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ABSTRACT In this paper, we propose the octave deep plane-sweeping network (OctDPSNet). OctDPSNet is
a novel learning-based plane-sweeping stereo, which drastically reduces the required GPUmemory and com-
putation time while achieving a state-of-the-art depth estimation accuracy. Inspired by octave convolution,
we divide image features into high and low spatial frequency features, and two cost volumes are generated
from these using our proposed plane-sweeping module. To reduce spatial redundancy, the resolution of the
cost volume from the low spatial frequency features is set to half that of the high spatial frequency features,
which enables thememory consumption and computational cost to be reduced. After refinement, the two cost
volumes are integrated into a final cost volume through our proposed pixel-wise ‘‘squeeze-and-excitation’’
based attention mechanism, and the depth maps are estimated from the final cost volume. We evaluate
the proposed model on five datasets: SUN3D, RGB-D SLAM, MVS, Scenes11, and ETH3D. Our model
outperforms previous methods on five datasets while drastically reducing the memory consumption and
computational cost. Our source code is available at https://github.com/matsuren/octDPSNet.

INDEX TERMS Convolutional neural networks, deep neural networks, depth reconstruction,
plane-sweeping stereo, stereo vision.

I. INTRODUCTION
Depth estimation is a fundamental task in the fields of
computer vision and robotics, especially for autonomous
navigation or autonomous driving, as it is necessary to under-
stand the surrounding environments. RGB cameras, RGB-D
cameras, and LiDAR are commonly employed for depth
estimation. Among these, RGB cameras are the most popular
sensors owing to their low cost, light weight, and availability.

Depth estimation from multi-view images has been com-
prehensively studied over a long period [1]–[5]. One method
is plane-sweeping stereo, where multi-view images are pro-
jected onto virtual planes at several distances from the refer-
ence image plane to generate a cost volume. Then, the depth
maps are estimated using this cost volume.

Recently, several learning-based plane-sweeping stereo
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methods have been proposed and have achieved high accu-
racies, owing to the advances in deep learning [6]–[12].
Because convolutional neural networks (ConvNets) can
exploit the context information in whole images, they have
successfully reconstructed depth maps, even in regions with
poor texture, where it is difficult for conventional methods to
estimate depth maps accurately.

In state-of-the-art learning-based plane-sweeping stereo
methods [6]–[9], the cost volume is represented by a four-
dimensional (4D) volume (feature width × feature height
× number of virtual planes × feature channel), and so
three-dimensional (3D) ConvNets are applied for cost vol-
ume regularization. Although 3D ConvNets are beneficial
for enhancing the depth estimation accuracy, they require
significant memory and computational costs, which is unde-
sirable in some cases. For example, MVSNet [8] requires
several seconds for depth estimation, and thus it is difficult to
utilize in robotics (e.g., autonomous navigation). Although
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DPSNet [9] requires less time (0.5 s) for depth estimation,
it requires a significant amount of memory during training.
Therefore, a faster inference speed and lower memory con-
sumption are necessary for learning-based plane-sweeping
stereo while still achieving accurate results.

Although one study [13] has demonstrated that the
more parameters a network has the more accurate results
it achieves, several studies have been conducted on
improving the accuracy while increasing the inference
speed and decreasing the model size. Octave convolution
(OctConv) [14] is one method that focuses on reducing the
spatial redundancy. Here, features are split into high and low
frequencies. The high frequencies contain fine information,
whereas the low frequencies contain rough information.
To reduce the spatial redundancy, a smaller spatial resolution
was utilized for the low frequencies, and both the mem-
ory consumption and computational cost were successfully
reduced without degrading the accuracy.

In this paper, a novel learning-based plane-sweeping stereo
is proposed, which we call the octave deep plane-sweeping
network (OctDPSNet). Our motivation is that we reduce
the resolution of the cost volume to deal with the memory
consumption and computational cost problems. However, just
reducing the resolution may cause the performance degra-
dation. Therefore, inspired by OctConv, we focus on the
spatial redundancy of the cost volume. We divide image
features into high and low spatial frequency features, where
the resolution of the latter is smaller. Furthermore, two cost
volumes (high-frequency and low-frequency cost volumes)
are generated by the respective features in our proposed
plane-sweeping method. In the plane-sweeping, the number
of virtual planes for the low-frequency cost volume is set
to half that for the high-frequency cost volume, to reduce
the spatial redundancy. Consequently, the memory consump-
tion and computational cost for cost volume regularization
are significantly decreased. After cost volume regularization,
the two cost volumes are integrated into a single final cost
volume. Although addition could be used to integrate the two
cost volumes, this may result in undesirable effects, as the
high-frequency cost volume contains fine structures (e.g.,
edges or small depth changes) of scenes in addition to some
noise, which might degrade the accuracy of the estimated
depth. On the other hand, the low-frequency cost volume
contains the rough structure. Therefore, a new integration
module is proposed to consider the importance of the two
cost volumes at a certain location. A pixel-wise ‘‘squeeze-
and-excitation’’ (SE)-based [15] attention mechanism is uti-
lized in the integration module. Finally, the depth maps are
estimated from the integrated cost volume using a soft argmax
module.

