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ABSTRACT Shallow underground acoustic source localization is a component of near-field source local-
ization, which is involved in numerous application fields. The positioning accuracy is mainly limited by the
accuracy of time of arrival (TOA)/time difference of arrival (TDOA) extraction and velocity extraction from
noisy data. The steered response power with phase transform (SRP-PHAT) is one of the most robustness and
high-precision acoustic source localization approaches, which avoids extracting the TDOA in advance. But
SRP-PHAT is constrained for only using under known velocity. Furthermore, it is barely possible for shallow
underground sound source localization to easily obtain high-quality velocity models. This paper proposes
an improved SRP-PHAT with unknown velocity (SRP-PHAT-UNVEL), which avoids extracting the TDOA
and velocity in advance. SRP-PHAT-UNVEL matches the calculated time delay curve with the actual
time delay curve by scanning of the candidate spatial position and the candidate velocity simultaneously,
so as to maximize the output energy to fulfill the positioning. However, SRP-PHAT-UNVEL has larger
computational complexity as it proceeds with the optimization of space and velocity. Since the spatial
position and velocity affect the shape and the curvature of the calculated delay curve respectively, these are
two relatively independent processes. Therefore, the simultaneous optimization of space and velocity can be
replaced by a two-stage optimization to improve the efficiency and accuracy of SRP-PHAT-UNVEL. Spatial
optimization is equivalent to the optimization of SRP-PHAT, and the spatial optimization of the bat algorithm
has faster convergence rate and higher location precision than traditional methods. Velocity optimization can
be achieved by the common linear search technique since the function of velocity and energy is an ideal
convex function. Simulation experiment results show that the proposed method is insensitive to noise, which
can achieve high accuracy of the acoustic source position and velocity simultaneously. With grouping the
measured data, the proposed method can further improve the robustness and accuracy by fusing the grouping
location results with principal component analysis.

INDEX TERMS Shallow underground acoustic source location, steered response power with phase trans-
form, bat algorithm, principal component analysis.

I. INTRODUCTION
Underground acoustic source localization has become a
popular research topic in the earthquake and microseismic
fields, which form part of far-field scenarios, as the source
and sensor arrays are far apart. However, we are inter-
ested in locating the near-field source in many cases [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Feng .

Moreover, there exist a variety of practical problems in
the areas of border security [2], core safety monitoring,
water conservancy, and performance evaluation of earth-
penetrating weapons, which require the localization of an
acoustic source positioned less than several hundred meters
from the sensor, i.e. the applications of shallow under-
ground acoustic source localization. Two challenging issues
arise in locating shallow subsurface acoustic sources. First,
the underground medium is not uniform and is unknown,
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which presents difficulties in most model-driven localiza-
tion methods. Second, because shallow underground acoustic
sources are often distributed at depths of less than several
hundred meters, higher positioning accuracy is required than
for deep underground acoustic source. This is the engineering
requirement of the related application field of shallow acous-
tic source localization.

Acoustic source localization methods can be broadly
classified into two categories: indirect and direct meth-
ods. The time difference of arrival (TDOA) and time of
arrival (TOA) methods are two commonly used indirect
positioning approaches. The TDOA-based method first cal-
culates the time differences between varying sensor pairs.
Many techniques can be applied to estimate the TOAs
[3]–[7], among which the generalized cross-correlation
(GCC) function [3] is themost classicalmethod. In the second
step, TDOAs are combined with knowledge of the sensor
positions and velocities to generate a nonlinear equation set.
The sound source estimation position is obtained by solving
the nonlinear equations, which can be solved by the max-
imum likelihood solution [8], [9] and closed-form solution
[8], [10]–[12]. The TOA-based method is a commonly used
positioning approach for natural earthquakes and micro-
seisms, in which the objective function is constructed
based on the TOAs, velocity information, and sensor posi-
tion information, while sound source position estimation
is achieved by minimizing the objective function. The
differences among the various TOA-based methods lie in
the construction, processing, and optimization of the objec-
tive function. The Geiger [13] positioning method and its
modified method [14]–[16] belong to the typical TOA-based
methods.

Both the TDOA and TOA-based methods only use time
information, which is part of the collected signal information.
The error of the indirect method consists of time information
extraction and position estimation, and any large component
of the two parts will results in overall positioning errors.
Meanwhile, indirect methods are sensitive to noise, and
require accurate time as well as reliable velocity information.

The direct method mainly includes the subspace decom-
position method [17]–[20] and beamforming method
[21]–[23]. The MUSIC method [17] is a classical subspace
decomposition method that decomposes data into signal and
noise subspaces by observing the eigenvalue decomposition
of the signal covariance matrix. Positioning is achieved
using the orthogonality of the signal and noise subspaces.
The MUSIC algorithm and other subspace decomposition
methods [18]–[20] require accurate velocity information.
The steered response power with phase transform (SRP-
PHAT) method [23]–[26] is one of the most effective
beamforming-based positioning method. Under noise and
reverberation conditions, SRP-PHAT is one of the most
efficient and robust localization methods, which performs
global optimization using all available information [23], [27].
SRP-PHAT is implemented in two stages. First, the GCC
function between the signals acquired by each microphone

