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ABSTRACT We construct a public dataset for WiFi-based Activity Recognition named WiAR with sixteen
activities operated by ten volunteers in three indoor environments. It aims to provide public signal data for
researchers to reduce the cost of collected signal data and conveniently evaluate the performance of WiFi-
based human activity recognition in different domains. First, we introduce the basic knowledge of WiFi
signals regarding RSSI, CSI, and wireless hardware. Second, we explain the characteristics of WiAR dataset
in terms of activities types, data format, data acquisition ways, and influence factors. Third, the proposed
framework can estimate the quality of the shared signal data provided by other peers. Finally, we select and
use five classification algorithms and two deep learning algorithms to evaluate the performance of WiAR
dataset on human activity recognition. The results show that the accuracy ofWiAR dataset is higher than 80%
usingmachine learning algorithms and 90% using deep learning algorithms in different indoor environments.

INDEX TERMS Public dataset, human activity recognition, received signal strength indicator, channel state
information, signal processing, machine learning, deep learning.

I. INTRODUCTION
Human Activity Recognition (HAR) is increasing popu-
lar in practical applications including smart homes [1]–[4],
user authentication service [5]–[7], healthcare monitoring
[8]–[10], and smart space management [11]–[13]. In the early
stages of the research, sensor-based applications increase
inconvenience for users in daily life due to that it requires
users to wear smart devices on bodies. Vision-based appli-
cations are easy to leak personal privacy and are limited in
Line-of-Sight (LoS) condition. However, the two problems
cannot be avoided with the current technical level. With
increasing coverage of the wireless signals both in public
places and home (homestead, private residence), WiFi-based
applications have attracted increasing attention from compa-
nies and scientific research institutions. The important point
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is that WiFi-based applications can make up for the above-
mentioned two weaknesses by leveraging attributes of wire-
less signals such as propagation, penetrability and sensibility.

Researchers depend on different requirements of WiFi-
based applications to collect activity data using wireless
devices at the cost of enormous time and manpower
resources. WiFi signals are highly sensitive to various exper-
imental environments, locations, human behavior, and wire-
less devices. Therefore, the inconsistency of activity data
hinders the comparison of related works and inspires our
team to construct a public WiFi-based activity dataset. Fur-
thermore, with the rapid development of deep learning in
all aspects of life, researchers begin to use deep learning
algorithms to explore WiFi-based human activity recogni-
tion. As is well known, the large amount of data required
in deep learning is necessary but it cannot be achieved eas-
ily for researchers on the current technical level. Although
several works [14], [15] attempt to leverage deep learning
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algorithms to recognize activities with satisfying accuracy,
we believe that more samples can help researchers to achieve
better performance for different activities in various indoor
environments. There is no WiFi-based public dataset for
human activity recognition as well as video-based public
activity dataset [16] except theWidar dataset [17] concerning
gestures recognition shared by Tsinghua university in 2019.
Therefore, it is necessary and important to construct a public
dataset forWiFi-based Activity Recognition namedWiAR and
share it with other researchers. The advantages of construct-
ing aWiFi-based public activity dataset contain three aspects:
reducing the cost of time and labours, sharing large amounts
of activity data and motivating the rapid development of
wireless sensing in practical applications.