Therefore, our main contribution is to divide the cost
volume into two parts: a high-frequency part that includes
fine-structure information and a low-frequency part that
includes rough-structure information. A smaller resolution
is set for the low-frequency cost volume to reduce the spa-
tial redundancy, which enables the memory consumption

and computational cost to be reduced. To accomplish this,
a new plane-sweeping module and new integration module
are proposed.

The remainder of this paper is organized as follows.
Related work is briefly reviewed in Section II. Then, we
introduce our model in Section III. We describe the experi-
ments for evaluating our method in Section IV, and the results
are presented in Section V. Finally, we discuss our results in
Section VI and conclude the paper in Section VII.

II. RELATED WORK
In learning-based plane-sweeping stereo methods, some
methods [6], [7] only accept rectified stereo-pair images.
GC-Net [6] first applied 3D ConvNets to cost volume reg-
ularization, and a differentiable soft argmin module was
introduced to estimate continuous depth maps from the cost
volume. PSMNet [7] introduced a spatial pyramid pooling
(SPP) module and stacked hourglass 3D ConvNet module to
exploit the context information in the whole image.

Other learning-based plane-sweeping stereo methods
[8]–[12] accept unstructured multiple images with relative
camera poses. These are intended to be combined with
structure-from-motion (SfM) or visual simultaneous local-
ization and mapping (vSLAM) to obtain the relative camera
poses.

DeepMVS [10] introduced image patchmatching networks
to estimate depth maps, which enables an arbitrary number
of images to be taken as input. Because image patches (e.g.,
size 128 × 128) are utilized to estimate patches of depth
maps, it is difficult to exploit the context information in
the whole image. Therefore, the authors applied conditional
random fields (CRFs) [16] to refine the noisy depth maps.
Furthermore, the computational speed is slow owing to the
matching-based approach and postprocessing using CRFs.

MVSNet [8] introduced a differentiable homography
warping for end-to-end training and achieved a state-of-
the-art depth estimation accuracy. However, this method
consumes a significant amount of memory and requires sev-
eral seconds for depth estimation.

To address the memory problem, the authors of MVSNet
proposed R-MVSNet [11], which applies a gate recurrent unit
(GRU) instead of 3D ConvNet for the cost volume regular-
ization. While the authors reduces the memory consumption,
the accuracy is lower than that using 3D ConvNets. In addi-
tion, the authors did not take the inference speed into account,
and therefore several seconds were required for the depth
estimation.

MVDepthNet [12] focuses on the inference speed, so that it
can be combined with vSLAM. The authors represented the
cost volume as a 3D rather than 4D volume to avoid using
3D ConvNets. As the result, MVDepthNet-64 estimates the
depth maps at 25 fps (0.04 s) when the input image size is
320 × 240. However, the accuracy is not as high as other
state-of-the-art methods.

DPSNet [9] also introduced a differentiable warping mod-
ule for end-to-end training, and achieved a state-of-the-art
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FIGURE 1. Overview of our proposed network. The input consists of the reference and source images and the relative camera pose used for
plane-sweeping, and the output is a depth aligned with the reference image. The red box indicates high spatial frequency features, the blue box indicates
low spatial frequency features, and the green box indicates a mixture of high and low spatial frequency features. The row below shows the shapes of the
features.

depth estimation accuracy. The authors proposed a context-
aware refinement to accurately estimate depth maps even in
regions with poor texture. As this method requires less than
a second (0.5 s) to estimate depth maps while achieving a
state-of-the-art accuracy, we chose DPSNet as base model
for our proposed model. However, this requires a significant
amount ofmemory during training, whichmakes it difficult to
apply in some cases.We also tackle the memory consumption
problem in this work.

III. METHOD
A. OVERVIEW
The overview of our proposed method is similar to previous
learning-based plane-sweeping methods, especially [9]. The
biggest difference is that we process high and low spatial
frequency features separately, both for the image features and
cost volume. The overview is presented in Fig. 1.
First, high and low spatial frequency features are extracted

from the reference and source images using a feature extrac-
tion module.

