
Received September 6, 2019, accepted October 3, 2019, date of publication October 11, 2019, date of current version October 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946659

Improved Multi-Agent Deep Deterministic
Policy Gradient for Path Planning-Based
Crowd Simulation
SHANGFEI ZHENG AND HONG LIU
School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan 250014, China

Corresponding author: Hong Liu (lhsdcn@126.com)

This work was supported by the National Natural Science Foundation of China under Grant 61876102, Grant 61472232, and
Grant 61272094.

ABSTRACT Deep reinforcement learning (DRL) has been proved to be more suitable than reinforcement
learning for path planning in large-scale scenarios. In order to more effectively complete the DRL-based
collaborative path planning in crowd evacuation, it is necessary to consider the space expansion problem
brought by the increase of the number of agents. In addition, it is often faced with complicated circumstances,
such as exit selection and congestion in crowd evacuation. However, few existing works have integrated
these two aspects jointly. To solve this problem, we propose a planning approach for crowd evacuation
based on the improved DRL algorithm, which will improve evacuation efficiency for large-scale crowd path
planning. First, we propose a framework of congestion detection-based multi-agent reinforcement learning,
the framework divides the crowd into leaders and followers and simulates leaders with a multi-agent system,
it considers the congestion detection area is set up to evaluate the degree of congestion at each exit. Next,
under the specification of this framework, we propose the improved Multi-Agent Deep Deterministic Policy
Gradient (IMADDPG) algorithm, which adds themean field network tomaximize the returns of other agents,
enables all agents to maximize the performance of a collaborative planning task in our training period. Then,
we implement the hierarchical path planningmethod, which upper layer is based on the IMADDPGalgorithm
to solve the global path, and lower layer uses the reciprocal velocity obstacles method to avoid collisions
in crowds. Finally, we simulate the proposed method with the crowd simulation system. The experimental
results show the effectiveness of our method.

INDEX TERMS Deep reinforcement learning, multi-agent reinforcement learning, path planning, crowd
simulation for evacuation, improved multi-agent deep deterministic policy gradient algorithm.

I. INTRODUCTION
Reasonably planning an evacuation path to reduce the evac-
uation time in densely populated areas, especially complex
environments with obstacles and multiple exits, is one of the
important issues of evacuation simulations caused by emer-
gency disasters. In such a situation, most pedestrians will run
to the nearest exit or follow the crowd to the exit [1], which
will cause congestion delay, trampling fatalities and other
security incidents [2]. To further obtain the experimental data
in the evacuation process, it is necessary for a large number
of people to conduct real-world experiments on crowd evac-
uation. However, these experiments have many limitations

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

that prevent further application, such as the complexity of
organization and the dangerousness of uncontrollable fac-
tors [3]. Computer simulation technology not only guaran-
tees safety and convenience in reality, but also provides the
meaningful information for crowd evacuation [4]. Therefore,
it is indispensable to apply a computer simulation method to
study crowd evacuation, for example, large public places in
emergencies.

Considering the problem of the large-scale planning of an
evacuation path, multi-agent reinforcement learning (MARL)
has widespread attention [5], [6], wherein the agents interact
with the environment and obtain the reward and punishment
information transmitted from the environment to maximize
the reward through trial and error, which is closely related
to the path knowledge accumulation of pedestrians in reality.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 147755

https://orcid.org/0000-0002-7286-5631
https://orcid.org/0000-0002-1007-6135

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 1. The framework of our method.

These characteristics naturally relate to the path planning
problem [7]–[10]. However, whenMARL is applied to crowd
evacuation simulation, a relatively large-scale state space is
formed, and the size of the state space can increase expo-
nentially according to the number of agents involved. These
problems of MARL have promoted the development of DRL.
Multi-agent DRL inherits the advantages of reinforcement
learning (RL) and can better address the curse of dimen-
sionality of RL with the characteristics of a strong nonlinear
approximation ability and a generalization ability of neural
networks [11], [12].

Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm is a new population DRL algorithm,
which is proposed by Lowe et al. [13]. It can find the global
optimization solution and can easily defeat various DRL
methods, including DQN (Deep Q-Network), TRPO (Trust
region policy optimization) and DDPG (Deep Deterministic
Policy Gradient). However, few researchers have applied
the MADDPG algorithm to crowd evacuation simulation
because the input space of Q grows linearly as the number of
people increases. In addition, complex circumstances (e.g.,
exit selection and congestion) are another reason why the
MADDPG is not suitable for crowd evacuation simulation.
All above the factors should be considered, which may lead
to the critical decline of the evacuation efficiency and increase
of the evacuation time.

To address the problems mentioned above, this paper pro-
poses a planning approach for crowd evacuation based on
DRL to search for the evacuation path. Our method is mainly
implemented in four steps, as shown in Fig. 1. In the first
step, the crowd and the environment are modelled to prepare
for the next phase of work. The second step demonstrates the
grouping and leadership selection of the initialized groups,
and the followers in the same group evacuate according to the
path of the leader. The third step shows a hierarchical path
planning method, whose process is divided into two layers:
the upper layer is multi-agent collaborative path planning
based on the IMADDPG algorithm, which enables the leader
agent to maximize the performance of a collaborative path

planning, and the lower layer is the movement of collision
avoidance based on the reciprocal velocity obstacles (RVO)
method [14]. The fourth step is to output and analyse the
evacuation results on our simulation platform. The main con-
tributions of our paper are listed below.

(1) The framework of congestion detection-based MARL
is proposed by considering the congestion detection
area of the reward function, which is beneficial to real-
ize reasonable congestion avoidance and the selection
of an evacuation exit.

(2) A new deep reinforcement learning algorithm called
IMADDPG is proposed, IMADDPG adds the mean
field network to maximize the returns of other agents,
and uses the mean field idea to reduce the complexity
of training additional samples, it can enable all agents
to work better and maximize performance of a collab-
orative planning task.

(3) A hierarchical path planning method applied in the
field of crowd evacuation is proposed to reduce evac-
uation time, which couples the IMADDPG and the
RVO algorithms under the framework of congestion
detection-based MARL.

The rest of this paper is organized as follows. Section II
describes the related work on MARL, DRL and the path
planning approach. Section III describes the theoretical
background about our algorithm. Section IV describes the
framework of congestion detection-based MARL. Section V
proposes the hierarchical path planning methods. Section VI
performs simulation experiments to show the efficiency of the
approach proposed in this paper. Section VII describes the
conclusion of this study and suggests future research.

II. RELATED WORK
A. MULTI-AGENT REINFORCEMENT LEARNING
A MAS comprises independent, autonomous and interactive
agents. Because of a limited perception of the entire environ-
ment of each agent in the system, agents need to cooperate
with one another, follow specific social rules, and make joint

147756 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

decisions that aim to simulate the cognitive process of human
beings. MAS captures the dynamics of natural and human
activities in a cooperative way, which makes it a suitable
solution to solve the problem of crowd evacuation [15]–[17].

The clarity of human behaviour makes the idea of multi-
agent beliefs, desires and intentions (BDI) increasingly more
accepted. An agent is driven by desire (goal) and guided by
own beliefs through the intention to achieve the goal [2].
For example, when an emergency evacuation is required,
the desire of the crowd is to escape from the dangerous area
and advance to the safe area. The belief is the knowledge
of an optimal path to the current stage of the safe area, and
the intention is the necessary action taken by the crowd.
In a multi-agent system, although the basic behaviour of a
multi-agent can be presupposed, it is difficult to presuppose
good behaviour when the environment is too complex. Many
tasks require agents to learn new behaviours online for the
improved performance of a multi-agent system [18].