Constructing a public WiFi-based activity dataset needs to
consider four impact factors including indoor environments,
activity types, activity diversity, and the relative position
between the transmitter and the receiver. First, the indoor
environment is an essential factor for collected data since
different indoor environments can produce various reflected
signals caused by the multipath effect and the layout except
for activity itself. Even the received signals in the indoor
environment cover for the true signal data reflected off an
activity. Therefore, selecting a suitable indoor environment
can be helpful to improve the quality of the data. In the
WiAR, the collected data derive from three indoor environ-
ments like an empty room, a meeting room and an office
which are common places in daily life. To enrich the dataset,
we also collect activity data in-home, corridor, and laboratory.
Second, we collect sixteen activities which often occur in
indoor environments. To better analyze the characteristics of
each activity, we divide sixteen activities into upper activities,
lower activities, and whole activities according to an activity
of the key joints’ position. Third, the diversity of human
activity in this paper describes the differences between the
same activity operated by different volunteers. We focus on
the diversity caused by volunteers’ habits. Finally, the posi-
tion relationship between the transmitter and the receiver
located in the indoor environment determines the quality of
collected activity data and the accuracy of human activity
recognition. In this paper, the position of the transmitter
and receiver is located in the middle of the indoor envi-
ronment. The mentioned factors help researchers to better
analyze and verify the quality of the WiAR. The part of the
WiAR dataset can be found in https://github.com/
linteresa/WiAR and https://download.csdn.
net/download/guolinlin11/9895718. Just to be
clear, the paper mainly introduces the details of the WiAR,
and the technical details regarding the mentioned methods in
the paper are not our emphasis.

II. PRELIMINARY
A. RSSI AND CSI
In WiAR dataset, the collected WiFi signals consist of
Received Signal Strength Indicator (RSSI) and Channel State

FIGURE 1. RSSI and CSI.

Information (CSI) to analyze human activity in three indoor
environments. RSSI represents a sum of signal energy from
multiple paths which include a direct path (LoS path) between
the transmitter and the receiver, and multiple reflected paths
caused by walls, furniture, and people in the macro-view as
shown in Figure 1(a). RSSI is the received signal power in
decibels (dBm) [18]:

RSSI = 10log2
(
‖V‖2

)
(1)

where V denotes signal voltage. Due to the multipath effect,
it’s hard to distinguish signal components produced by dif-
ferent paths in an indoor environment. Therefore, we con-
sider RSSI as coarse-grained information of WiFi signals to
roughly sense dynamic change such as human movement.

CSI describes how signals propagate in the wireless chan-
nel combining the effect of time delay, energy attenuation
and phase shift [8]. Compared to RSSI, CSI represents fine-
grained information of WiFi signals with thirty subcarriers
as well as rainbow reflected by sunlight. Leveraging the
off-the-shelf Intel 5300 NIC with a modified driver, a group
of sampled versions of channel frequency response (CFR)
within the WiFi bandwidth is revealed to upper layers in the
format of channel state information [19]. CSI of a single
subcarrier is in the following mathematical formula:

H (k) = ‖H (k)‖ ej
6 H(k) (2)

where H (k) is a CSI of the kth subcarrier. ‖H (k)‖ and
6 H (k) are CSI amplitude and CSI phase, respectively. CSI
can capture more fine-grained changes like gestures, breath
and heartbeat. Thirty subcarriers have various sensitivity to
the same activity due to existing frequency selective fading.
This character is utilized to explore the relationship between
signal patterns and activities. As shown in Figure 1(b), we use
different colours to represent 30 subcarriers and CSI has a
unique signal pattern caused by an activity.

B. HARDWARE REQUIREMENTS
Commodity wireless devices can extract RSSI. However,
CSI measurements need to use wireless devices with specifi-
cal wireless cards. Currently, Intel 5300, AR9590 and Intel
7265 wireless card can support the CSI measurement as
shown in Figure 2. The widely used CSI tool is built on the
Intel WiFi Wireless Link 5300 802.11n MIMO radios [19]
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FIGURE 2. CSI extracted by different wireless cards.

TABLE 1. CSI tool.

and uses custom modified firmware. Atheros-based CSI
Tool [20] is built on AR9590 wireless card and provides
an open-source 802.11n measurement. It can extract PHY
wireless communication information from the Atheros WiFi
NICs, including RSSI, CSI, the received packet payload, and
other additional information such as the timestamp, the data
rate. Table 1 shows the differences in existing wireless
devices regarding the extracted CSI in terms of subcarriers,
frequency band, firmware. In China, Tsinghua University
(THU), Peking University, Hong Kong University, Northwest
University, and Xi’an Jiaotong University pay more attention
to the field. Particularly, Liu’s team [21] in Tsinghua Univer-
sity researches indoor localization, LoS detection and human
activity recognition in wireless sensing domain. They design
a visualization-based CSI tool named TNS-CSI [22] on the
basis of Linux 802.11n CSI Tool, and the TNS-CSI Tool is
easy to learn for new researchers, but it is expensive.