Second, cost volumes are generated from the extracted
features by plane-sweeping, and these are regularized. Here,
two kinds of cost volume are generated, from the high and
low spatial frequency features, respectively.

Third, these cost volumes are refined and integrated into a
single final cost volume.

Finally, the depth is obtained by depth regression and
upsampled to the original image dimension. The obtained
depth is aligned with the reference image.

B. OCTAVE CONVOLUTION
OctConv [14] was proposed to reduce the spatial redun-
dancy of features, which enables less memory and compu-
tational resources to be utilized without degrading accuracy.
The difference between the concepts of ConvNet and

FIGURE 2. Concepts of normal convolution (ConvNet) and octave
convolution (OctConv). (a) illustrates the concept of ConvNet. This
processes a mixture of high and low spatial frequency features, which
constitutes a normal image. (b) illustrates the concept of OctConv. This
deals with high and low spatial frequency features separately, but also
updates information between them. The row below shows the shapes of
the features.

OctConv is illustrated in Fig. 2. ConvNet processes features
that are mixtures of high and low spatial frequencies, whereas
OctConv processes high and low spatial frequency fea-
tures separately while exchanging information between them.
Here, the key is to only employ a low resolution (H/2×W/2,
as shown in Fig. 2(b)) for the low spatial frequency features,
which enables the spatial redundancy to be reduced. OctConv,
with inputs {Xh,Xl} and outputs {Yh,Yl}, is formulated as
follows [14]:

Yh = f (Xh;Wh→h)+ upsample (f (Xl;Wl→h)) , (1)

Yl = f (Xl;Wl→l)+ f (pool (Xh) ;Wh→l) , (2)

where f (X;W ) represents a convolution with weight param-
eters W , upsample(X ) indicates an upsampling of X by a
factor of 2, and pool(X ) is an average pooling operation
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FIGURE 3. Illustration of plane sweeping. Virtual fronto-parallel planes
are generated at several distances d i from the reference image plane,
and the features from the reference and source images are projected
onto the planes to calculate the costs. R and t are the 3× 3 rotation
matrix and the three-dimensional translation vector from the reference to
source viewpoint, respectively.

with kernel size 2 × 2 and stride 2. The subscripts h and l
represent high and low spatial frequency features, respec-
tively. OctConv has a hyper-parameter α that controls the
ratio of low spatial frequency features. For example,α = 0.75
implies that 75% of the features are low spatial frequency
features. If α is increased, then less memory and computation
resources are used, but useful information may be lost. For
further details, see the study [14].

C. FEATURE EXTRACTION
Our feature extraction module is based on ResNet-34 [17].
We utilize OctConv instead of ConvNet, except for the first
ConvNet, to extract high and low spatial frequency features.
Furthermore, an SPP layer [18] is added at the last layer to
capture global contextual information, as in PSMNet [7]. The
shape of the input image is H × W × 3, and the shapes of
the high and low spatial frequency features Fh and Fl are
H/4×W/4× Ch and H/8×W/8× Cl , respectively. Here,
Ch = Call × (1− α) and Cl = Call × α, where Call = 32 is
utilized in this study. The features {F refh , F refl }, and {Fh,Fl}
are extracted from the reference and source images, as shown
in Fig. 1, but the both feature extraction modules have shared
weight parameters.

D. PLANE SWEEPING
The extracted features are utilized to generate cost volumes
by plane sweeping. Two cost volumes are generated: Vh and
Vl from the high and low spatial frequency features, respec-
tively. Plane sweeping is performed in the same manner as in
traditional methods [4], [5].

In plane sweeping, virtual fronto-parallel planes are gen-
erated at several distances from the reference image plane,
and the features from the reference and source images are
projected onto the planes to calculate the costs as shown
in Fig. 3. A voxel of the cost volume from the high spatial
frequency features is formulated as follows:

Vh(uref , i)= concat
(
F refh

(
uref
)
,Fh
(
ω
(
uref ,d ih

)))
, (3)

ω
(
uref , d ih

)
= π

(
Rπ−1

(
uref , d ih

)
+t
)
, (4)

where concat(·, ·) is the concatenation operator, π (x)
projects a 3D point x onto an image plane, and π−1(u, d) is
the inverse function that projects an image point u at depth d
back onto 3D space. We assume the intrinsic parameters of
the camera are already known. Furthermore, R and t are the
3 × 3 rotation matrix and the three-dimensional translation
vector from the reference to source viewpoint, respectively.
In addition, d ih is the distance between the i-th virtual plane
and the optical center of the reference image, which will
be discussed in Section III-F. Because we use the spatial
transformer network [19] for the projection of the features,
the whole plane-sweeping process is fully differentiable,
which makes it possible to train our model in an end-to-end
manner.