pair is acquired, and then the source location is searched
over a grid of space. The second stage is the most com-
putationally demanding, as the high localization accuracy
implies using dense grids [23]. Since, the SRP space hasmany
local extremes [23], [27]–[29], the traditional optimization
algorithms (e.g. gradient descent) are not applicable to SRP-
PHAT, which need to be optimized to reduce the compu-
tational expense. Various improved algorithms have been
proposed, such as stochastic region contraction (SRC) [27],
coarse-to-fine region contraction (CFRC) [28], stochastic
particle filtering (SPF) [29], and other methods [30], [31].
These optimization methods belong to region contraction
methods, at the expense of accuracy and robustness. More-
over, the convergence velocity is slow, resulting in low
computational efficiency when the spatial search area is
relatively large. The bat algorithm [32]–[35] is a heuristic
search algorithm and provides an effective method for search-
ing for global optimal solutions. The bat algorithm is an
iteration-based optimization technique, which is initialized
into a set of random solutions and then searches for the
optimal solution by means of iteration. Around the optimal
solution, a new local solution is generated by random flight,
which strengthens the local search. Compared with other
algorithms, the bat algorithm is far superior in terms of
accuracy and effectiveness [34], [35], and few parameters
need to be adjusted. The bat algorithm may be a suitable
option for global optimization of the SRP-PHAT.

Another problem of SRP-PHAT is that the calculated time
delay is not equal to the actual time delay with the employ-
ment of coarser spatial grids, which will result in losing
the energy information and reducing the location accuracy.
A local accumulation method is proposed in [25], [36], [37]
to solve this problem well, but it will reduce the spatial
resolution of SRP-PHAT.

Since the direct method need not extract time informa-
tion in advance and utilizes all the information of collected
signals, the direct method is relatively more suitable than
the indirect method for locating the shallow underground
acoustic source. However, the achievement of a high-quality
velocity model is costly and not feasible in subsurface sound
source applications sometimes, since both direct and indirect
methods require accurate velocity to achieve high-precision
localization.

In this paper, an improved SRP-PHAT with unknown
velocity (SRP-PHAT-UNVEL) is proposed for the shal-
low underground acoustic source localization. In fact,
SRP-PHAT-UNVEL is proposed by combining velocity scan-
ning with SRP-PHAT, which is equivalent to optimizing both
space and velocity simultaneously. However, the computa-
tional complexity of SRP-PHAT-UNVEL is very high. The
SRP-PHAT-UNVEL is transformed into a two-stage opti-
mization to reduce its complexity. The experimental results
show that the proposed method is feasible for locating acous-
tic sources with an unknown velocity and a high accuracy can
be achieved by the joint estimation of acoustic source location
and velocity.
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II. SRP-PHAT WITH UNKNOWN VELOCITY
SRP-PHAT is a method that combines phase trans-
form (PHAT) and steered response power (SRP). The SRP
can be expressed as the output power of the filter-and-sum
beamformer [23], which is given by

P (x) =
∫
+∞

−∞

Y (ω, x)Y ∗ (ω, x)dω (1)

where Y ∗ (ω, x) is the complex conjugate of Y (ω, x), and
Y (ω, x) is the output of the filter-and-sum beamformer,
defined as follows:

Y (ω, x) =
M∑
l=1

Gl (ω)Fl (ω) e−iωτ(x,l) (2)

where x = [x, y, z]T ∈ R3 denotes a candidate for the
acoustic source position; Fl (ω) is the Fourier transform of
the collected signal from the l-th sensor;Gl (ω) is the Fourier
transform of the temporal filter, and τ (x, l) is the direct
time of wave travel from location x to the l-th sensor, which
are selected to focus or steer the array to the source spatial
location.

Substituting (2) into (1), the SRP becomes

P (x) =
M∑
l=1

M∑
q=1

∫
+∞

−∞

Gl (ω)G∗q (ω)Fl (ω)

×F∗q (ω) e
−iω(τ(x,l)−τ(x,q))dω (3)

In (3), Gl (ω)G∗q (ω) can be considered as a weight-
ing function and represented by 9lq (ω). Then, (3) can be
expressed as follows:

P (x)

=

M∑
l=1

M∑
q=1

∫
+∞

−∞

9lq (ω)Fl (ω)F∗q (ω)e
−iω(τ(x,l)−τ(x,q))dω

(4)

when 9lq (ω) is the PHAT function, (4) is the SRP-PHAT
function. By scanning the spatial position x, the determined
maximum value P (x) is the estimated position of the sound
source x̃; that is,

x̃ = argmaxx P (x). (5)

PHAT is a popular frequency-dependent weighting function
of GCC [11], which is defined as follows:

9lq (ω) =
1∣∣∣Fl (ω)F∗q (ω)∣∣∣ . (6)

where Fl (ω) and Fq (ω) are the Fourier transforms of a pair
of collected signals fl (t) and fq (t), and F∗q (ω) is the complex
conjugate of Fq (ω). The PHAT function broadens the signal
spectrum andmakes the SRP-PHAT can obtain sharper cross-
spectrum/cross-correlation peaks, which improves the spatial
resolution of the SRP.