RL is a type of algorithm in the field of machine learning
that aims to allow agents to learn how to maximize future
rewards in the environment. Specifically, an agent changes his
state through actions and obtains a reward signal in the form
of a scala [19]. RL can be regularized by the Markov decision
process framework < S, A, T , R >, including state S, action
A, the transformation function T , the reward equation R, etc.
For different spatial problems, the Markov decision-making
process is divided into the continuous domain and the discrete
domain Markov decision-making process [20]. RL produces
better behaviour by reinforcing higher rewards, and it has
attracted close attention in the fields of game making, robot
planning, computer simulations, etc.

MARL combines the advantages of multi-agent technol-
ogy andRL, overcomes themechanical mode of amulti-agent
system that needs pre-set behaviour, and enhances the effi-
ciency and scalability of a multi-agent system by strength-
ening the learning mechanisms. All agents maximize the
common return. However, Busoniu et al. clearly pointed
out that MARL still faces some challenges, specifically the
problem of curse of dimensionality and the instability of the
environment becoming more serious [18].

B. DEEP REINFORCEMENT LEARNING
Mnih et al. [21] indicated that traditional RL is limited to the
scale of space, and tasks close to the actual situation often
have a large state space and continuous action space. How-
ever, deep learning (DL) can better handle high dimensional
problems. DRL combines the high dimensional perception of
DL and the decision-making ability of RL by using neural
networks to more effectively solve the dimensional problems
that perplex RL. DL provides a new perspective to solve the
problem of cognitive decisions in the complex environments.

DRL is mainly divided into two categories. The first cat-
egory is value-based DRL, which learns the value model
by monitoring the sequence of information and updating
the policy with the value model. Mnih et al. proposed the
DQN in [22]. To some extent, it is the pioneering work

of DRL. Sample pools and a fixed target network are used in
DQN. Hasselt et al. [23] introduced Double Deep Q-Network
(DDQN), compared with DQN, DDQN can obtain not only
a more accurate value estimation but also a higher score in
Atari 2600. Wang et al. introduced Dueling DQN, which
divides the Q network into two parts: the value function
related only to the state and the superiority function related
to the action of the state, which results in a more accurate
Q value [24].

The second type of DRL based on a policy gradient is
more concerned, since it updates the parameters by constantly
calculating the gradient of the policy expectation total reward
for the policy parameters, and then finally, it converges to
the optimal policy. In [25], the DDPG algorithm proposed
by Lillicrap is a typical deep policy gradient algorithm based
on Actor-Critic [26] architecture. It draws on the idea of
empirical playback and the separation of the target network
from DQN, and the discrete behaviour space is successfully
extended into the continuous space. However, almost all
of the current reinforcement learning methods mentioned
above are not applicable to MAS. MADDPG proposed by
Lowe et al. extends DDPG into a multi-agent system to
make all agents cooperate globally [13]. InMADDPG, agents
adopt the principle of centralized training and decentralized
execution. That is, during training, a centralized critic mod-
ule provides agents with information about the observation
and potential behaviour of all agents, and this interaction
among agents converts an unpredictable environment into a
predictable environment. When testing, the agent can not see
all the information, and he does not know the policy of the
other agents; he uses only the information suggested by his
own critic module to take action alone. Therefore, compared
with other DRLmethods, MADDPG is more suitable for col-
laborative crowd path planning. The schematic figure of the
MADDPG algorithm is shown in Fig. 2. MADDPG includes
the network module of both actor and critic. Each actor
corresponds to an agent in MAS, and the input observation of
the critic network contains local observations and operations
from all agents, which eliminates the non-static nature of the
environment and enables the agents to collaboratively learn
the path knowledge.

C. PATH PLANNING APPROACH BASED ON RL
Path planning is one of the critical issues of evacuation sim-
ulations, which aim to find the optimal path from the starting
position to the target position. At present, themore commonly
used path planning methods in the crowd simulation field
include swarm intelligence algorithms, the methods based on
RL, etc. The swarm intelligence algorithm is popular in crowd
path planning, but these algorithms often face premature and
stagnant phenomena. For example, the Ant Colony Opti-
mization algorithm (ACO) [27], Particle SwarmOptimization
algorithm (PSO) [28], and Artificial Bee Colony algorithm
(ABC) [29] do not fundamentally solve the problem of pre-
mature algorithms to some extent, which limits their further
application [30].

VOLUME 7, 2019 147757

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 2. Schematic of the MADDPG algorithm.

RL based on single agent has been widely used in most
previous cases of path planning, such as Q-learning [31]
and Sarsa [32]. The rewards are usually set to find exits
and avoid obstacles. However, MARL has been developed
more in the field of planning an evacuation path. In [7]–[9],
a small case of MARL and tile coding [33] applied to crowd
path optimization is provided. The method of tile coding
discretization is used to simplify the calculation to some
extent, which inevitably leads to lower precision, reduces the
maximum possible reward in path planning, and leads to a
convergence to the local optimum when the input changes
are small. Lee [10] proposed a method based on MARL for
predicting crowd congestion to achieve crowd path planning
in the event of a disaster. The temporary target on the path
is determined by the grid as each step unit, and the human
actions in the simulation scene are simply separated into five
actions. Then, according to the extracted direction, the current
state and adjacent feature information are driven to predict
the degree of congestion, and the path direction with a small
crowd density is selected for evacuation.

The above methods provide a new idea for the research
on crowd path planning based on RL to some extent. How-
ever, because of the curse of dimensionality, the continuous
behaviour and observation space of the crowd are discretized,
and the expansion of the observation and action space and
the increase of the number of agents are still the focus of the
research work of the above methods in the future. In addition,
with the development of the field of DRL, many studies
have been devoted to applying DRL to the path planning of
complex scenes as we are doing here.

In his thesis [34], Panov et al. applied the method of DRL
for path planning on square grids. The experiments show
that heuristic algorithms such as A∗ in the same scene is
not suitable for the path planning of complex scenes with
multi-target points, but robust learning can be realized in
similar scenarios by using the DRL method. Although the
DRL method can not be regarded as the optimal method for
path finding, it provides a perspective for applying it to path
planning.

Cruz and Yu [35] proposed a method that combines kernel
smoothing and the DRL of the WoLF- Policy Hill Climbing
algorithm to solve the difficulty of traditional reinforcement
learning in path planning in an unfamiliar environment.With-
out prior knowledge, the discrete action space was used to

approximate the state ofMARL by kernel smoothing, thereby
reducing the state space in the Q table. However, when the
number of agents increases, the efficiency of the path plan-
ning method will be affected.

Referring to [36], Lei et al. applied Double DQN, to the
path planning of robots in a high-dimensional space, designed
a new reward function and expanded the state space of the
sample pool by inputting lattice information and local target
point coordinates to explore how to solve the problem of path
planning.

In [37], Sui et al. proposed a method similar to ours in
which they set the reward function and used the DRL algo-
rithm to implement the path planning for pedestrians. Their
approach differs from our approach in the following main
aspects. (1) The scenarios that we address are different from
their dynamic random obstacles and are modelled around real
buildings, and more agents in complex scenarios are consid-
ered. (2) The input between our agents includes state-action
information about other agents, which will promote better
collaborative planning among multi-agents. (3) We designed
a suitable reward function to achieve crowd avoidance and
exit choice during the evacuation process, and closer to the
actual evacuation situation, the crowd chooses the exit with
lower congestion rather than heavily congested exits.

III. THEORETICAL BACKGROUND
In this section, we will introduce the concepts and terms in
our algorithms concerning MARL, RVO, MADDPG, mean
field theory, RL such as Q-Learning.

A. MARKOV DECISION PROCESS
is a theoretical model of sequential decision-making, which is
used to simulate the realizable policies and returns of agents
in an environment with Markov property of system state [20].
It is constructed based on a set of interactive objects, namely
agents and environments. Its elements include state, action,
policy and reward. Specifically, the agent perceives the state
of the environment and acts on the environment according
to the policy, thus changing the state of the environment and
getting rewards. The accumulation of rewards over time is
called return.