A voxel of the cost volume from the high spatial fre-
quency features Vl is also generated in the same manner as
in (3) and (4), except that the low spatial frequency features
are used and the numbers and distances of virtual planes are
different.

E. NUMBER OF VIRTUAL PLANES IN PLANE SWEEPING
The more virtual planes are generated at different distances,
the more likely it is to capture fine structures (depths), how-
ever, the more computation time is required [12]. To deal with
the trade-off between the computation time and accuracy,
we focus on reducing the spatial redundancy in a manner
inspired by OctConv [14]. Because low spatial frequency
features do not have fine textures, fewer virtual planes are
required for these than for the high spatial frequency features.

We set the number of virtual planes Nl for low spatial
frequency features to half the number Nh for the high spatial
frequency features, i.e.,Nl = Nh/2. Furthermore, this enables
3D OctConv to be employed to regularize the cost volumes.
3D OctConv is the 3D version of OctConv, which uses 3D
ConvNet instead of 2D ConvNet in (3) and (4) to process
voxels, and it requires the cost volume Vl to have half the
resolution of Vh. Thus, the shapes of Vh and Vl are H/4 ×
W/4×Nh×2Ch andH/8×W/8×Nh/2×2Cl , respectively.
We set Nh = 64 in this study.

F. REGULARIZATION OF THE COST VOLUMES
1) DEALING WITH MISALIGNMENT
To utilize 3DOctConv to regularize the cost volumes, the dis-
tances of the virtual planes must be chosen carefully to deal
with the misalignment between the high and low spatial
frequency features, as discussed in OctConv [14]. As shown
in (2), an average pooling operation with kernel size 2×2 and
a stride of 2 are utilized (for 3DOctConv a kernel size 2×2×2
is adopted) to exchange information between the high and low
spatial frequency features. Therefore, the distances d ih and d

i
l

between the i-th virtual planes and the optical center of the
reference image should be formulated as follows, so that after
the pooling operation Vh aligns with Vl (Fig. 4):

d ih =
Nhdmin

i
, i ∈ {1, 2, . . . ,Nh}, (5)
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FIGURE 4. Cost volume alignment for 3D OctConv. Left: Illustration of the
cost volume. Right: Red points indicate the centers of high spatial
frequency voxels. Blue points represent the centers after the pooling
operations. The blue points should align with the low spatial frequency
voxels.

FIGURE 5. Overview of refinement. The red and blue boxes represent the
cost volumes Vh and Vl , respectively. The green box represents the
integrated cost volume Vm. A superscript asterisk indicates processing by
context-aware refinement.

d il =
Nhdmin
2i− 0.5

, i ∈ {1, 2, . . . ,Nh/2}, (6)

where dmin is the minimum distance between the virtual plane
and the optical center of the reference image, and dmin = 0.5
is adopted in this study. As shown in Fig. 4, if the indices
of the distance are {1, 2, 3, 4, 5, 6}, then the indices after the
pooling operation will be {1.5, 3.5, 5.5}. Therefore, formu-
lating d ih and d il as in (5) and (6) solves the misalignment
problems in 3D OctConv. It should be noted that the row and
column directions of the cost volumes are already aligned.

2) REGULARIZATION BY 3D OCTCONV
The regularization of the cost volumes Vh and Vl is performed
using multiple 3D OctConv blocks with kernel size 2× 2× 2
with skip connections, in reference toDPSNet [9]. The shapes
of Vh and Vl before regularization areH/4×W/4×Nh×2Ch
andH/8×W/8×Nh/2×2Cl , respectively, and these become
H/4 × W/4 × Nh × 1 and H/8 × W/8 × Nh/2 × 1 after
regularization.

In the case that more than two view images are available,
multiple cost volumes are averaged.

G. COST VOLUME REFINEMENT
An overview of the cost volume refinement process is pre-
sented in Fig. 5. We employ the context-aware refinement
approach proposed in DPSNet [9]. The low spatial frequency
cost volume Vl is refined using context-aware refinement,

and V ∗l is first obtained. Furthermore, Vh and V ∗l are inte-
grated by the integration module, which will be described in
Section III-H. Finally, the integrated cost volume Vm is
refined using context-aware refinement, and the final cost
volume V ∗m is generated.
We use five dilated OctConv layers in the context-aware

refinement with receptive fields (1,2,4,1,1), instead of seven
dilated ConvNet layers, to improve the computational time
and decrease memory consumption. Here, Vm and V ∗m have
the same shape H/4 ×W/4 × Nh, and these are utilized for
depth regression, as described in Section III-I. In addition,
both are used in the loss function, which is described in
Section III-J.