Equation (4) can be rewritten by GCC, as follows:

P (x) =
M∑
l=1

M∑
q=1

Rlq
(
τlq (x)

)
(7)

Rlq
(
τlq (x)

)
=

+∞∫
−∞

Fl (ω)F∗q (ω) e
−iω(τlq(x))∣∣∣Fl (ω)F∗q (ω)∣∣∣ dω (8)

τlq (x) = τ (x, l)− τ (x, q) =
|x−xl | −

∣∣x−xq∣∣
v

(9)

where τlq (x) is the calculated time delay of arrival of the
sensor pair (l,q) corresponding to an acoustic source located
at x. v is the ray velocity. Rlq (�) is the generalized cross-
correlation with phase transform (GCC-PHAT).

In SRP-PHAT, the maximization of GCC-PHAT output
is achieved for acoustic source localization by scanning the
spatial grids. Essentially, SRP-PHAT is the steering samples
accumulation of GCC-PHAT, which can be expressed by
Dirac delta function as follows:

P (x) =
M∑
l=1

M∑
q=1

+∞∫
−∞

Rlq (τ ) δ
(
τ − τ lq (x)

)
dτ (10)

From (9), the shape of the calculated time delay curve
is adjusted to match the real delay curve by scanning
the candidate spatial position in SRP-PHAT. As shown in
Fig 1(a), different time delay curve shapes correspond to dif-
ferent spatial positions. When the spatial position is scanned
to the acoustic source position, the calculated time delay
curve is consistent with the real one. At this time, the largest
energy of the GCC-PHAT samples accumulation is reached
along the calculated time delay curve, and the acoustic source
location is the spatial parameter corresponding to the max-
imum energy, which is the basic principle of SRP-PHAT
localization When the velocity is unknown, the calculated
time delay is a function of both space and velocity, as follows:

τlq (x, v)=τ (x, l)− τ (x, q)=
|x − xl | −

∣∣x − xq∣∣
v

(11)

The (10) can be expressed as follows:

P (x, v)=
M∑
l=1

M∑
q=1

+∞∫
−∞

Rlq (τ ) δ
(
τ − τ lq (x, v)

)
dτ (12)

This is the SRP-PHAT with unknown velocity
(SRP-PHAT-UNVEL), whose basic idea is still the process
shown in Fig. 1a. However, the key difference is the con-
sideration of the velocity influence on the time delay curve.
In other words, we need to determine that the function P (x, v)
has a uniquemaximum, and its corresponding spatial position
and velocity should correspond to the actual sound source
location and ray velocity. Given a fixed spatial position,
the curvatures of the delay curves vary from different ray
velocities. And given a certain velocity, the delay curve
shape is different at different positions. Only when the spatial
position and velocity match the actual situation, the shape
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FIGURE 1. The changing patterns of the shape and curvature of the calculated delay curves with the spatial position and velocity. (a) For fixed velocity,
the changing patterns of the shape with the spatial position. (b)-(c) For fixed position, the changing patterns of the curvature with the velocity from
120 m/s to 940 m/s. In (b), the fixed position is the actual acoustic source position (125 m, 100 m). Ri,5 represents the GCC of the signal collected by i -th
sensor with the reference signal, wherein the reference signal is collected by fifth sensor. The circle-marked curve represents both the actual delay curve
and the calculated delay curve in (a) and (b). But in (c), it only represents the calculated delay curve.

and curvature of calculated delay curves agree with real
delay curves, as shown in Fig.1 (b,c). The result verifies that
function P (x, v) has a unique maximum. A more detailed
analysis of the SRP-PHAT-UNVEL principle is shown in
Appendix 1. In fact, Appendix 1 essentially reveals the same
principles as Fig.1. The SRP-PHAT-UNVEL achieves the
simultaneous optimization of space and velocity, but it has
low calculation efficiency. Since the candidate position only
affects the delay curve shape, and the ray velocity only affects
the curvature, the optimization of space and velocity are two
relatively independent processes. Therefore, the simultane-
ous optimization can be modified into two-stage optimization
of spatial position and velocity to improve computational
efficiency.
The First-Stage Optimization:
With a given velocity vi, P (x, v) is the function of x, and it

can be denoted by Pvi (x).

x̃vi = argmaxx Pvi (x) (13)

where x̃vi is the optimal spatial position for velocity vi.
The output energy is Pvi

(
x̃vi
)
, and it can be denoted by

S (vi) = Pvi
(
x̃vi
)
.

The Second-Stage Optimization:
Calculate the first-stage optimization for different veloc-

ity, then the energy function S (v) of velocity is obtained.
From Fig.1 (a,b,c), the calculated delay curve only matches
a real delay curve when v is the real velocity. At this point,
the GCC-PHAT accumulation along the delay curve is the
largest, that is S (v) reaches its maximum. An estimate of the
velocity vopt can be obtained by optimizing the S (v) function.

vopt = argmax
v

S (v) (14)

The optimal spatial position x̃vopt of the first-stage optimiza-
tion can be determined according to vopt . Therefore, the joint
estimation of the velocity and acoustic source location is
achieved.