B. POLICIES
are classified into deterministic policy and stochastic policy,
and deterministic policy are relative to stochastic policy. The
stochastic policy is in the same state, and the action adopted
is based on a probability distribution, that is, uncertain. The
deterministic policy decides the simple point. Although the
action probability is different at the same state, the maximum
probability is only one. If we only take the action with the
maximum probability, it will be much simpler. That is to say,
as a deterministic policy, action is uniquely deterministic in
the same state.

C. REINFORCEMENT LEARNING
regards learning as a process of exploratory evaluation [19].
The agent chooses an action a to be used in the environment,

147758 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

after the environment accepts the action a, we will find that
the state St of the environment has changed to St+1. At the
same time, a reinforcement signal called reward r is generated
and fed back to the agent. The agent chooses the next action
at+1 according to the reinforcement reward r and the current
state St of the environment. Then the individual can continue
to choose the next appropriate action, then the state of the
environment will change, and there are new rewards. How-
ever, as normally time step t is dynamic or even infinite, for
example, as one of the classical reinforcement learning algo-
rithms, Q-Learning algorithm, its summation of the rewards
is defined as

Rt = rt+1 + γ rt+2 + γ 2rt+3 + . . . =
∞∑
k=0

γ krt+k+1, (1)

where k is the counter, λ is the reward decay factor, between
[0,1].

The policy π represents the basis for individual to take
action, that is, the individual will choose action according to
the policy π . At each time step t , the path planning is to find
a policy π such that the return R is maximized for the state s,

R = E{
∞∑
t=0

γ trt+1|s0 = s, π}, (2)

where r is a one-step reward, s0 is the initial state, γ repre-
sents a discount factor, between [0,1].

As a representative RL algorithm, the goal of Q-Learning
algorithm is to find an optimal policy π , so that the expected
return of agent in any state is the largest. Expected return
involves the return value of a series of subsequent actions,
and the agent can only get the immediate return of the current
step at a time, which is not easy to solve directly. It can
be converted into a computed Q-function, which gives the
expected return of each state action pair under policy π :

Qπ (s, a) = E{
∞∑
t=0

γ trt+1|s0 = s, a0 = a, π}, (3)

where a0 is initial action, s0 is the initial state.

D. MULTI AGENT REINFORCEMENT LEARNING
extends RL to the field of multi-agent [18], so the Markov
framework appears in the form of a tuple (n, S, A1...n, R1...n,
T). A is the set of actions that an agent can take, n is the
number of agents in the system, the transformation function
T and the reward function R depend on the joint action a =
(a1,. . . , an), ai ∈ Ai. When the agents execute the joint policy
π = (π1,. . .πn), the reward of each agent depends on

Rπi = E{
∞∑
t=0

γ tri,t+1|s0 = s,π}. (4)

When the agents execute the joint policy and joint action,
the Q-function of each agent depends on

Qπi (s, a) = E{
∞∑
t=0

γ tri,t+1|s0 = s, a0 = a,π}. (5)

All agents strive to maximize common goals.

E. MADDPG
allows some additional information to be used for learning,
as long as local information is used for decision-making
when applied [13]. We use θ = [θ1,. . . ,θn] to represent the
parameters of n agents and π = [π1,. . . , πn] to represent the
policies of n agents. For agent i of the cumulative expected
reward

J (θi) = Es,ai∼πθi [
∞∑
t=0

γ tri,t], (6)

using deterministic policy µθ , gradient formula as

∇θiJ (µi) = Ex,a∼D[∇θiµi(ai|oi)∇ai
Qµi (x, a1 . . . an)|ai = µi(oi)], (7)

where x is the state, o represents the observation.
MADDPG establishes value function for each agent, which
greatly solves the shortcomings ofMARL.D is an experience
replay buffer with the element of (x, x ′, a1,. . . , an, r1,. . . ,
rn), which keep a memory of past action-rewards and train
the neural network with random samples from it instead of
using the real time data, therefore eliminating the temporal
autocorrelation problem. The centralized critic network is
optimized as minimizing the loss:

L(θi) = Ex,a,r,x ′ [(Q
µ
i (x, a1, . . . , an)− y)

2], (8)

where y is expected return computed by target network, it can
be expressed as

y = ri + γQ
µ′

i (x, a
′

1, . . . , a
′

n)|a
′

j = µ
′

j(oj), (9)

Q µ′ i denotes the Q-value of the target network, and µ′ is the
target policy with parameter θ ′j of delayed update. Policies of
other agents can be obtained by fitting approximation.

F. MEAN FIELD THEORY
is a method to deal with the effect of environment on objects
collectively and replace the sum of individual effects with
average effects [47]. This method can simplify the study of
complex problems and transform a multi-dimensional and
difficult problem into a low-dimensional problem. In MARL,
the dimension of joint action increase in proportion to the
number of agents. It becomes infeasible to learn the standard
Q-function Q(s, a). To solve this problem, we incorporate
the mean field theory into MARL, that is, when we study
an agent, we approximate the actions of other agents to one
action, and the joint actions of Q functions can be expressed
as paired actions:

Qi(s, a) =
1
N i

∑
k∈N (i)

Qi(s, ai, ak), (10)

where N (i) is the index set of the neighboring agents of agent
i, a is joint action, ai represents the action of agent i and ak

represents the average action of other neighboring agents.

VOLUME 7, 2019 147759

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

G. RVO
is a low-level obstacle avoidance algorithm that can avoid col-
lision between agents without global coordination [14]. The
velocity of an agent is chosen from valid velocities closest to
a desired velocity. Valid velocities are velocities outside an
average of the agent’s current velocity and velocities outside
the velocity obstacle of other agents. The invalid velocity will
result in a collision course to the other agents.

H. OPENAI GYM
is a toolkit for developing and comparing RL algorithms.
OpenAI Gym provides a unified environment interface and
a platform for rebuilding a new environment, and it also
encapsulates commonly used functions.

IV. FRAMEWORK OF MARL BASED ON CONGESTION
DETECTION
In this section, we propose a framework of congestion
detection-based MARL to prepare for our path planning
method. This framework is divided into three parts. First,
we divide the crowd into groups and select the leader. Second,
we model the leader agent. Finally, we design the reinforce-
ment learning element, and add congestion detection to the
reward function.

A. CROWD PARTITION AND SELECTION OF LEADERS
When an evacuation occurs, due to the crowd’s mentality and
limited vision caused by obstacles position and crowd inter-
ference in complex environments, most people will decide to
move according to the direction of other pedestrians, which
will result in the forming of different groups [38], [39]. Once
this group is generated, it will reach a relatively stable state
internally.

Moreover, it is worth noting that people who are rela-
tively familiar with the environment will become the leaders
of the crowd according to the actual evacuation situation.
In emergency situations, the path choice of the leader will
affect the path choice of other people. Zhang et al. studied
collective behaviour, showed a process of group gathering
and proposed a suitable evacuation framework in which the
crowd was designed as a leader-follower framework [40].
Pelechano et al. mainly studied the existence of leaders
to obtain the best evacuation rate in groups divided by
groups [41]. Many other studies divide the role of crowds into
two parts, namely, leader and follower, and the evacuation
process is based on the leadership framework [42]–[45].

In this paper, to crowd grouping for each room, we propose
an algorithm of crowd grouping, which combines the idea of
k-means algorithm [46]. According to the distance between
people, the crowd is divided into k clusters. There are n people
in the crowd. Each cluster has a cluster centre ck , and (xi, yi)
represent the coordinates of person i. After several updates,
the cluster center of each room gradually stabilizes. Finally,
we can obtain the coordinate of the cluster centre ck (xk , yk)
after updating. Jmin is the shortest distance from individual

Algorithm 1 Group Generation Algorithm
Input: n, k, i, pi = (xi, yi), i ∈ n, J = ∅;
Output: ck , groupk
begin
for each room m do

Specify k cluster and randomly select cluster
centre ck
repeat

for i = 1, 2, 3. . .n do
for j = 1, 2, 3. . .k do

compute J = ||pi-cj||2

if Jmin = J then
Cluster i into group groupj

end if
end for

end for
until each data are partitioned to the nearest centre;
repeat

for j = 1, 2, 3. . .k do
for i = 1, 2, 3. . .n do

compute J̄ =
∣∣∣∣pi − cj∣∣∣∣2

Update the cluster centre based on J̄
end for

end for
until the current cluster centre cj is not updated,

select each cj as leader
end for

end

position to cluster center. J̄ is the average from individual to
cluster center. The details are outlined in Algorithm 1.