H. INTEGRATION OF THE COST VOLUMES
The cost volumes Vh and V ∗l are integrated using our pro-
posed module to obtain Vm. Because V ∗l is generated from
the low spatial frequency features, it includes information on
the rough structures of scenes, whereas V ∗l is generated from
high spatial frequency features, and therefore includes fine
structures (e.g., edges or small depth changes). The latter also
contains some noise, which may degrade the accuracy of the
estimated depth.

Here, Vh and V ∗l are integrated by the weighted average in
the proposed integration module. However, the weight factor
is different depending on the location. For instance, on the
one hand a higher weight should be given to Vh in some
regions that contain edges or fine structures. On the other
hand, in some areas a higher weight should be given to V ∗l
to reduce the negative effects of noise.

To estimate the pixel-wise weight factor, we introduce
an SE-based [15] attention mechanism, which is commonly
used for estimating the important regions in features. The
SE module was originally proposed for image classification
tasks. As it only estimates the channel-wise importance and
does not consider the pixel-wise importance, it is not suitable
for pixel-wise estimation tasks. Therefore, a spatial SE (sSE)
module was proposed to estimate the pixel-wise importance,
and the performance improvement has been demonstrated for
semantic segmentation tasks [20].

Our integration module is similar to the sSE module, but
it accepts multiple inputs to deal with the two cost volumes,
as shown in Fig. 6. In Fig. 6, the blue and red boxes represent
Vh and V ∗l , respectively. The integrated cost volume Vm at the
location u is formulated as follows:

Vm(u) = λVh(u)+ (1− λ)upsample(V ∗l )(u), (7)

where upsample(X ) represents an upsampling of X by a
factor of 2, and {λ ∈ R | 0 ≤ λ ≤ 1} is the weight factor.
In fact, λ is the pixel-wise weight factor, which has the

shapeH/4×W/4×1. Thus, the value is different depending
on the location. Here, λ is formulated as follows:

λ = σ
(
g11×1(S)

)
, (8)

S = concat
(
ĝ
Nh
8
1×1(Vh), ĝ

Nh
8
1×1

(
upsample(V ∗l )

))
, (9)
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FIGURE 6. Integration module. The blue and red boxes represent Vh and V ∗l , respectively, and these are integrated by a pixel-wise
‘‘squeeze-and-excitation’’-based attention mechanism. Finally, the integrated cost volume Vm is obtained, represented by the green box.

where gc1×1(·) indicates a convolution with kernel size 1 × 1
and the number of output channels c, and the hat on ĝc1×1(·)
indicates that the ReLU activation is used at the last layer.
In addition, σ (·) is the sigmoid function.

I. DEPTH REGRESSION
We use the depth regression method proposed in GC-Net [6]
to estimate the continuous depth map from the cost volumes.
The depth at location u is calculated from the cost volume V ∗m
as follows:

D̂∗ (u) =
Nhdmin∑Nh

i=1 iσ
(
V ∗m (u, ·)

)
i

, (10)

where σ (·)i is a softmax operation, formulated as

σ
(
V ∗m (u, ·)

)
i =

exp
(
V ∗m (u, i)

)∑N
j=1 exp

(
V ∗m (u, j)

) . (11)

The cost volume V ∗m is upsampled to the original image
dimension (H×W×Nh) before depth regression.We find that
upsampling the cost volume before depth regression instead
of upsampling the depth map yields a smoother depth map.
Here, trilinear interpolation is utilized in the upsampling.

Only the depth map D̂∗ from the refined cost volume V ∗m
is used for the inference, however, the depth map D̂ from the
unrefined cost volume Vm is also used to calculate the loss
during training. We find that adding D̂ along with D̂∗ in the
loss function helps to avoid overfitting. The depth map D̂ is
generated from Vm in the same manner as the depth map D̂∗.
The loss function will be explained in Section III-J.