III. CHARACTERISTICS OF WIAR DATASET
A. WIAR DATASET
We construct a public WiFi-based Activity Recognition
dataset named WiAR in three indoor environments. The
details are described in terms of activity types, data format
and data acquisition ways.

1The IWL5300 provides 802.11n channel state information in a format
that reports the channel matrices for 30 subcarrier groups, which is about
one group for every two subcarriers at 20 MHz or one in 4 at 40 MHz.
Each channel matrix entry is a complex number, with signed 8-bit resolution
each for the real and imaginary parts. It specifies the gain and phase of the
signal path between a single transmit-receive antenna pair provided in the
paper [23]

2The team’s work [24] use Intel 7265 802.11n WiFi card provided by
Intel Corporate Research Council/ University Research Office, which can
also extract CSI for contactless WiFi sensing.

TABLE 2. WiAR dataset.

1) ACTIVITY TYPES
The WiAR dataset contains sixteen activities operated by ten
volunteers, and each activity collects 30 samples for each
volunteer. To conveniently analyze the differences between
activities, the sixteen activities provided in WiAR dataset are
divided into three categories: upper body activities, lower
body activities, and whole-body activities as shown in table 2.
Upper body activities mean that volunteers finish the activity
only using upper skeleton joints like gestures. Lower body
activities only make lower skeleton joints of body movement.
Whole-body activities denote the fusion of both upper body
activities and lower body activities like walking. Note that
we require volunteers to finish each activity with normal
speed on the premise of keeping each volunteer’s habit. Each
activity corresponds to the uniqueWiFi RSSI andWiFi CSI in
the ideal environment. As we all know, RSSI cannot capture
the fine-grained details of human activity due to the multipath
effect. CSI can capture the micro-dynamic change of human
activity. Figure 3 shows the CSI changes and spectrograms
caused by three similar activities using pspectrum function in
Matlab. The pspectrum function sets four parameters like fre-
quency resolution to extract more precise spectral range. The
three similar activities’ frequency is less than 5Hz. Accord-
ing to the above analysis, we know that WiAR dataset can
help researchers to explore new frameworks and methods for
human activity recognition conveniently.

2) DATA FORMAT
Generally speaking, a volunteer spends 2 − 3s finishing an
activity at normal speed. In WiAR dataset, we collect each
activity sample with more than 7s data which contain 2− 3s
activity data (effective data) and 4 − 6s empty data (indoor
environment data). Empty data can guarantee a stability sig-
nal pattern of the activity and decrease the influence of out-
liers and noises on the signal pattern of the true activity. The
activity data denotes the start and the end of reflected signal
data caused by the activity. How to determine the start and
end of the activity from the signal sequence is an important
issue which is the task of our other work.

WiAR dataset provides not only RSSI and CSI informa-
tion but also raw WiFi signals reflected by human activity
and several features extracted from raw data. The trans-
mitter sends thirty packets per second and RSSI is a sin-
gle numerical value for each packet. A RSSI sample with
respect to an activity is one-dimensional data sequence R =
{RSSI1,RSSI2, · · ·,RSSIi, · · ·,RSSIn} where RSSIi denotes
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FIGURE 3. Time-frequency analysis of three similar activities. Fres denotes the frequency resolution and Tres represents time
resolution for each activity.

the ith RSSI value in the sample and n is the length of
the sample. CSI is a three-dimensional matrix CSIi =
{j ∗ k ∗ l} where j is the number of transmitter’s antennas,
and k denotes the number of receiver’s antennas, and l is
thirty subcarriers. In this paper, j is 1 and k is 3. There-
fore, a CSI value is CSIi = {3 ∗ 30} and one CSI sam-
ple is C = {CSI1,CSI2, · · ·,CSIi, · · ·,CSIn}. Moreover,
researchers could leverage raw activity data to obtain what
they want according to their demands.