After grouping the people, we selected the centre of mass
as the leader within the group. The leaders and followers here
have the following three constraints.

(1) Leaders need not be near door before evacuation but
know the location information of at least one door.

(2) Leaders do not have to be at the front of the group when
evacuating.

(3) Followers’ path information is obtained from the
leader, and they maintain the same evacuation path as
the leader until they reach the door.

Based on the above analysis and constraints, we study the
process of grouping selection intuitively through Fig. 3. The
left side of the figure is the initial position of the crowd in
the two-dimensional map scene before grouping. The right
side of the figure is the positional distribution of the group
after grouping and selecting the leadership within the group,
in which the same group in a single room is represented by
the same colour, and black represents the leadership position.

B. DESIGN OF LEADER AGENTS’ MAPPING
Definition 1 (Input Function): Overall, the input function

is responsible for determining how much information is pro-
vided from the leader to update the information source of

147760 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 3. Crowd partition and selection of leader.

global path planning. Here, we pass the information (action,
observation) used to train the global path from the leader to
the leader agent.
Definition 2 (Output Function): Overall, the output func-

tion determines that the leader in the crowd will evacuate
according to the planned path. Here, we use the function to
pass the leader’s next path information from the leader agent
to the leader.
Definition 3 (Leader Agent): A leader agent can be

defined by a six tuple <Aid, Input, Communication, Out-
put, Goal, Trigger>. Aid is the identifier of a leader
agent, such as LeaderAgent1. . .LeaderAgentN . The input
component is obtained from the input function and is then
passed on to the module of global path planning by the
communication component. The communication component
receives messages and passes the information from and to
the module of global path planning. The output compo-
nent returns the next path information to the leader by the
output function. The goal refers to the selected optimal
evacuation path to the evacuation exit. The trigger compo-
nent consists of the event-condition-action rules and deter-
mines whether crowd evacuation is necessary, and then,
it activates the leader agent to perform the appropriate
action.

The design structure of leader agent mapping is shown
in Fig. 4, here we use MADDPG as an example of the path
planning algorithm. A leader agent corresponds to an actor
network in the module of global path planning, and there is
also a one-on-one relationship between the leader agent and
the leader. The leader passes the current information on to the
leader agent. Then, the leader agent interacts with the module
of global path planning, executes the global path planning
algorithm, and computes the optimal path from the current
position to the exit. Subsequently, the next path information
of the leader agent is selected, and the information is passed
to the leader. The leader agent possesses the following capa-
bilities:

(1) It can interact with the leader and global path planning
module and guide the leader to evacuate under the
optimal path during the evacuation process.

(2) It can participate in the collaboration among agents in
MAS because each agent logically corresponds to an
actor network, all agents learn to cooperate with one
another and choose the action with the greatest joint
reward in MAS for decentralized execution.

FIGURE 4. Design structure of leader agents’ mapping.

FIGURE 5. Environment of the 3D office building and 2D plane map.

C. CONGESTION DETECTION-BASED ELEMENTS OF
REINFORCEMENT LEARNING
We define the RL elements based on congestion detection,
which standards for MARL. The specific definitions are as
follows.
Definition 4 (Environment): We model the real office hall

scene, which is a complex scene with size of 300 m×300 m
and two exits (as shown in Fig. 5(a)). Fig. 5(b) is a
two-dimensional projection model of this three-dimensional
environment, which consists of areas surrounded by boundary
lines, each of which is a separate room. To verify the effec-
tiveness of our path planning algorithm, we tested several
algorithms in this environment.

We describe a limited number of leader agents in the form
of coordinates and believe that tasks that can be performed
well with a fully connected network and do not have to be
conducted with pure images. Additionally, we build the same
continuous bounded two-dimensional particle environment in
theOpenAIGym to train the optimal path of the leader agents.
What needs to be clear is that
(1) The exit position and the wall obstacles are fixed.
(2) Except for the position of the leader agent is absolute

coordinates, the rest are represented by relative coordi-
nates.

Definition 5 (Observation Space): We use continuous
observation space of the OpenAI Gym to restore the cogni-
tive activities of pedestrians in the evacuation scenes to the
greatest extent. The continuous observation space includes

VOLUME 7, 2019 147761

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

the relative coordinates of each entity in the scene in each time
period. Specifically, it includes the coordinates of the leader
agent, the relative distance from the leader to the obstacles,
the relative distance from the leader to the target, and the
relative distance between the leader and other people.
Definition 6 (Action Space): We use discrete action space

in the movement. Specifically, the action ai of agent i is a dis-
crete categorical variable represented as the one-hot encod-
ing, and the total action space consists of east, west, south,
north, southeast, northeast, southwest, northwest, which is
conducive to planning a feasible path and avoiding collision
before reaching the destination to better simulate the move-
ment of pedestrians in the real world.
Definition 7 (Reward Function): The design of the reward

function is especially important in reinforcement learning.
The appropriate reward function ensures that the crowd can
plan an effective route to the exit, and reward high route
information to reduce evacuation time, and the inappropriate
reward function makes the training meaningless. In the path
planning of multi-agents, it is mainly necessary to complete
three tasks, including reaching the destination, avoiding col-
lision with obstacles, and avoiding collision between agents.
Here, we set up the crowd density detection area at the door
to judge the congestion at the door and to further realize the
choice of exit and the avoidance of congestion. The obstacle
is named obs, and the set of agents position (x, y) is expressed
as

{(x1, y1) . . . (xi, yi), (xj, yj), . . . (xn, yn)} ∈ (x, y). (11)

The following assumptions provide the basis for our work.
Assumption 1: The position of the target centre is (xgoal ,

ygoal), the position of the agent i centre is (xi, yi), and
the Euclidean distance dist between them is according to
Eq. (12), it can also be expressed as dist((xi, yi), (xgoal , ygoal)),√

(xi − xgoal)2 + (yi − ygoal)2. (12)

Assumption 2: The radius of the agent is R, and dist((xi,
yi),(xj, yj)) represents the Euclidean distance between agent i
and j, the condition of collision can be further expressed as

dist
(
(xi, yi) ,

(
xj, yj

))
≤ 2R. (13)

Assumption 3: The obstacle will not move and has no
perception, dist((xi, yi), (xobs, yobs)) represents the Euclidean
distance between agent i and obstacle. The condition for
collision between agent i and the obstacle is Eq. (14),

dist ((xi, yi) , (xobs, yobs)) ≤ R. (14)

Assumption 4: For the density detection sector for the N
gates in the scene, the area is S, according to coordinates, the
average speed of leader agent i in the crowd density detection
area is avg_speedi, when agent enters this area, avg_speedi is
the same as half the sum of the speed of the start time and the
end time of this period, the maximum speed is max_speedi,

and the speed score of agent i is divided into value; then,
according to Eq. (15),

value_speedi = min(
avg_speedi
max_speedi

, 1). (15)

Each leader agent adjusts the optimal speed according
to the distance during training to avoid collisions between
agents. When value_speedi is higher reach 1, the leader agent
is faced with no congestion, otherwise, it means congestion.
If in the congested area, value_speedi ≤ N is considered to
be congested when the followers are considered.