J. LOSS FUNCTION
The loss function formulated below is used to minimize the
errors between the predicted depths D̂∗ and D̂ and the ground
truth D:

L(D̂∗, D̂,D) = Ldepth(D̂∗,D)+ γLdepth(D̂,D), (12)

where Ldepth is formulated as

Ldepth(D1,D2) =
1
|�|

∑
u∈�

fδ (D1 (u) ,D2 (u)) , (13)

Here, fδ is the Huber loss [21] with δ = 1:

fδ(z1, z2) =


1
2
(z1 − z2)2 if |z1 − z2| ≤ δ

δ|z1 − z2| −
1
2
δ2 otherwise

. (14)

Furthermore, � ⊂ R2 is the image domain, which includes
the valid ground truth values, and γ is a weight factor to
balance their importance.

IV. EXPERIMENTS
A. DATASETS
We utilized SUN3D [22], RGB-D SLAM [23], MVS
[24]–[27], and Scenes11 [28], [29] for training and evalua-
tion. These contain images, depths, and camera poses. They
include various indoor and outdoor scenes. Scenes11 is a
synthetic dataset, and the others were collected from the real
world. The datasets were split into training dataset and test
datasets in the same manner as in a study [28].

We used 168,357 image pairs for training, 19,854 pairs
from the training dataset for validation, and 708 image pairs
from the test dataset for evaluation. Themodel with the lowest
validation error during training was selected as the best model
and evaluated. The absolute relative difference, described in
Section III, was used to determine the best model. In addition,
only ground truth depths from 0.5 m to 10 m were used for
the evaluation.

The ETH3D dataset [30] was used for further evaluation.
This dataset was only used for evaluation, not for training.
ETH3D is a benchmark for multi-view stereo, and contains
indoor and outdoor scenes. The ETH3D dataset consists of
several datasets, and high-resolution multi-view dataset was
used in this study. While the test datasets of SUN3D, RGB-D
SLAM, MVS, and Scenes11 only have two view images,
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the ETH3D dataset has more than two view images. Thus,
the evaluation of the depth estimation from more than two
view images is possible on this dataset. Because some depth
values of the ground truth depth maps are smaller than 0.5 m
(= dmin), the relative camera poses were adjusted based on
the minimum values of the ground truth depth maps.

B. TRAINING DETAILS
We used the PyTorch framework to implement the proposed
network. The trainingwas conducted in an end-to-end fashion
on two NVIDIA Tesla P100 GPUs with 16 GB of memory.
We trained the network for 210,000 iterations with a batch
size of 16. This required approximately five–seven days,
depending on α. During training, Adam [31] was used as
the optimizer and the learning rate was set to 3e-4 for first
160,000 iterations and 6e-5 for the remainder. The hyper-
parameters β1 and β2 in Adam were set to 0.9 and 0.999,
respectively. In addition, the weight factor γ = 0.7 was
adopted for the loss function in (12).

C. DATA AUGMENTATION
Random cropping and zooming were applied to the datasets,
and these were resized to 320 × 240 to increase the training
speed. The original image size (640× 480) was used for the
evaluation and testing.

Some datasets were collected by cameras (e.g., Kinect)
that automatically control the exposure time based on the
illumination of a scene. Therefore, it cannot be assumed that
the same 3D point projected in several images has the same
intensity (photometric consistency). To remedy this, color
jittering was also randomly applied to each image to yield
intensity differences between the reference and source images
during training. We also added Gaussian noise, changing the
image contrast, multiplying images by random values, and
adding random values to images. The effect of color jittering
will be illustrated in Section V-A.

D. METRICS
The results were evaluated using the depth estimation met-
rics [32] of the root-mean-square error (RMSE), log RMSE,
absolute difference (Abs Diff), absolute relative difference
(Abs Rel), squared relative difference (Sq Rel), and threshold
(Threshold). These are expressed by the following equations:

Abs Diff :
1
|T |

∑
y∈T

∣∣yi − ŷi∣∣ , (15)

Abs Rel :
1
|T |

∑
y∈T

∣∣yi − ŷi∣∣
ŷi

, (16)

Sq Rel :
1
|T |

∑
y∈T

∣∣yi − ŷi∣∣2
ŷi

, (17)

RMSE :

√√√√ 1
|T |

∑
y∈T

(
yi − ŷi

)2
, (18)

TABLE 1. Ablation study on our proposed model. The best scores are
indicated in bold.

TABLE 2. Contribution of color jittering. The best scores are indicated in
bold.

log RMSE :

√√√√ 1
|T |

∑
y∈T

(
log yi − log ŷi

)2
, (19)

Threshold :% of yi s.t. max
(
yi
ŷi
,
ŷi
yi

)
=δ<Threshold, (20)

where yi and ŷi are the ground truth and prediction value,
respectively.