3) DATA ACQUISITION WAYS
The WiAR dataset is an open-source activity dataset and
supports three data acquisition ways including manual-
based, shared-based, and crowdsourcing-based. In this paper,
we mainly introduce the details of manual-based way regard-
ing constructing theWiAR dataset. Another two ways will be
going to be explored in the following research work.

The manual-based way to collect activity data requires one
operator and one volunteer in one room. The transmitter sends
thirty packets per second that most of the WiFi-based sensing
applications employ the parameter value.We first observe the
real-time WiFi signal change to detect whether the collected
device exists problems before collecting activity data. The
volunteer locates in the middle of both the transmitter and
receiver and the operator nears to the receiver to run the
collected code. The volunteer toward the transmitter finishes
each activity with thirty times. Each time collects one WiFi
signal sequence with less than 10s as one sample of the activ-
ity. The volunteer begins to do the next activity after finishing
the activity of thirty times. Once the volunteer feels tiredness,
we pause and make him/her relax to ensure the quality of col-
lecting activity data. The shared-based way is to receive other
researchers’ private data. Due to the limitation of a single
research institute or a university on collecting activity data,
we plan to receive activity data shared by other researchers
to increase the size of activity dataset and the diversity of

FIGURE 4. The analysis framework of the WiAR dataset.

activity types in different indoor environments. Before receiv-
ing the private activity data shared by researchers, we design
a mechanism which uses classic classification algorithms to
estimate the quality of the shared data in Figure 4. We also
invite several research institutes to estimate the performance
of the WiAR and select the optimal activity data according to
the results of our and other institutes. The high-quality data is
stored in WiAR dataset, and the low-quality data is treated as
special data for researchers’ analysis. With the development
of wireless devices, we will explore the limitation of wire-
less devices on extracting CSI and the crowdsourcing-based
way to collect activity data in daily living environments.
Compared to the shared activity data, crowdsourcing-based
way cannot require volunteers to do pre-established activities
and can decrease the cost of labor and time. In summary,
constructing the WiAR dataset is meaningful work for WiFi-
based human activity recognition.

B. EXTERNAL FACTOR
1) ENVIRONMENTS
In this paper, we collect WiFi signals reflected by human
activity in three indoor environments including one empty
room, one meeting room, and one office as shown in Figure 5.
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FIGURE 5. The layout of indoor environments.

The details of three indoor environments are shown as fol-
lows.

• The empty room is a 6m ∗ 8m room and only contains
a pair of the transceiver, one volunteer who does an
activity, and one operator who finishes a series of opera-
tions on the receiver. The distance between the receiver
and the transmitter is 4m and the volunteer toward the
transmitter locates in the centre of them.

• The meeting room is 6m ∗ 10m and contains a small
amount of office furniture such as tables and chairs. The
distance between a receiver and a transmitter is 4m. The
volunteer is closer to the transmitter with 1m distance
and the receiver with 3m distance. This configuration is
to augment signal changes reflected off the activities.
Furthermore, the distance between one volunteer and
one desk is 1.5m.

• The office is 6m ∗ 8m with several commonly used fur-
niture such as one sofa, one desk, and one book cabinet.
The distance between a receiver and a transmitter is 4m
and the volunteer toward the transmitter locates in the
centre of them.

Collected WiFi signals in the empty room contain fewer
noises than other indoor environments.We consider the activ-
ity data collected in the empty room as a baseline dataset to
explore the characteristics ofWiFi signals reflected by human
activity. For the other two indoor environments, we leverage
the collected activity data to analyze the effect of furniture
on WiFi signals. In summary, we consider several factors
like furniture, indoor space, and moving persons to analyze
the impacts on collected signals and quantify the relationship
between signal pattern and human activity.