Based on the above analysis, we obtain our comprehensive
reward function as follows.
(1) In a complex environment, not every agent knows

exactly where the exit is, which requires the agent to
interact with the environment continuously. According
to assumption 1, we set the distance from the agent
to the target point as dist((xi, yi), (xgoal , ygoal)), and
this paper designs multiple exits; then, rgoal = −min(
dist((xi, yi), (xgoal , ygoal))).

(2) There is no collision between the agents when rcoll_a =
0, but there is a collision when rcoll_a = −3.

(3) There is no collision between agents and obstacles
when rcoll_Obs = 0, but there is a collision when
rcoll_Obs = −1.

(4) According to assumption 4, there is no congestion in
the scene when rcong = 0, but there is congestion when

rcong = −
1

value_speed
. (16)

The total reward for rtotal is based on Eq. (17):

rtotal = rgoal + rcoll_a + rcoll_Obs + rcong. (17)

V. A PATH PLANNING APPROACH BASED ON DRL
In this section, we elaborate on our proposed hierarchical path
planning. The design process of hierarchical path planning
is divided into two parts. Specifically, the upper layer uses
the IMADDPG algorithm under a framework of conges-
tion detection-based MARL to achieve global path planning.
At the lower layer, we use the RVO algorithm to achieve
collision avoidance.

A. THE UPPER-LAYER GLOBAL PATH PLANNING BASED
ON IMADDPG
We propose the IMADDPG algorithm, in addition to the
critic network and actor network, we use the network which
introduces the mean field theory [47], and we call it the mean
field network(MFN). EmbeddingMFN into the decentralized
policy of each agent, which can increase other agent’s return
when training. In addition, the mean field theory is used
to update the parameters in our algorithm and reduce the
complexity of training additional samples. This reduces the
interaction between an agent and its neighboring agents to
the interaction between two agents. The expansion of model
space and the training complexity caused by the number

147762 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 6. IMADDPG schematic diagram.

of agents are greatly simplified. The IMADDPG schematic
diagram is shown in Fig. 6.

In IMADDPG, the experience replay buffer DM contains
(x, aM , r , ¯aM , x ′), where x ′ is the state at the next time, r is
reward, joint action aM is generated not from original actor
but from the MFN, ¯aM is mean field action. The Q function
of agent j expressed as Qj(s, a) = Q(s, aMj , ¯aMj), where aMj
is action of agent j from the MFN, ¯aMj is mean field action of
agent j, it can be expressed as

āMj =
1
N j

∑
k

aM
k

(18)

where mean action ¯aMj in mean field network based on

neighborhood N (j) of agent j, and represent action aM
k
of

each neighbor k in terms of the sum of ¯aMj . The mean field
Q-function Qj (s, aj, āj) updates are as follows:

Qj(x, aMj , ā
M
j)← (1− α)Qj(x, aMj , ā

M
j)+ α[r j + γ vj(x ′)]

(19)

where α denotes the learning rate, π represents random pol-
icy, vj(x ′) is the mean field value function, it can be expressed
as

vj
(
x ′
)
=

∑
aMj

πj

(
aMj |x

′, āMj
)
E
āMj

(
aMj

)
−πM
−j

[
Qj
(
x ′, aMj , ā

M
j

)]
(20)

More concretely, for the key part of the training, reduc-
ing the error between estimated expected return and online
expected return on each i individual Q-network, the parameter
ϕMi is optimized as minimizing the loss:

L(ϕMi) = Ex,aM ,r,x ′∼DM [(Qi(x, a
M
i , ā

M
i)− yi)2], (21)

where yi is expected return computed by target network, it can
be expressed as

yi = ri
(
x, aMi , ā

M
i

)
+ γ vi

(
x ′
)

(22)

The above is the step in which each centralized critic is
trained. Then, the actor network corresponding to the each

agent i under deterministic policy µ is optimized using gra-
dient as follows:

∇θiJ = Ex,aM∼DM [∇θiµi(oi)∇aiQi
(x, aM1 , . . . , ai, . . . , a

M
N)|ai = µi(oi)]. (23)

The introduced networksMFN is to use the idea of average
field theory to generate samples. The parameter θMi of the
MFN of each agent i is optimized using the specially com-
puted gradient as follows:

∇θMi
J = Ex,aM∼DM [∇θMi µ

M
i (oi)∇aMi Q−i

(x, aMi , a
M
i)|aMi = µ

M
i (oi)]. (24)

where −i is all agents except i. The policy gradient of the
MFN is computed using the policy gradient of the Q-network
of −i and the gradient of MFN with its parameters. During
the execution period after training, the Q-networks andMFNs
of all agents are removed, only the actor network of each
agent controls the action based on local observation. This still
conforms to the principle of centralized training and decen-
tralized execution. The implementation details are outlined in
Algorithm 2.

For agent i, θ represents the parameters of the online actor
for updating parameters instantly, θ ′ represents the parame-
ters of the target actor for delayed updating parameters, θM

and θ ′M represent the parameters of the online actor and
the target actor for the MFN, ϕM and ϕ′M represent the
parameters of the online cirtic and the target critic for the
MFN, τ is a balance factor.

We propose that the top-level global path planning method
mainly includes two parts, namely, training the model and
getting the path. IMADDPG algorithm is adopted to train
the model, it has robustness when solving large-scale crowd
path planning problem. We complete the training within the
prescribed total number of training steps num_episodes, and
action exploration is performed in each max-episode-length
steps. The size of mini-batch we set is 1024. The numerical
size of experience replay buffer is the product of the numeri-
cal size of mini-batch and the numerical size ofmax-episode-
length we set. After selecting the action a, the agent i reaches
the next state x ′ from the current state x and simultaneously
obtains the observation total return r given by the environ-
ment. Each step (x, aM , r , ¯aM , x ′) is stored in the experience
pool for the parameter learning of the module, and then,
we update x ← x ′ while replacing newly generated batch
(x, aM , r , ¯aM , x ′) with the previously stored (x, aM , r , ¯aM ,
x ′) tuple until the maximum iteration step is reached. We can
steadily update the parameters through the network that both
contain real-time updates to the parameters of the online
network, and we can delay the updates to the parameters of
the target network. The main improvement of IMADDPG is
that we add a new network structure on the basis of MAD-
DPG, in this network structure, we introduce the mean field
theory to average the actions of other agents. Specifically,
in algorithm 2, our actions are not only from the environment,
but also from the mean field network. In addition, in the latter

VOLUME 7, 2019 147763

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

Algorithm 2 The improved Multi-Agent Deep Deterministic
Policy Gradient Algorithm (IMADDPG) for N Agents

for episode = 1 to num_episodes do
Initialize a random process P for action exploration,

and
receive initial state information x.
for t = 1 to max-episode-length do

For each agent i, select action ai = µθ i(oi);
compute new mean action ā = (ā1, . . . , āN).
Execute actions a = (a1, . . . , aN), observe reward
r = (r1, . . . , rN), next state x ′, Store(x, a, r, x′, ā) in
replay buffer DM , set x ← x ′

for agent i = 1 to N do
Sample a random mini-batch of S samples
(x, a, r, x′, ā) from D
Set yi = ri(x, aMi , ā

M
i)+ γ vi(x ′) by Eq. (20)

Update critic by minimizing loss:
L(ϕMi) = Ex,aM ,r,x ′∼DM [(Qi(x, a

M
i , ā

M
i)− yi)2]

Update actor using sampled policy gradient:
∇θiJ = Ex,aM∼DM [∇θiµi(oi)∇aiQi(x, a

M
1 , . . . ,

ai, . . . , aMN)|ai = µi(oi)]
Update mean field network actor using mean
field theory sampled policy gradient:
∇θMi

J = Ex,aM∼DM [∇θMi µ
M
i (oi)∇aMi

Q−i(x, aMi , ā
M
i)|aMi = µ

M
i (oi)]

end for
Update target network parameters for each agent i:
θ ′i ← τθi + (1− τ)θ ′i ;
θ
′M
i ← τθMi + (1− τ)θ

′M
i ;

ϕ
′M
i ← τϕMi + (1− τ)ϕ

′M
i ;

end for
end for

half of the algorithm 2, IMADDPG updates aMFNmore than
MADDPG by Eq. (24), the policy gradient of the MFN is
computed using the policy gradient of the Q-network of −i
and the gradient of MFN with its parameters, and when we
last update the parameters, we update an additional param-
eter ϕM , which will be used in Eq. (21). And the generated
action samples from MFN can train original actor and critic
networks, which add the return of other agents and enable all
agents to perform together better in the collaborative planning
task.

