of
D andG in one adversarial training epochwas 3:1. In the SGD
optimizer, the learning rate was 0.01, and the momentum was
0.2. The model was trained for 10,000 epochs as part of the
pretraining process of the diagnosis model. In the DAEM,
the number of positive samples was the same as the number of
negative samples. Using SGD as the optimizer with a learning
rate of 0.01, the model was trained for 2,000 epochs. To elim-
inate the interference of accidental factors, 10 independent

experiment trials were conducted to test the performance of
the algorithm.

3) EXPERIMENT RESULTS
The accuracies of the experiments under different working
loads are shown in Fig. 12. The average accuracies of the
pretrained model are above 80% for the 3 different working
conditions. After the DAEM process, the accuracies reach
over 98%. A detailed description of the experimental results
is shown in Table 5.

As shown in Table. 5, the average diagnosis accuracies of
the proposed method are all above 99% for the 3 different
working conditions. In particular, the accuracy of the 9 trials
for dataset C is 100%, which illustrates the excellent perfor-
mance of the proposed method. In addition, the low standard
deviations reflect the high stability of the proposed method
and indicates that the results of the different trials do not
considerably fluctuate.

Comparative experiments were performed for the same
conditions and a small sample size. The methods selected
for comparison were the SVM-based fault diagnosis method
and the SAE-Softmax-based fault diagnosis method. The
ratio of training samples to all samples was selected as 20%.

TABLE 5. Diagnosis accuracy using the pretrained and enhanced models for datasets A, B, and C, Ten trials were performed for each dataset.
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TABLE 6. The experiment results for gearbox datasets A, B, and C using 3 different methods.

FIGURE 13. The generated samples and the corresponding real samples
under (a) Normal, (b) One missing tooth, (c) Wear, (d) Broken, and
(e) Tooth root crack conditions for dataset A.

The configuration of the SVM-based method is obtained by
a grid-search process. The penalty parameter of the error
term is 200. The SVM model uses an RBF kernel. The
SAE-Softmax-based method uses an autoencoder structure
containing 2 hidden layers, which has 784 and 512 neurons
respectively. ReLU is chosen to be the activation function,
and the optimizer is Adam. The batch-size is 32 and themodel
is trained for 100 epochs. The experimental results of the
3 methods are shown in Table 6.

As shown in Table 6, the proposed fault diagnosis method
achieves higher accuracies and lower standard deviations than
the SVM-based method and SAE-Softmax-based method.

FIGURE 14. Scatter plots of the features extracted from the raw samples
of different health conditions by the enhanced discriminator at (a) 0 Nm,
(b) 0.6 Nm, and (c) 1.2 Nm working loads.

4) ANALYSIS AND DISCUSSION
In the case study of the diagnosis of a gearbox, we first show
and analyze the samples generated by the generator in the
GAN. Then, the fault features extracted by the pretrained and
enhanced diagnosis model are presented. Finally, the reasons
why the proposed method achieves good performance under
a small sample size condition are discussed.

Taking the scenario of the gearbox under no load as an
example, the comparisons between the real samples and gen-
erated samples are shown in Fig. 13. Although they are not
exactly the same, the differences between the generated sam-
ples and the real samples are small, which reflects the accu-
racy of the generated samples. In addition, the characteristic
frequencies of the generated sample and the corresponding
real sample match well.

To further illustrate the effectiveness of the proposed
method, the intermediate results obtained by the discrimi-
nator are visualized. Considering the structure described in
section IV-B.2, the raw frequency spectrumwas input into the
enhanced discriminator, transformed nonlinearly by two hid-
den layers, and finally compressed into 128-dimensional fea-
ture vectors. We reduce the dimension of the feature vectors
to 2 using principle component analysis (PCA) and t-SNE
and visualize the results in the 2-dimensional plane, as shown
in Fig. 14. As shown in Fig. 14, the feature points for the same
health condition are clustered, and the points for different
health conditions are separated. Due to the information loss of
PCA, some points associated with different health conditions
are mixed in 2 dimensions, but this result does not affect the
diagnosis accuracy.

V. CONCLUSION
Based on a novel AI GAN, the authors proposed an intel-
ligent diagnosis method for rotating machinery. Taking the
frequency spectra of the FFT as the inputs, several GANs
were trained with an adversarial approach until reaching a
Nash equilibrium state. Then, the discriminator of each GAN
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was detached and regarded as the pretrained weak classi-
fier. After the discriminating ability enhancement process, all
well-trained discriminators were combined into an integrated
diagnosis model. When a new sample is inputted, the largest
output value corresponds to the predicted health condition
category. In the case studies, rolling bearings and a gearbox
were investigated to validate the effectiveness of the pro-
posed method for the fault diagnosis of rotating machinery.
The high-accuracy and low-volatility results indicate that
the proposed method is able to effectively extract the fault
characteristics from the input signals and stably distinguish
the different health conditions. In particular, we used only
10% and 20% of all samples as the training data in cases
1 and 2, respectively, and the accuracies were still above 97%
for different working conditions, which indicates that the
proposed method displays high performance with insufficient
training data and under different working conditions. During
adversarial training, the generated samples can be utilized
with real samples to train the diagnosis model and can be
regarded as an expansion of the training dataset to improve the
generalization performance of the diagnostic model. More-
over, the training process is improved in a semi-supervised
approach that provides multilabel classification ability in the
model and further improves the diagnostic accuracy. There-
fore, the proposedmethod is of vital importance in solving the
problem of obtaining fault data, which are difficult to obtain
in practice. In addition, because fault feature extraction is
automatically completed in the proposed method, the imple-
mentation requires less prior knowledge and experience in the
signal processing and fault diagnosis fields. Therefore, this
method can also be applied in diagnosis tasks involving of
other objects.

In the proposed method, the input feature is the spectrum
of the vibration signal instead of the raw signal, thus FFT
must be utilized before the training and diagnosing processes.
Although the FFT requires less expert knowledge than other
hand-craft feature extraction methods, signal processing still
needs to be utilized and the proposed method could not be
regarded as an end-to-end fault diagnosis method. In the
future work, we will attempt to use the raw vibration signal
to train the GANs by studying and establishing a more stable
training method for GAN. Besides, we will also explore the
feasibility of implementing the proposed method on other
diagnosis tasks other than the rotating machinery.
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