Moreover, we also increase the number of moving people
around a volunteer to explore the impact ofmultiple people on
human activity recognition. To increasing diversity of indoor
environments, we also consider two outdoor environments
including the playground and the corridor. Compared to the
empty room, playground environment has less reflected sig-
nals since there are no walls. The analysis results are that the
playground and the empty room can show the precise signal
pattern of each activity due to both environments with fewer
noises. The corridor is a narrow environment which makes it
difficult for us to distinguish the signals reflected by human
activities from the signals reflected by the walls. We try to
explore the distribution of reflected signals to analyze the
differences between walls and activities in future work.

TABLE 3. Volunteers’ attributes.

2) VOLUNTEERS
Recent advances [5], [6] leverage the unique character of
activities to determine personal identity. Therefore, the dif-
ferences among individuals on human activity recognition is
not neglected. In WiAR dataset, we select five males and
five females as volunteers to perform sixteen predetermined
activities. The effect of volunteers on reflected signals are
evaluated in terms of sex, height, weight, and the experi-
ence on exercise as shown in table 3. The receiver receives
thirty packets per second and each activity corresponding to
the number of packets is different since different volunteers
performing the same activity take a different amount of time
to finish it. Even the same volunteer performing the same
activity many times complete it in a different amount of
time. According to the brief analysis of experimental data,
the impact of height and experience on activity recognition
is more significant than the effect of sex and weight. The
following work will explore the precise influence on human
activity recognition.

C. INTERNAL FACTORS
1) ANTENNAS
We use a transmitter with one antenna and a receiver with
three antennas to collect activity data. Although multiple
antennas increase the diversity of activity data in the space
dimension, it increases the difficulty of human activity recog-
nition since WiFi signals received by different antennas for
the same activity exist differences. For example, the signal
pattern reflected by a bend has the difference between three
antennas as shown in Figure 6. Antenna1 shows the precise
signal pattern compared to the other two antennas which
make it easy for us to draw the wrong conclusion since the
waveforms are challenging to be distinguished. In this paper,
we use received signal data of each antenna to analyze activi-
ties and recognize them. The final result of each activity is the
average of three antennas’ accuracy. Moreover, we attempt to
leverage deep learning algorithms to solve the problem and
learn the diversity of signal pattern corresponding the same
activity in space dimension.
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TABLE 4. Number of matrices and carrier grouping.

FIGURE 6. Difference of antennas and subcarriers.

2) SUBCARRIERS
CSI is represented at subcarrier level in Orthogonal Fre-
quency Division Multiplexing (OFDM) system. WiFi fre-
quency has 2.4GHz and 5GHz. The length of the waveform
in 2.4GHz is longer than 5GHz and its signal is instability.
Compared to the 2.4GHz, 5GHz has a robust through-wall
ability. Table 4 lists the number of matrices and carrier group-
ing for different bandwidths. InWiARdataset, we use 20MHz
bandwidth with 30 subcarriers in 5GHz which can provide
stable signals compared to 2.4GHz. Collected activity data
for each sample contain many packets with three antennas
corresponding to 90 subcarriers as shown in the following
equation (3).

P =


H1
1 ,H2

1 ,H3
1 ,H4

1 , . . . ,H i
1, . . . ,H

30
1

H1
2 ,H2

2 ,H3
2 ,H4

2 , . . . ,H i
2, . . . ,H

30
2

H1
3 ,H2

3 ,H3
3 ,H4

3 , . . . ,H i
3, . . . ,H

30
3

 (3)

where P is a CSI matrix, and H i
1 denotes the ith subcar-

rier of the first antenna. Different subcarriers reflected off
human activity have various degrees of sensitivities due to
the frequency selective fading. We select 10 subcarriers as a
group, and each group of subcarriers has a slight difference
between signal pattern reflected by the same activity. As
shown in Figure 6, the high-frequency subcarriers keep a
standard signal pattern of a bend.Moreover, the signal pattern
corresponding to an activity holds a tight trend, and signals

FIGURE 7. General framework of human activity recognition.

without an activity show a loose trend. Based on the above
analysis, the high-frequency subcarriers are more sensitive to
human activity.