After the above training within the prescribed number
of training steps, the trained model is obtained by IMAD-
DPG, which allows the agent to move around according
to the framework of MARL we set. Next, we elaborate
path planning based on the IMADDPG algorithm. When
an initial location Sleader−i of the leader agent i is known
and the action is performed, the next location S ′leader−i is
reached; then, the location is taken as the current location
to continue the path-finding, and the process is repeated
until it reaches any gate position Sgoal−j. The sequence of

positions is regarded as an evacuation path of the leader
agent i, and these k paths are temporarily stored in path
buffer bufferkleader−i. However, because of the influence of
other agents simultaneously, the total reward rtotal of the
path defined in the MARL framework will be very different.
Then, we complete the evaluation of the sequence of the
agent’s position for k paths in bufferkleader−i. We can obtain
the reward R-buffermleader−i of path m according to reward
and punishment rules of the MARL framework discussed
in section 3. When k candidate paths in the path buffer are
traversed, we select the optimal evacuation path pathleader−i
of agent i with the greatest reward R-buffermaxleader−i in the
path library buffer. The implementation details are outlined in
Algorithm 3.

Algorithm 3 Path Planning Based on the IMADDPG Algo-
rithm
Input: slead−i, sgoal−j, bufferlead−i = ∅, pathlead−i = ∅
Output: Pathlead−i
begin
k ← 0,m← 0,R− buffermax

leader−i
← 0,R− buffer t ← 0

for leader agent i do
for each goal j do

repeat
slead−i← s′leader−i;
bufferkleader−i← bufferkleader−i ∪ sleader−i;

until sleader−i← sgoal−j;
k ++;

end for
repeat

if thenR− buffermleader−i > R− buffermaxleader−i
then
R− buffermaxleader−i← R− buffermleader−i;

end if
m++;

until m← k
end for
pathleader−i = buffermaxleader−i;

End

B. THE LOWER-LAYER COLLISION AVOIDANCE BASED ON
RVO
At the bottom, as we constrained leaders in section 3, with the
addition of followers, the position of leader does not have to
be in the front of the queue, the followers use the same path
as the leader in each group. Therefore, we focus on collision
avoidance in this section.

We set the preferred velocity vpref and collision-free veloc-
ity vcoll of each individual. The preferred velocity is mainly
used to lead the individual to the door, and the collision-free
velocity is mainly for collision avoidance. pi represents the
global path of individual i obtained by the upper-layer, and
pi represents the position of individual i at time t . Preferred
velocity vpref includes velocity magnitude v and direction d ti ,
vmin = 1.5m/s, desired velocity vmax = 3.5m/s, the preferred

147764 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

velocity v is initialized in the fixed interval vmax [vmin, vmax],
and pt+1i is the current subgoal visible to pti. Everyone is
evacuated according to the sub-target node, the subgoal enters
the view range, and the next sub-goal becomes the guiding
direction of global target, d ti = pt+1i -pti . Therefore, v

pref
i =

v× d ti .
We use RVO [14] to realize the process of obstacle avoid-

ance. Collision avoidance can be implemented in two steps.
First, we calculate all the velocities of individual i that
will collide with individual j in a neighbourhood. Second,
the penalty measure can determine that individual i will
choose the optimal collision-free velocity vcoll . Once the indi-
vidual’s collision-free speed vcolli is obtained, its position is
updated to xn+1i = xni +1tv

coll
i . Because of the application of

collision avoidance, pedestrians can keep distance and move
steadily without deviating from the evacuation path. This
makes all pedestrians’ movement in the evacuation process
based on the optimal path trained by upper-level path plan.

VI. EXPERIMENT AND ANALYSIS
To illustrate the performance efficiency and authenticity of
the proposed path planning method, we perform the fol-
lowing tests in the next sections: (1) a comparison of the
rewards between our method and other DRL methods; (2) a
comparison between the algorithm training and evacuation
time between our method and other DRL methods; (3) a
comparison of the evacuation time between our method and
other swarm intelligence algorithms for evacuation planning;
(4) a comparison of the evacuation effect of the IMADDPG
in the congestion detection area; (5) An evacuation behavior
analysis of real video scenario; and (6) a crowd evacuation
simulation realized on our rendering platform. All reported
results were obtained on a machine with a 2.4 GHz Intel(R)
Xeon CPU with 32GB of RAM.

https://github.com/Sfree973/path-planning-for-crowd-
simulation

A. COMPARISON OF THE REWARD RETURNS IN
DIFFERENT DRL ALGORITHMS
To verify the performance of our proposed hierarchical path
planning method, we model the office hall with an equal
scale and set up the training scene in the OpenAI Gym
environment. The population size is 200, the individual radius
is r = 0.25 m, the quality of the individual is m = 80
kg, and we perform the path planning method from a 300 m
× 300 m plane area as shown in Fig. 5(b). There are four
fully connected layers, each with 64 neurons, the activation
function uses ReLu. In addition, γ , α, τ and size of mini-
batch we set is 0.9, 0.02, 0.8 and 1024. We conduct uni-
fied training with the double Dueling DQN method in [37],
the DDPG algorithm [25] and MADDPG algorithm [13].
Since it is difficult to limit the total number of steps in the
training, we chose 80,000 iterations as the end and recorded
the average total reward for every 1,000 training episodes.
The results are shown in Fig. 7. The red line represents
the average reward of our method based on the IMADDPG

FIGURE 7. Comparison of the average reward.

algorithm, the green line represents the average reward of
the MADDPG algorithm [13], the blue line represents the
average reward of the DDPG algorithm [25] and the purple
line namedMethod1, it represents the average reward of [37].

As shown in Fig. 7, the average rate of return of the
IMADDPG-based method is significantly different from the
average rate of return of the other methods in the same action
space. Because of the setting of the reward function, multiple
exits and agents, negative reward is inevitable. Moreover,
the reward for DRL may not converge to optimal learning,
which differs from supervised learning, but it is clear that our
method has converged after 60,000 steps of training and that
the reward returns have always been higher than the other
algorithms. The overall trend of IMADDPG and MADDPG
is remarkable, which increases by about 5000 and 4000,
respectively, while the remaining DDPG and method1 meth-
ods changed slowly and slightly, increasing about 3600 and
2000 respectively. Before the end, our algorithm completes
convergence and its reward values are all at their highest.
Although MADDPG is also close to convergence, the reward
value is about 800 lower than our algorithm, the remaining
two algorithms do not reach convergence, and the reward
value of method1 still oscillates around −5000.

This result also shows that in the same environment,
our approach can better adapt to learning how to map out
better paths. For Method1 and DDPG, since this DRL algo-
rithm unadaptable have learned in large-scale agent environ-
ment, as can be seen from the above figure, the number of
agents still greatly affect the convergence of the algorithms.
And for MADDPG, it can learn policy in a multi-agent
environment, but we take into account the returns of other
agents more than MADDPG, our method makes coopera-
tive planning more efficient and makes the average reward
higher. In general, under the same number of training steps,
our method can obtain high reward and fast convergence,
under the same reward function, our method based on the
IMADDPG algorithm can conduct the path planning in a
complex environment.