V. RESULTS
A. ABLATION STUDY
An ablation study was performed to assess the contributions
of our proposed components, as shown in Table 1. The ratio
of the low spatial frequency features α = 0.75 was chosen
for the ablation study, i.e., Ch = 8 and Cl = 24. The results
were obtained by the networks trained for 160,000 iterations.

The checkmark in the SWEEP column indicates that our
proposed plane-sweeping module from Section. III-F was
used. Otherwise, a simple version of the plane-sweeping
module was utilized, formulated as follows:

d ′ih =
Nhdmin

i
, i ∈ {1, 2, . . . ,Nh}, (21)

d ′il =
Nhdmin

2i
, i ∈ {1, 2, . . . ,Nh/2}. (22)

The checkmark in the INTG column indicates that our
proposed integration module from Section III-H was used.
Otherwise, an addition operator was used to integrate the
two cost volumes. The checkmark in the COLOR col-
umn indicates that the color jittering process explained in
Section IV-C was used for data augmentation.
As shown in Table 1, our proposed integration module con-

tributed to the depth estimation accuracy, as the errors were
decreased, whereas the importance of the plane-sweeping
module was minor. We believe that that is because the inte-
gration module and context-aware refinement method have
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FIGURE 7. Examples of the estimated depth maps on each dataset. The names of the datasets are shown on the left. The four columns from
left to right correspond to the reference images, the ground truths of the depth maps, the depth maps estimated by DPSNet, and the depth
maps estimated by our model (α = 0.25).

TABLE 3. Comparison of different α values in our proposed method. The results for DPSNet [9] are also shown, for a better comparison. The channel
number of the high spatial frequency features is written in brackets in the first column, along with the parameter α.

some flexibility to compensate for the misalignment between
the two cost volumes.

More detailed results on the influence of color are pre-
sented in Table 2. As can be observed from Table 2, color
jittering has a negative effect on the result on Scene11. This
is because this is a synthetic dataset, and the photometric con-
sistency is not compromised. In this study, we chose to adopt
color jittering although it only leads to a slight improvement.

B. COMPARISON OF DIFFERENT α VALUES
A comparison of different values for the α parameter in our
proposed method is presented in Table 3. The results on
DPSNet are also presented in Table 3, for a better comparison.
In addition to the accuracy, the inference speed (Speed) and
amount of GPU memory required for training (Memory)
are shown in Table 3. The detailed inference time is shown

TABLE 4. Inference speed on each part of our proposed method. The
results of DPSNet [9] are also shown, for a better comparison. The
inference speed of ‘‘Upsampling & Depth regression’’ is not shown here
because it takes less than 0.01 s.

in Table 4. Our proposed model consists of four parts: (1)
Feature extraction (EXTRACT), (2) Plane sweeping & Cost
volume regularization (SWEEPING), (3) Cost volume refine-
ment (REFINE), and (4) Upsampling & Depth regression,
as shown in Fig. 1. Therefore, the computation time on each
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TABLE 5. Detailed comparison of different α values for our proposed method on the MVS, SUN3D, RGB-D SLAM, and Scenes11 datasets. The results of
DPSNet [9] are also shown, for a better comparison. The best scores are indicated in bold, and the second-best are underlined.

part during inference is shown in Table 4. It should be noted
that the computation time on Upsampling &Depth regression
is not included in Table 4 because it takes less than 0.01 s.
A single NVIDIA GeForce RTX 2080 Ti GPU was used
to evaluate the inference speed, whereas multiple NVIDIA
Tesla P100 GPUs with 16 GB of memory (one for our model
with {α = 0.75, 0.875, 0.9375}, two for our model with
{α = 0.25, 0.5}, and four for DPSNet) were used to measure
the required GPU memory.

As can be observed from Table 3, our model (α = 0.25)
achieved the best scores, while the inference speed was faster
and the required memory was lower compared to DPSNet.
Even our fastest model (α = 0.9375), which has a lower
accuracy, achieved higher scores than DPSNet except for
the Threshold δ < 1.253. This demonstrates the effective-
ness of our proposed method. As can be observed from
Table 4, our proposed method contributes to reduce com-
putation time on REFINE regardless of α and SWEEPING
when α is large. It should be noted that because our pro-
posed model requires considerably less memory, our model
(α = 0.9375) can be trained on even a single consumer
GPU (e.g., NVIDIA GeForce RTX 2080 Ti with 11 GB of
memory).