IV. PERFORMANCE ANALYSIS
In this section, we first explain the general framework of
WiFi-based human activity recognition. Then we introduce
several metrics used in related work to evaluate the perfor-
mance of human activity recognition. Finally, we analyze the
performance of WiAR dataset on human activity recognition
using five classification algorithms and two deep learning
algorithms.

A. GENERAL FRAMEWORK
Human activities interrupt the propagation of WiFi signals
and lead to reproducing a unique signal pattern. Based on
this view, we explore the relationship between signal pattern
and an activity to recognize human activity in different indoor
environments. Moreover, according to the survey on WiFi-
based human activity recognition works in the past ten years,
we summarize the general framework of WiFi-based human
activity recognition. The general structure consists of four
stages: collecting data, signal processing, features extraction,
and human activity recognition as shown in Figure 7.
Collecting data need to design effective experiments which

consider several factors including the distance between the
pair of transmitter and receiver, the complexity of the indoor
environment, and the standard of activities operated by vol-
unteers. We cannot directly use the raw data received by a
receiver since it contains noises and outliers. The following
signal processing can weaken these noises by using denoising
methods. In this paper, we only use the low-pass filter to
remove noises and keep low-frequency signals data. Related
work often uses several filters like low-pass filter, mean filter,
and Kalman filter to implement denoising. Moreover, there
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TABLE 5. Metrics used in related work.

are several works using PCA [27] and DWT [1] to remove
noises. After obtaining clean reflected signals, we extract
statistical features as the inputs of classification algorithms.
Features widely used in WiFi-based human activity recog-
nition applications are divided into three categories: statistic
metrics, time-domain metrics, and frequency-domain metrics
as shown in table 5. We recommend readers to read this sur-
vey [31] with respect to features extraction to obtain a broad
understanding of theWiFi-based human activity recognition.
At present, researchers often use classical classification algo-
rithms like NB, RF, DT, KNN, and SVM to evaluate the
performance of WiFi-based human activity recognition. With
the rapid development of deep learning in wireless sensing
domain, we attempt to leverage deep learning algorithms
to analyze the dataset. CNN is a common neural network

4Frequency represents the change speed of multiple paths’ length due to
body movements during the activity.

5Duration represents the time volunteers take to perform an activity.

structure and LSTM is good at dealing with time-sequence
signal data. Therefore, we select the two deep learning algo-
rithms as a comparison object, and the innovation points on
CNN and LSTM are not the emphasis in the paper. Based on
the thought, we direct use CNN and LSTM to evaluate the
performance of the dataset on human activity recognition.

B. EVALUATION METRICS
We introduce evaluation metrics of human activity recog-
nition according to our survey on related work. Different
activities form various signal patterns. Based on this point,
we leverage the unique signal pattern to recognize the cor-
responding activity. Early works often use RSSI variance,
the distribution of RSSI to sense coarse-grained human activ-
ities such as falling, walking. With the CSI-tool being pro-
posed by Halperin et al. [19], researchers begin to use CSI
to recognize human activities in terms of speed, direction,
granularity.We know that CSI is fine-grained information and
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TABLE 6. Performance comparison by five classification algorithms and two deep learning algorithms.