B. COMPARISON OF THE TIMES OF DIFFERENT DEEP
REINFORCEMENT LEARNING ALGORITHMS
In this section, we use the evacuation time and training time
to evaluate the effectiveness of our method. We compare the

VOLUME 7, 2019 147765

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 8. Comparison of the average time.

time of the four methods in the scene. Fig. 8 (a) shows a
comparison of the time of evacuation simulation of 200 peo-
ple in the same scene. The overall change trend of IMAD-
DPG and MADDPG was significant, with the increase of
evacuation time, the number of evacuation was reduced from
200 to 0. Moreover, at 50 seconds, the number of people in
the scenarios using these two methods is less than 50, which
is less than the number of people in the last moment of other
methods. The overall trend of DDPG andMethod1 is smaller.
At 100 seconds, Method1 has 131 people in the scene, and
its decline is the smallest, because Method1 does not train
a reasonable evacuation path, which results in people still in
the scene, and the evacuation time remains at a high level.
In addition, at 10 seconds, the four methods have shown
significant differences. The number of scenarios using our
method is close to 160, while the other methods are more than
170 pedestrians. In 70 seconds, our method has completely
opened the gap with other methods, using our method suc-
cessfully evacuated all people, while the remaining number
of MADDPG, DDPG and Method1 scenarios is 23, 78 and
164, respectively.

Training time is shown in Fig. 8 (b). The top Method1 has
the longest training time and obvious fluctuation, average
training time is 5136, the shortest training time is 4125 sec-
onds, and the algorithm is inefficient when applied to
large-scale crowd path planning. Even if we discretize the
action, this algorithm itself does not solve the ever-changing
environment faced by each agent in the multi-agent system,

FIGURE 9. Comparison of the evacuation times.

and the policy is constantly changing, which is the main
reason for the long training time. For the DDPG algorithm
in Fig. 8 (b), its training time still has fluctuation, the average
training time is 3632 seconds, and the minimum training time
is 2719 seconds. Each critic network still only inputs its own
state-action information, which greatly affects the training
duration of the algorithm. Although the DDPG algorithm
can also evacuate people to a certain extent, its training time
is approximately twice as long as our method. For MAD-
DPG method, the average training time is 2235 seconds,
the change of training time is still unstable, the minimum
training time is about 1844, it can complete the evacuation in
80 seconds, but it did not plan the optimal path for the agent
in a collaborative planning scenario, which is reflected in
the evacuation time. Moreover, MADDPG does not consider
the return of other agents, but only updates its own return,
which is not conducive to shortening the training time. In our
contrast experiment, the average training time and evacuation
time of our method based on the IMADDPG algorithm in
the crowd path planning are much shorter than the rest of
the path planning algorithm, the average training time of
IMADDPG is 2052 seconds, and the minimum fluctuation
of time is 1656. These two times are in the shortest time
among the above methods. Our hierarchical path planning
method based on IMADDPG realizes the centralized learn-
ing and decentralized execution in the multi-agent environ-
ment, and the method adds the mean field network to use
the mean field idea to reduce the complexity of training
additional samples and maximize performance of a collab-
orative planning task in our training period. That is why
time stays at a low level. Our method can be obtained by
combining the analysis in the previous section, and the per-
formance of our method based on the IMADDPG algorithm
is better than the rest of the path planning method based on
DRL methods.

C. COMPARISON OF THE EVACUATION TIMES OF SWARM
INTELLIGENCE ALGORITHMS
In addition to the DRL algorithm, we compare the cur-
rent traditional and improved swarm intelligence algorithms
applied to crowd path planning, including the PSO algorithm,

147766 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 10. Snapshots generated by the use of the congestion detection
area.

FIGURE 11. Snapshots generated by nonuse of the congestion detection
area.

the ACO algorithm and the improved ABC algorithm [48].
In this example, we still evaluate the effectiveness of our
method by comparing evacuation times by using Visual Stu-
dio 2012 as a platform. The population size is varied from
100 to 300 in the same office hall scene, as shown in Fig. 5(b).
We performed 30 experiments to obtain the average evacua-
tion time for each case. We compare the evacuation times as
shown in Fig. 9.

As seen from Fig. 9, our column chart shows the
comparison of evacuation time of four algorithms under
different numbers of people. The table is the numerical value.

FIGURE 12. The scene of crowd evacuation drill.

FIGURE 13. The scene of Shandong Normal University Library.

The evacuation time of PSO and ACO is obviously higher
than that of IABC and IMADDPG. In the complex office
hall, the evacuation time will increase with the increase of
the evacuation crowd in this situation. Although the IABC
algorithm can reduce the evacuation time compared with the
traditional particle swarm optimization algorithm, because
the swarm intelligence algorithm is applied in a complex
environment, an exit bottleneck problem appears gradually,
and the evacuation efficiency is not dramatically improved.
Although the swarm intelligence algorithm is a classic rep-
resentation of simulated crowd, it is unsuitable for large-
scale and complex path planning due to its own limitations.

VOLUME 7, 2019 147767

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

FIGURE 14. A sequence of the crowd simulation results of a 3D scene.

However, our method based on the IMADDPG fully con-
siders the centralized learning path knowledge among the
leader agents, and then, decentralized execution under the
premise of avoiding collisions. This is more suitable for
crowd behaviour than swarm intelligence in some ways, and
has a strong adaptability in complex environments. As seen,
the yellow column that represents our method always takes
the least evacuation time. The average evacuation time of
our method improves by 30.7% compared with the PSO,
improves by 32.1% compared with the ACO, and improves
by 19.7% compared with the IABC. These results show that
our hierarchical method can be better applied to crowd evac-
uation.

D. COMPARISON OF THE EVACUATION RESULTS OF THE
CONGESTION DETECTION AREA
We continue to perform simulation experiments in the two-
dimensional office hall scenario, and use MATLAB as the
simulation platform to obtain the visualization effect that
refer to different time points as shown in this section. Pedes-
trians evacuate orderly under the proposed path planning
method. To further compare the impact of the congestion
detection area that we designed on exit selection and conges-
tion avoidance in the crowd evacuation, we conducted a set of
experiments in this section, and the experimental results are
shown in Fig. 10 and 11.

In the case of adding the congestion detection area,
Fig. 10(b) and (c) show the state of the 36 second and 54 sec-
ond crowds in the evacuation process, respectively. Instead
of moving to the nearest exit, the crowd in the hall corridor
moves towards another less congested exit, which is closer to

the crowd’s ability to judge congestion and the exit selection
in the case of congestion. As shown in Fig. 11 (c), in the
case of not adding the congestion detection area, the crowd is
still waiting at the congested gate when the time has reached
54 seconds, although the other door has no one. This is the
main reason why a small number of pedestrians still failed to
reach the exit in 72 seconds in Fig. 11 (d).

E. EVACUATION BEHAVIOR IS VERIFIED THROUGH
CAPTURED MONITORING VIDEO
The above experiments have verified the evacuation
efficiency of the proposed method. In order to ensure the
authenticity of the proposed method, we used video of the
evacuation scene captured by the surveillance camera to ver-
ify the behavior of evacuation, such as congestion, exit selec-
tion, formation of queues and so on. Fig. 12 is part of the scene
of emergency evacuation drill. Wemainly selected the picture
at the exit. In this scenario, we can directly observe the
congestion, exit selection, formation of queues and the crowd
following phenomenon. In Fig. 12 (a), the crowd began to
evacuate to the exit. Because of the different directions of the
exits and the large number of people on the right side, three
pedestrians chose to evacuate directly from the left exit. In (b),
the people far away from the door try to follow the people
ahead to the exit, which initially formed evacuation queues
in different directions. People within the queue are close to
each other and have the same goal orientation. They show a
tendency to act together to resist environmental pressures,
even if they have no social connections. This is also our
grouping principle, location and goals are the key to grouping.
There was the congestion at the door in Fig. 12 (c) and (d).