However, the numerical calculation delay of (10) and
(12) have slight inconformity with their actual delay,

FIGURE 2. Energy distribution map of full space scanning in SRP space
for modeling data. The process of generating simulation data is described
in Section 4.1. The velocity used in the SRP-PHAT calculation is 750 m/s,
which is the average velocity of the established velocity model. The
arrows point out some local extremums, and S represents the maximum
energy in the SRP space. The positioning result is the space coordinate
corresponding to S.

which can be expressed as τ 6= τ lq (x, v) and can be well
solved in [25], [36], [37]. The samples Rlq

(
τlq (x, v)

)
for

τlq (x, v) 6= τ can be addressed with simple linear interpo-
lation, which can largely reserve the original energy rela-
tionship with less influence on the spatial resolution of
SRP.

III. TWO-STAGE OPTIMIZATION OF SRP-PHAT-UNVEL
A. FIRST-STAGE OPTIMIZATION ALGORITHM
According to (13), the first-stage optimization is actu-
ally to optimize SRP-PHAT. As the SRP space contains
many local extrema (see Fig. 2), conventional optimiza-
tion methods, such as gradient descent, are not applica-
ble to SRP-PHAT. Various global optimization methods
have been proposed to address this problem, such as SRC
and CFRC, etc. The convergence rate of most of these
optimization methods is relatively low for a large search
range [2]. Furthermore, these optimization methods are
implemented at the expense of accuracy and robustness.
To this end, the bat algorithm [32]–[35] is used to accomplish
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the first-stage optimization, which is mainly based on two
aspects. First, the bat algorithm can be regarded as provid-
ing a balance between standard particle swarm algorithm
and enhanced local search to achieve improved optimization
effects and robustness [32], [34]. Second, the bat algorithm
offers a faster convergence rate than existing optimization
methods [32], as verified in section 5.2.

After idealizing some of the echolocation characteristics,
the update process of the bat algorithm is described as fol-
lows. Assume that bats fly randomly with a velocity vbi at
position xi and emit pulses with a frequency fi in the search
space. Bats vary their frequency fi and loudness A to search
for prey, and automatically adjust their pulse frequency and
pulse emission rate r ∈ [0, 1]. The new solutions, namely
position xti and velocity v

t
bi at time step t, are given by

fi = fmin + α(fmax − fmin) (15)

vtbi = vt−1bi + (xt−1i − x0)fi (16)

xti = xt−1i + vtbi . (17)

where α is a random number with a uniform distribution
within [0, 1] and x0 is the current optimal global location.
Equations (15) to (17) are used for global optimization. For
the local search part, once a solution is selected among the
current optimal solutions, a new solution for each bat is
generated locally, using a random walk:

xnew = xold + µAt . (18)

where µ is a random number within [−1, 1] and At is the
average loudness of all of the bats. The loudness Ai and rate
ri of the pulse emission can be updated as follows:

At+1i = βAti , r
t+1
i = r0i

[
1− exp (−γ t)

]
(19)

The specific process of the first-stage optimization based on
the bat algorithm is as follows.
Step 1: Objective function Pvi (x). Define the range

[xmin, xmax] of the search space. Initialize the velocity vbi of
bats flying. Define the maximum frequency fmax and mini-
mum frequency fmin of the emitted pulse. Initialize the pulse
rate r0 and define its enhancement factor γ> 0. Initialize the
loudness A0 and define its attenuation coefficient β ∈ (0, 1).
Define the maximum number Niter of iterations.
Step 2: Randomly initialize the bat location xi, and the

current optimal location/solution x0 is searched according to
the fitness value Pvi (xi).
Step 3: Generate new solutions by adjusting the frequency,

and updating the velocities and locations using (15) to (17).
Step 4: Generate a uniformly distributed random number

rand: if (rand> r), select a solution among the best solutions.
Generate a local solution around the best selected solution
using (18).
Step 5: Generate a uniformly distributed random num-

berrand: if (rand < A & Pvi (xi) > Pvi (x0)), accept the new
solution xi. Increase r and reduce A according to (19).
Step 6:Rank the fitness values of all bats and determine the

current optimal location x0 and fitness value S0 = Pvi (x0).

Step 7: While (iteration < niter), return to step 2. Other-
wise, the algorithm ends with the total best solution x̃vi = x0
and fitness value S (vi) = S0.

Although the bat algorithm is highly robust, during the
optimization process, it involves the pulse rate r , comparison
of the loudness A with random numbers, and randomness
of global and local optimization, which will result in small
changes in x̃vi and S (vi). To improve the solution stability
further, the final optimal locations x̃vi and fitness values S (vi)
are the average of the last five iterations; that is,

x̃vi =
1
5

Niter∑
i=Niter−5

x0 (i),

S (vi) =
1
5

Niter∑
i=Niter−5

Pvi (x0 (i))

(20)

B. SENCOND-STAGE OPTIMIZATION ALGORITHM
The object of second-stage optimization is the energy func-
tion S (v). The specific executing steps are as follows:

Step 1 Possible value range of velocity V is decided based
on prior knowledge. Then calculate S (vi) using (20) after
selecting the sample vi, (i = 1, 2, . . .N ) from theV randomly.
The N velocities vi are distributed uniformly in the V space

Step 2 Choose M (<N) larger S
(
vj
)
∈S (vi) , j =

1, 2, . . . ,M , and find the maximum value vmax and the mini-
mum value vmin of velocity in vj.