can capture fine-grained gestures or vital signs. Table 5 shows
common metrics used in WiFi-based sensing applications.
In time-domain, extracting statistic metrics can describe the
trend of signal change, the intensity of signal change, and
the abnormal signal sequence. The CSI variance can describe
the degree of changing of the signal patterns reflected by an
activity. Therefore, we can use variance to detect the occur-
rence of human activity or anomalous events like falling.
We obtain fine-grained features which can uniquely describe
each activity to determine which types the unknown human
behavior belongs to. We use variances of seven subcarriers
to recognize three activities each of which contains twenty
samples as shown in Figure 8. The solid black line denotes the
boundary of each class, and the two black dotted lines explain
the high error of activity recognition rate due to the similar
values of features. The second class keeps a stable change
compared with the other two classes. However, the overlap
between the second class and the third class leads to the high
error on human activity recognition. Although the first class
has a distinct difference compared with the other two classes,
it on human activity recognition cannot obtain high stability
with time due to the large fluctuation of features extracted by
collected data.

Due to the impact of the dynamic indoor environment on
WiFi signals, the statistic metrics cannot capture the true sig-
nal pattern caused by human activity. In frequency-domain,
each activity has a unique frequency range which does not
change in the dynamic indoor environment. Note that an
activity with normal speed can keep a stability frequency
range regarding reflected signals. Once improving the speed
of the activity, the stability frequency will increase. There-
fore, it is difficult to recognize multiple activities only using
frequency-domain metrics. Furthermore, the CSI phase is
utilized to analyze the displacement of the limbs and trunk
for sensing human activity.

The CSI distribution can denote the disorder level of an
activity regarding the amplitude change of signal pattern. The
correlation coefficient between signal patterns can help us
to select efficient subcarriers and roughly determine human
activity. For the correlation coefficient, we can compute the
correlation coefficient of subcarriers, antennas, and samples
to improve the accuracy of human activity recognition. To
recognize a specific activity, we construct a model to describe
it in different indoor environments. Although different users

FIGURE 8. The impact of features selection on human activity recognition.

have differences in finishing the same activity, the model can
adaptively learn new changes in signal patterns reflected by
the same activity. In future work, it is necessary to construct
a model between signal pattern and specific activity, which is
an interesting topic in pervasive computing domain.

C. HUMAN ACTIVITY RECOGNITION
We use KNN, RF, DT, NB, SVM, CNN, and LSTM algo-
rithms to evaluate the performance of the WiAR on human
activity recognition. We choose these algorithms since they
are widely used in various fields and obtain satisfactory
results with less cost. In the study, we show the results of
human activity recognition using the above-mentioned algo-
rithms on the WiAR as shown in table 6. We randomly select
three volunteers’ activity data as test samples to analyze the
differences among volunteers and the impact of antennas
on the accuracy of human activity recognition. The results
of three volunteers show a subtle difference because we
require each volunteer’s activity to obey the standard which
is to guarantee the quality of collected activity data. In our
study, we only list the accuracy of human activity recognition
on simple features like the variance of activity data. KNN
algorithm achieves average accuracy of 90.42%, 86.74% of
NB, 88.86% of RF, 83.28% of DT, and 89.86% of SVM in
three indoor environments. For a similar activity like drinking
water, phone, the case causes a high error compared with nor-
mal activities. To increase the number of samples, we directly
use three antennas’ data as inputs of two deep learning algo-
rithms not compute the accuracy of each antenna separately.
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Antenna1 corresponding to the accuracy represents the whole
performance on sixteen activities for each volunteer. Com-
pared to machine learning algorithms, the accuracy of activity
recognition using deep learning algorithms is higher than
90% averagely.

V. RELATED WORK
The section introduces existing public video-based and
sensor-based activity dataset to support the feasibility of
the WiAR. Then, we list several WiFi-based human behav-
ior recognition works in terms of coarse-grained activity,
gestures, and vital signs. Finally, we analyze the advantage
and disadvantage of our work on human activity recognition
domain.