A detailed comparison of results on each dataset is
presented in Table 5. As shown in Table 5, our models
with higher α values (more low spatial frequency features)
achieved higher scores on the SUN3D and RGB-D SLAM
datasets, while our models with lower α values (more high
spatial frequency features) achieved higher scores on the
MVS and Scenes11 datasets. We believe that the difference in
performances is a result of scene characteristics. The SUN3D
and RGB-D SLAM datasets include indoor scenes, and so
they contain many textureless regions (e.g., walls and floors).

Therefore, low frequency features are important. On the
other hand, the MVS dataset contains outdoor scenes, and
Scenes11 contains synthetic scenes with strong edges. Thus,
high frequency features are effective.

Examples of the estimated depth maps for each dataset are
presented in Fig. 7. It can be observed from Fig. 7 that the
depth maps estimated by DPSNet contain some artifacts in
wide textureless regions (e.g., walls and floors in SUN3D and
RGB-DSLAM) and reflection regions (e.g., glasses inMVS),
whereas our model succeeded in estimating the depth maps
even in these difficult regions.

C. COMPARISON WITH PREVIOUS METHODS ON THE
ETH3D DATASET
A further comparison with previous methods was con-
ducted on the ETH3D dataset [30], as shown in Table 6.
Here, DPSNet [9], DeepMVS [10], MVSNet [8], and
R-MVSNet [11] were chosen as the previous methods.
We resized the images to 810 × 540 for our model and
DPSNet, and 864 × 576 for MVSNet and R-MVSNet.
Because the ETH3D dataset provides more than two view
images, the number of images for depth estimation needs
to be determined. Three view images were utilized for
our model, MVSNet, and R-MVSNet, as this produced the
best performance. Four view images were used for DPSNet
according to their paper [9]. For MVSNet and R-MVSNet,
the depth map refinement module was disabled because this
was not publicly available, and pixels with probability lower
than 0.3 and 0.15 were discarded as outliers, respectively.
We utilized the results for DeepMVS reported on the project
webpage. 1

1https://phuang17.github.io/DeepMVS/index.html
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TABLE 6. Comparison of our model with previous methods on the ETH3D dataset. The best scores are indicated in bold.

As shown in Table 6, our model (α = 0.75) achieved the
best performance in terms of Abs Rel, Sq Rel, log RMS, and
Threshold. Because the ETH3D dataset contains both indoor
and outdoor scenes, both high and low spatial frequency
features appear to be important.

The results in Tables 5 and 6 suggest that varying α based
on scenes might improve the depth estimation accuracy. This
is left as a topic of future work.

VI. DISCUSSION
Our original purpose was reducing the memory consumption
and computational cost without degrading the accuracy by
dividing the cost volume into two parts: a high-frequency
part and a low-frequency part. However, our proposedmethod
achieved better depth estimation accuracies than previous
methods. As can be seen in Fig. 7, our proposed method
can handle wide textureless regions (e.g., walls and floors in
SUN3D and RGB-D SLAM). Therefore, it is suggested that
dividing the cost volume into two parts help not only to reduce
the memory consumption and computational cost but also to
exploit global contextual information.

As can be observed from Table 6, MVSNet [8] shows
poor performance compare to others, despite that MVSNet
achieved state-of-the-art depth estimation accuracies on the
DTU [33] and ‘‘Tanks and Temples’’ [34] datasets in their
paper. We investigated the DTU and ‘‘Tanks and Temples’’
datasets, and it seems that images were taken densely (small
baseline and a lot of overlap regions between images) in the
DTU and ‘‘Tanks and Temples’’ datasets whereas images
were taken sparsely (wider baseline and smaller overlap
regions between images) in the ETH3D dataset [30] we
used in this paper. DPSNet [9] is designed to exploit global
contextual information by using context-aware refinement.
Our method is also capable of exploiting global contextual
information. It is suggested that global contextual informa-
tion help DPSNet and our method produce good depth esti-
mation results even though overlap regions between images
are small. On the other hand, MVSNet produces poor depth
estimations when overlap regions between images are small.

VII. CONCLUSION
In this paper, we proposed OctDPSNet to reduce the spatial
redundancy in learning-based plane-sweeping stereo. Two
cost volumes, one with a lower resolution, were generated

from the high and low spatial frequency features, respectively,
using the proposed plane-sweeping approach considering
the misalignment problem. Furthermore, the two cost vol-
umes were integrated using our proposed integration module,
which utilizes an attention mechanism. The evaluation results
demonstrate that our proposed OctDPSNet outperforms pre-
vious methods on five datasets while drastically reducing the
required memory and computational time.

In future work, further improvement is expected by varying
the ratio of low spatial frequency features α based on the
scene characteristics.
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