Step 3Reduce the velocity range toV=[vmin,vmax] if1v =
vmax − vmin does not meet the velocity accuracy requirement,
and return to step1.

Step 4 If 1v satisfies the velocity accuracy requirement,
the velocity vSmax corresponding to the maximum value in
S
(
vj
)
is taken as the final estimated value, namely, vopt =

vSmax .
The pseudo-code for velocity optimization is as follows.

IV. SHALLOW UNDERGROUND ACOUSTIC
SOURCE LOCATION
A. SIMPLIFIED UNDERGROUND VELOCITY MODEL
The velocity of wave propagation in a shallow underground
medium is unknown. For inhomogeneous media, the velocity
is a function of the spatial location. This means that the veloc-
ities of different spatial points differ, which results in great
difficulties or even makes it impossible to locate the under-
ground acoustic source. In general, the horizontal anisotropy
of shallow underground media is not evident in a small
range, and the transversal velocity change can be ignored.
Therefore, the velocitymodel can be simplified to a layered or
continuousmodel, as illustrated in Fig. 3. The velocity change
between layers is generally small, as we are only concerned
with a shallow underground medium, which means that
sin γ ≈ sin θi (γ ≈ θi); that is, θ1 ≈ θ2≈ . . . ≈θi = θ . Then,
(21) can be obtained from the geometric
relationship in Fig. 3.

di =
hi

cos θ
(21)
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Algorithm 1 Pseudo-Code for Velocity Optimization
Objective function S (v) , v ∈ V
Initialize the velocity scanning range V
Define the convergence precision ε or maximum number
iter_num of iterations
while (iteration < iter_num) do
Randomly select N velocities vi, (i = 1,2, . . .N) in V
for i = 1: N do

Calculate S (vi) by (20)
end for
Rank the S (vi) and take the first M (M < N ) velocities
vj, j = 1,2, . . . ,M .

Find vmax = max
(
vj
)
, and vmin = min

(
vj
)

Compute 1v = vmax − vmin
if (1v > ε) then
Reduce the velocity range to V = [vmin, vmax]

else
Drop out of the while loop
end if

end while
Rank the S (vi) and find the best solution ṽ
Post-process results

FIGURE 3. Simplified subsurface velocity model.

The propagating velocity vray along the ray path is

vray=

∑n
i=1 di∑n
i=1

di
vi

=

∑n
i=1

hi
cos θ∑n

i=1
hi

vi cos θ

=

∑n
i=1 hi∑n
i=1

hi
vi

=
htotal
ttotal
=vave

(22)

where vave is the average velocity of the wave propagating
vertically in the medium, which is an unknown constant
for an identified medium. This means that the ray velocity
is approximately equal to the average velocity for shallow
underground media.

For localization, we mainly use direct time, which is
related to the ray velocity. Therefore, the shallow under-
ground acoustic source localization can be implemented by
SRP-PHAT-UNVEL.

FIGURE 4. General flowchart of the shallow subsurface source
localization.

B. LOCALIZATION FLOW
SRP-PHAT-UNVEL can be implemented through a two-stage
interrelated optimizing process. The overall framework
of two-stage optimization can be summarized by the
flowchart displayed in Fig. 4, which can achieve both source
localization and average velocity estimation.

V. EXPERIMENTS AND ANALYSIS
A. VELOCITY MODEL AND SIMULATION DATA
Owing to the non-repeatability and non-verifiability of real
events in a shallow underground medium, it is difficult to
measure the error between the calculated and real source.
However, simulation can be flexibly set according to different
needs, which is convenient for an algorithm performance
analysis. Based on the above two points, the performance
of the proposed algorithm is first analyzed using simulation
data.

The velocity model for shallow underground media has
been simplified to a depth-dependent model, of which the
continuummodel is typical. A continuummodel with a veloc-
ity gradient of 2 m/s is established, as illustrated in Fig. 5(a),
which also indicates the sensor layouts and source position.
The average velocity of the medium above the source is
750 m/s. The established model has a horizontal distance
of 200 m and a depth of 100 m. The sensors are arranged in
the range of (z= 0, x= 50∼150m), and the distance between
sensors is 2 m. The source is located at (x= 100m, z= 50m).
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FIGURE 5. (a) Velocity model and location of source and sensors.
(b) Synthetic data by finite difference forward modeling.

FIGURE 6. Calculation time and positioning errors of full scan, SRC and
BAT methods for different spatial ranges. (a) is for calculation time and
(b) is for positioning error. The error is defined as the distance between
the actual and estimated positions.

The simulation data are obtained by finite difference forward
modeling [47], as shown in Fig. 5(b).