A. VIDEO-BASED AND SENSOR-BASED ACTIVITY DATASET
Human activity recognition is widely applied in Human-
Computer Interaction (HCI), smart home, security monitor-
ing, and disaster rescue domains. Video-based human activ-
ity recognition applications have a great deal of theory and
mature technologies. Video-based human activity recognition
applications have been applied in our daily life like crime
detection application. According to our survey, we know that
several public datasets provide researchers with large activity
samples to explore and verify their methods. Video-based
public datasets like USC [32], UCI dataset [33] contribute
to the rapid development of video-based human activity
recognition. Sensor-based activity dataset KARD [34] pro-
vides video, skeleton joints, and depth information. Our early
work [35] leverages the fusion information of skeleton joints
and WiFi signals to explore characteristics of human activity.
Based on this thought, we always attempt to construct the
WiFi-based activity dataset which consists of WiFi signals
reflected by human activities. Moreover, the latest activity
data AVA [16] proposed by the Google company, provides
innovative thoughts to analyze human behavior or multiple
people in classic movies like ‘‘The Matrix’’. We often find
some questions aboutWiFi-based public activity dataset from
some researchers in ‘‘baidu.com’’. Both works motivate us to
construct the public WiAR dataset, and we believe that the
work is worth doing.

B. WIFI-BASED ACTIVITY RECOGNITION
WiFi-based applications are widely proposed like indoor
localization and tracking, smart home, security monitoring,
and health monitor in recent years. We introduce the devel-
opment of WiFi-based activity recognition and related tech-
nology. With the wide coverage of WiFi signals, WiFi-based
indoor localization works [36]–[38] leverage CSI amplitude
and CSI phase, AOA to locate people or wireless devices. In
the following, the localization of multiple objects [39], [40] is
established by these works by using multiple APs. Mobility
factor is an essential influence on the indoor environment.
Therefore, researchers explore the impact of moving peo-
ple in the indoor environment and propose several interest-
ing technologies to detect people mobility and analyze the

influence of mobility on WiFi signals [41]–[46]. It helps us
learn the impact of the dynamic indoor environment on WiFi
signals. The following problem is to distinguish the impact
of mobility factor on WiFi signals from the impact of human
activity on WiFi signals and then explore WiFi-based human
behavior recognition [47] in different indoor environments.

WiFi-based human activity recognition explores a specific
activity like the solitary elder’s falling [8] to monitor the
elder’s safety, smoking behavior [28] in public places with
non-smoking, sleeping behavior [48] to monitor health con-
ditions. To expand the range of WiFi-based human activity
recognition, researchers explore daily activity recognition
in different indoor environments. For example, E-eye [25]
explores walking and location-activity using fingerprint tech-
nology, and CARM [27] constructs a model between signal
patterns and activities to represent activities without less
training cost. Researchers also explore fine-grained human
behavior like gait analysis [5], gestures recognition [1], [2],
[49], breathing and heart-rate detection [9], [10], and emotion
sensing [50] using CSI and signals processing technologies in
fixed location of indoor environment. Several researchers pay
more attention to locate the track of human movement [51],
hand-free drawing [52]–[55], human figure [56] in more
complex way.

Although the works as mentioned above achieve perfect
performance in experiment environment, it’s hard to apply
these ideas in our daily life due to the complexity of the
actual indoor situation, the limit of signal process technology,
and the privacy of the indoor environment. Now, we only
consider the first two limitations to explore, and the privacy
of the indoor environment is neglected. We construct a public
WiFi-based activity recognition dataset named WiAR which
provides activity data for researchers to explore and solve the
above-mentioned problems.

VI. CONCLUSION
We construct a WiFi-based Activity Recognition dataset
named WiAR with sixteen activities operated by ten volun-
teers in three indoor environments.We aim to provide a public
platform to compare the performance between differentWiFi-
based systems and promote the rapid development of human
activity recognition in the practical application domain. The
following work, we will be increasing the number of activity
types which cover in whole daily life, enriching the diversity
of indoor environments, and considering the human behavior
of different ages.
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