B. FIRST-STAGE OPTIMIZATION ANALYSIS
Compared with CFRC, SRC has higher computational effi-
ciency in the case of low noise [28]. To analyze the per-
formance of the bat algorithm for SRP-PHAT optimization,
the calculation efficiency and positioning accuracy of the bat
and SRC algorithms are compared by the simulation data at
an average velocity of 750 m/s. The below parameters are
used in this paper. SRC uses the suggested parameters [27]:
the number of random points J = 3000, the number of points
used to define the new source space N = 100, final grid
resolution 0.01 m. Bat algorithm parameters: population size:
40, the number of generations increases with the enlarge of
search space, loudness A = 2, pulse rate r = 1.
The calculation time of full space scan, bat optimiza-

tion and SRC optimization for different spatial ranges
were compared, as shown in Fig. 6. The final grid resolution
of full-space scanning is 0.01 m. Fig. 6a shows that the

FIGURE 7. The localization results of simulation data with different SNR
levels under known velocity.

FIGURE 8. The S − v curve for modeling data in Subsection 4.1.

FIGURE 9. The relationship between the velocity variation and the
location error.

computational efficiency of full-space scanning is the lowest.
The calculation efficiency of bat optimization is much higher
than that of SRC optimization. For different scanning spatial
ranges, the average calculation time of SRC and bat opti-
mization is 7.54 s and 1.32 s respectively. The computational
efficiency of the bat algorithm is better than that of SRC
5 times, while the previous existing optimization methods
have only twice as fast as SRC optimization [35]. Mean-
while, the positioning error of Bat optimization is smaller
than that of SRC optimization, as shown in Fig. 6b. The
positioning error of the full-space scanning is the smallest and
remains unchanged. For different spatial ranges, the average
positioning error of bat optimization is 0.081 m and that of
SRC optimization is 0.211 m. Therefore, the bat algorithm
provides better computational efficiency and localization
accuracy. Moreover, the experiment results demonstrate that
the bat algorithm optimization is more robust than the SRC
optimization.
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FIGURE 10. Positioning errors of sound sources at different locations.

To analyze the performance of the bat algorithm for
SRP-PHAT optimization further, different levels of Gaussian
white noise are introduced into the modeling data to generate
various simulation data with different signal-to-noise ratios
(SNR=−10 to 10 dB). The relationship between positioning
error and SNR is obtained by Monte Carlo simulation as
shown in Fig. 7. With the increasing of SNR, the positioning
error of both bat algorithm and SRC decrease greatly. When
SNR< 1, bat algorithm has higher accuracy than SRC, which
indicates that the bat algorithm is insensitive to noise. When
SNR > 1, the accuracy of bat algorithm is almost the same
as SRC. But the accuracy of bat algorithm is better overall.
For bat algorithm, the maximum error is 0.64 m with 0.31%
error percentage1 and the minimum error is 0.04 m with a
0.02% error percentage. While for SRC, the maximum error
is 1.26 m with 0.61% error percentage and the minimum
error is 0.06 m with a 0.03% error percentage. The average
errors of bat algorithm and SRC are 0.19 m and 0.42 m
respectively.

It demonstrates that the first-stage optimization of bat
algorithm possesses a faster convergence rate and a higher
positioning accuracy than the common methods.

C. SECOND-STAGE OPTIMIZATION ANALYSIS
When velocity is unknown, the verification of the unique
maximum of energy function S (v) is the key issue for posi-
tioning by velocity scanning. In section II, the unique max-
imum of S (v) was verified theoretically. Next, simulation
experiments are conducted to further verify it. The S − V
curve can be obtained by full velocity scanning with a scan-
ning range from 300 to 1300 m/s and an interval of 10 m/s,
as illustrated in Fig. 8. It can be observed that S first increases

1The error percentage is defined as the percentage of the positioning error
from the actual sound source position to the coordinate origin

and then decreases with an increase in velocity. When the
velocity v = 750 m/s (average velocity of the model in
subsection 5.1), S reaches its maximum value. These changes
indicate that S reaches its maximum value only when the
velocity is scanned to the actual average velocity.

As illustrated in Fig. 8, the SRP energy reaches its maxi-
mum when the average velocity is close to the true average
velocity. To investigate the influence of the velocity change
on the localization accuracy, repeated experiments are con-
ducted at various velocity with noise-free modeling data. The
velocity varies from 700 to 800 m/s with a 1 m/s interval,
and the location error is illustrated in Fig. 9. With further
deviation of the velocity from the true average velocity,
the localization error increases, and the error is approximately
linear with the deviation degree. The velocity change within
a small region near the true average velocity has little influ-
ence on the positioning accuracy. As indicated in the sub-
figure of Fig. 9, the positioning error is less than 0.4 m at
a velocity deviation of below 4 m/s, which still represents
high positioning accuracy. Therefore, the velocity scanning
interval of 1 to 2 m/s can achieve relatively high localization
accuracy in practical applications, and the velocity scanning
interval can be appropriately increased according to actual
requirements.

As indicated in Fig. 8 and Fig. 9, the S (v) is a convex
function with a unique extremum. And the spatial position
at the S (v) extremum point corresponds to the real source
position. Therefore, the source localization can be achieved
by the SRP-PHAT-UNVEL.

D. LOCATION ANALYSIS WITH SIMULATION DATA
The simulation results of the two-stage optimization pro-
cess demonstrate that the sound source localization under
unknown velocity can be achieved by SRP-PHAT-UNVEL
theoretically. In this section, an overall analysis of the
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FIGURE 11. The location and velocity estimation for noisy simulation data with different SNR. (a) Spatial distribution of
the estimated location. (b) Relationship between velocity and localization error. (c) Relationship between localization
error and SNR. (d) Relationship between estimated velocity and SNR.

SRP-PHAT-UNVEL positioning performance is given. The
joint estimation performance of SRP-PHAT-UNVEL for the
position and velocity of noise-free simulation data is firstly
studied. The localization result is (100.087 m, 50.262 m) with
a positioning error of 0.184 m, while the estimated average
velocity is 749.642 m/s with an error of 0.358 m/s, which is
very close to the actual average velocity of 750 m/s.

The above analysis is only applicable for a fixed sound
source and it is not universal. Therefore, the localization
performance of the acoustic source at different locations
should be further verified. The positioning errors of different
acoustic source locations were analyzed, where the locations
of acoustic source change in the horizontal direction or in the
vertical direction, as shown in Fig. 10. The positioning error
of the sound source at S03 is the minimum. The positioning
error is larger with the acoustic source farther away from
S03 along the horizontal direction, and it is symmetrically
distributed around S03. Thismay be the ambiguous estimation
of X coordinate since the energy of the SRP spectrum in
the X direction is not concentrated when the acoustic source
changes in the horizontal direction. While, the positioning
error increases with the acoustic source is far away from
the center of the sensors array along the vertical direction.
Compared with the array aperture, the location of the acoustic

FIGURE 12. The surface locations of sensors and source. The sensors with
mark ‘+’ belong to one group.

source is far from the center, which will inevitably reduce the
positioning accuracy. However, as long as the acoustic source
is guaranteed to be a near-field source, its positioning error
is sufficiently small. No matter the location of the acoustic
source changes horizontally or vertically, the estimated veloc-
ity varies slightly, and its average value is 750.85 m/s.

The results demonstrate that themethod can achieve source
positioning in a shallow underground unknown medium with
high localization accuracy and a small estimated velocity
error.
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FIGURE 13. Grouping localization results and errors. (a) Spatial
distribution of location for each group, (b) the location error of each
group are sorted from largest to smallest and (c) histogram of the
number of groups with different error ranges.

For noisy data with different SNRs (SNR=−10 to 10 dB),
the estimated location and velocity results obtained by the
proposedmethod are illustrated in Fig. 11. As can be observed
from Fig. 11(a), the horizontal location error is small, while
the vertical (depth) error is large. However, the number
of position estimations with large error is not significant
(only 4), which indicates that the algorithm is not sensitive
to noise. From Fig. 11(b), it can be observed that localization
results with a location error of less than 1 m account for the
largest proportion, and the corresponding velocity is approx-
imately 750 m/s. The estimated velocity is close to the real
velocity for different SNRs, which indicates that the velocity
estimation is not sensitive to noise. Fig. 11(c) illustrates that
the localization error decreases with an increase in the SNR.
The localization error is relatively large when the SNR is less
than 0 dB, while it is relatively small when the SNR is greater
than 0 dB. Fig. 11(d) illustrates that the estimated velocity
is closer to the real velocity with an increase in the SNR;
when the SNR is greater than 0 dB, the velocity gradually
changes.

Therefore, the proposed method can locate the acoustic
source and obtain the estimated velocity at the same time with
a small error when the SNR > 0.

E. LOCATION ANALYSIS WITH ACTUAL DATA
The collected signal from an underground acoustic source
with a known position by the sensor array on the ground
surface is referred to as actual data. Strictly speaking, actual
data belong to semi-simulated data, as the source location is
known. The position of the underground acoustic source is
set to (X = −13.80 m, Y = 9.74 m, Z = −18.86 m). A total
of 40 sensors are arranged in a straight line, and four five-
element cross-arrays are arranged on both sides of the line,
as illustrated in Fig. 12. The actual data are collected with

TABLE 1. Location results of the actual data.

FIGURE 14. Geometric relationship between acoustic source and sensors
array.

a 1 ms sampling interval for a 1 s sampling time. The col-
lected actual data are pre-processed, including data validity
analysis and SNR enhancement. The pre-processed data are
divided into 40 groups. Each group consists of the diagonal
of two five-element crosses and an odd or even number of
sensors in the linear array, which contains 11 sensors in total,
such as the sensors marked by ‘+’ in Fig. 12. Since the
subsurface medium is unknown and often complex, the use
of all collected data for positioning may not satisfy the sim-
plified velocity model in section IV. Grouping increases the
likelihood of meeting the simplified velocity model. Even if
some groups do not satisfy the simplified velocity model, its
impact on positioning can be weakened by data fusion. So the
main purpose of the grouping is to improve the robustness of
the proposed method further and cause the final localization
result to be more stable, reliable, and accurate. Moreover,
grouping can improve computational efficiency to a certain
extent.

Each group data is used for positioning by the pro-
posed method, and the localization results are illustrated
in Fig. 13. Fig. 13(a) indicates that the localization result
for certain groups contains a large location error, while the
fused localization result is very close to the actual source.
This demonstrates that the location accuracy can be improved
by grouping and fusion. The location errors of each group
are presented in Fig. 13(b), from which it can be observed
that different groupings have different localization errors,
and the error of most groupings is between 0.5 m and 1 m,
as indicated in Fig. 13(c). Thereafter, the 40 localization
results are fused by principal component analysis [39], and
the final localization result and location error are displayed
in Table 1. As indicated in Table 1, the maximum positioning
error is approximately 1.45m, the minimum positioning error
is approximately 0.24 m, and the error average is 0.77 m.
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FIGURE 15. (a) Isotime line of different τ21 and τ31, (b) isotime line of given τ21 and τ31, and (c) illustration of
the principle of position and velocity separation. R21 (τ) represents the GCC-PHAT of the sensor A2 and the sensor
A1, R31 (τ) represents the GCC-PHAT of the sensor A3 and the sensor A1.

However, the fusion location error is only 0.1 m, which is
less than the minimum value of the grouping localization
error. The localization error percentage following fusion is
only 0.39%. So, the grouping and fusion can improve the
localization accuracy.

The actual data localization results demonstrate that the
proposed method can achieve positioning of a shallow under-
ground acoustic source with unknown velocity, while group-
ing and fusion can improve the final localization accuracy.

VI. CONCLUSION
As one of the most robust and accurate acoustic source
localization methods, SRP-PHAT only applies to known-
velocity cases. However, the accurate velocity models are
hard to be achieved in the shallow underground acoustic

source localization. In this paper, a special SRP-PHAT
with unknown velocity is proposed to make the shallow
acoustic source localization possible. The principles of
SRP-PHAT-UNVEL are studied from the positioning essence
and are solved by a specific two-stage optimization with
efficient computational cost. The feasibility of the specific
optimization method is discussed from the aspects of the-
ory and experiment. The results demonstrate that the first-
stage optimization based on bat algorithm provides better
computing efficiency and higher estimation accuracy than
traditional methods. Besides, the second-stage optimization
can be achieved by the common linear search technique since
the function of velocity and energy is an ideal convex func-
tion. The simulation results demonstrate that the proposed
method can achieve the highly accurate joint estimation of
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acoustic source position and velocity. Meanwhile, the pro-
posed method is also applicable in the case with low SNR.
Furthermore, the robustness and accuracy of the positioning
for actual data can be further improved through the grouping
data and fusion positioning results of all groups. Although
the SRP-PHAT-UNVEL is proposed for shallow underground
acoustic source localization, it can also be extended to similar
cases in other fields.

APPENDIX
In order to clearly explain the idea and facilitate the visualiz-
ing, the geometric relationship between the sound source and
the sensors array is shown in Fig. 14. This is a special case.
But the same analysis can also be produced in the general
situation, only the non-linear equation is more complex.
τ21 represents the time difference of arrive (TDOA) from

S to sensor A2 and the sensor A1. τ31 represents the TDOA
from S to the sensor A3 and the sensor A1. From the geomet-
ric relations in Fig. 14, we can get:

τ21 =

√
z2 + x21 − z

v
(A.1)

τ31 =

√
z2 + x22 − z

v
(A.2)

(A-1) and (A-2) can be further simplified as follow:{
τ21v+ 2τ21vz = x21
τ31v+ 2τ31vz = x22

(A.3)

For variables v and z, the equations (A-3) is nonlinear and
nonhomogeneous. If τ21 and τ31 are unknown, the number
of variables is always more than the number of equations,
resulting in (A-3) underdetermined with infinite solutions.
If both τ21 and τ31 are known, we can get v and z by solving
(A-3) to achieve separation of position and velocity. This
conclusion can be extended to the general geometric relations
of arrays, but the nonlinear nonhomogeneous equations are
more complex and more difficult to solve.

For a given τ 121, equation (A-1) has infinite sets of solutions
to (z, v). Similarly, for a given τ 131, equation (A-2) has also
infinite sets of solutions to (z, v). However, according to
the equations (S3), it can be known that there must be a
unique solution (z1, v1) for (A-1) and (A-2) to be true at
the same time. This means that there is only one intersection
point between the isotime lines determined by the function
τ21 (z, v) = τ 121 and τ31 (z, v) = τ

1
31 (see Fig. 15(b)). Different

τ21 and τ31 will determine different intersection points (see
Fig. 15(a)).

In summary, when TDOA is known, the simultaneous esti-
mation of velocity and position can be achieved by solving
the equations of TDOA-distance-velocity.

The SRP-PHAT-UNVEL is not intended to solve the
TDOA-distance-velocity equations to achieve a joint estima-
tion of position and velocity. The joint scanning space and
velocity are used to obtain τ 021, τ

1
21, τ

2
21, · · · ; τ

0
31, τ

1
31, τ

2
31, · · · .

And then their corresponding generalized cross-correlation
values are added as output. Only when the scanned spatial
position and velocity match the actual ones, the output energy
is the largest, which is just the sum of the maximum value of
the generalized cross correlation, as shown in O1 in Fig. 15c.
But beyond that, any other solution (z, v) does not make the
generalized cross-correlation maximums add up at the same
place, as shown by O2 and O3 in Fig. 15c.
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