147768 VOLUME 7, 2019

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

In addition, the people close to the crowded exit on the right
gradually choose to move to the less crowded exit on the left.
Because there were so many people, people were waiting to
leave at the exit.

Fig. 13 is the evacuation process of the fire drill cap-
tured by the library of Shandong Normal University. There
are two exits for students to evacuate at the library exit.
In this scenario, we can directly observe congestion and exit
selection behavior. In Fig. 13 (a), students ran toward the
nearest door and evacuate smoothly. In Fig. 13 (b), due to
unexpected circumstances, the population density at the right
exit increased, resulting in congestion. The student in the
yellow ellipse chose to wait, but there was no congestion at
the left exit, and the people on the left side still left orderly
evacuated. In Fig. 13(c), small number of students in the blue
ellipse give up the right exit and choose to leave from the left
exit. Some students still choose to stay in the nearest right
exit in Fig. 13 (d) is still crowded. The students in the blue
ellipse are about to evacuate successfully, while the student
in the right yellow ellipse is still in the congested area and
have not evacuated safely in a short time. This video capture
confirms the necessity and importance of exit selection in our
path planning process.

F. CROWD SIMULATION RESULTS
We adopt the Microsoft. Net Framework 4.5, Microsoft XNA
Game Studio 4.0, Microsoft Visual Studio 2012, OpenScene-
Graph to develop a crowd evacuation simulation platform.
The proposed method is validated on the existing simulation
platform as Fig. 14, which shows the effect sequence of group
evacuation after introducing the pedestrian model. (a), (b),
(c) and (d) vividly show us that 200 people are evacuating to
two exits in the office; compared with the far-away images,
(e) and (f) provide close-up evacuation images.

According to the images display, our method and simula-
tion platform can express social and emergency behaviours
such as crowd gathering, formation of queues, exit selection
and congestion etc. with high visual authenticity. In addition,
video in the previous section proves the authenticity of our
simulation results, which will ensure that our method can be
used to extend the real scenario. It is beneficial to provide
such an intuitive way of viewing, which makes our research
results not only more visually easier to integrate with archi-
tectural design and planning management but also easier to
understand.

VII. CONCLUSION
In this paper, the problem of path planning in the field of
crowd evacuation is studied. How to improve the efficiency
of evacuation while considering complex circumstances
(e.g., exit selection and congestion) remains a challenge
for the crowd evacuation simulation. However, existing
swarm intelligence algorithms and novel DRL algorithms
will affect the evacuation efficiency for large-scale crowd
path planning, and evacuation behavior is rarely considered.
Therefore, we propose a hierarchical path planning method
based on improved DRL algorithm to search collaboratively

for the optimal evacuation path. First, we propose a frame-
work of congestion detection-based MARL. In this frame-
work, we consider a multi-agent systemmodel for the leaders
after grouping, and presuppose a leading role of leaders in
path finding for their followers in the group by considering
the congestion detection area of the reward function, which
is beneficial to realize the reasonable selection of evacuation
exits. Next, we propose IMADDPG, which adds an additional
mean field network to evaluate the returns of other agents
and enables all agents to maximize the performance of a
collaborative planning task. Then, we implement the hierar-
chical path planning method based on DRL under the frame-
work, the upper layer is based on the IMADDPG algorithm
to perform global path planning for multi-agent, the lower
layer uses RVO to avoid collisions between the pedestrians.
Moreover, to verify the effectiveness of the proposed method,
our research team compares not only with other path planning
algorithms based on DRL in the related work but also with the
traditional and improved swarm intelligence algorithm used
in evacuation simulation, we also proved that our method can
be extended to the real world through real video. Finally,
we have performed a more visually realistic analysis and
verification of the method on our simulation platform.

The results of the experiments that uses our approach
produces several conclusions. In a complex environment with
obstacles and multiple exits, our path planning method based
on DRL has obvious advantages over the DRL and swarm
intelligence algorithm compared in this paper. The congestion
detection area that we designed can reduce the crowd conges-
tion in emergencies to a certain extent, which will ensure that
prevent and reduce the number of deaths with safer and faster
way. This method can be applied to emergency responseman-
agement for safety accidents. Since the multi-agent system
combined with DRL has great expandability, we would like
to extend our method to more complex crowd evacuation
problems in the future.

REFERENCES
[1] M. Haghani and M. Sarvi, ‘‘Pedestrian crowd tactical-level decision

making during emergency evacuations,’’ J. Adv. Transp., vol. 50, no. 8,
pp. 1870–1895, 2016.

[2] J. E. Almeida, R. J. F. Rosseti, and A. L. Coelho, ‘‘Crowd simulation
modeling applied to emergency and evacuation simulations using multi-
agent systems,’’ in Proc. 6th Doctoral Symp. Inform. Eng. (DSIE), Porto,
Portugal, 2011, pp. 1–12.

[3] Y. Li, H. Liu, X. Zheng, Y. Han, and L. Li, ‘‘A top–bottom clustering
algorithm based on crowd trajectories for small group classification,’’ IEEE
Access, vol. 7, pp. 29679–29698, 2019.

[4] L. Tan, M. Hu, and H. Lin, ‘‘Agent-based simulation of building evacua-
tion: Combining human behavior with predictable spatial accessibility in
a fire emergency,’’ Inf. Sci., vol. 295, pp. 53–66, Feb. 2015.

[5] V. Sadhu, G. Salles-Loustau, D. Pompili, S. Zonouz, and V. Sritapan,
‘‘Argus: Smartphone-enabled human cooperation for disaster situational
awareness via MARL,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Com-
mun. Workshops (PerCom Workshops), Mar. 2017, pp. 79–81.

[6] M. Manley, Y. S. Kim, K. Christensen, and A. Chen, ‘‘Airport emer-
gency evacuation planning: An agent-based simulation study of dirty
bomb scenarios,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 10,
pp. 1390–1403, Oct. 2016.

[7] L. Torrey, ‘‘Crowd simulation via multi-agent reinforcement learning,’’ in
Proc. 6th AAAI Conf. Artif. Intell. Interact. Digit. Entertainment, 2010,
pp. 89–94.

VOLUME 7, 2019 147769

S. Zheng, H. Liu: Improved MADDPG for Path Planning-Based Crowd Simulation

[8] F. Martinez-Gil, M. Lozano, and F. Fernández, ‘‘MARL-Ped: A multi-
agent reinforcement learning based framework to simulate pedestrian
groups,’’ Simul. Model. Pract. Theory, vol. 47, pp. 259–275, Sep. 2014.

[9] F.Martinez-Gil,M. Lozano, and F. Fernández, ‘‘Multi-agent reinforcement
learning for simulating pedestrian navigation,’’ in Proc. Int. Workshop
Adapt. Learn. Agents. Berlin, Germany: Springer, 2011, pp. 54–69.

[10] H. Lee, ‘‘Human crowd evacuation framework and analysis using look-
ahead-based reinforcement learning algorithm,’’ Int. J. Digit. Hum., vol. 1,
no. 3, pp. 248–262, 2016.

[11] N. D. Nguyen, T. Nguyen, and S. Nahavandi, ‘‘System design perspective
for human-level agents using deep reinforcement learning: A survey,’’
IEEE Access, vol. 5, pp. 27091–27102, 2017.

[12] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, ‘‘Hierarchical deep rein-
forcement learning for continuous action control,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 11, pp. 5174–5184, Nov. 2018.

[13] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[14] J. van den Berg, M. Lin, and D. Manocha, ‘‘Reciprocal velocity obstacles
for real-time multi-agent navigation,’’ in Proc. IEEE Int. Conf. Robot.
Autom., May 2008, pp. 1928–1935.

[15] E. Higo, N. Okada, K. W. Hipel, and L. Fang, ‘‘Cooperative survival
principles for underground flooding: Vitae system based multi-agent sim-
ulation,’’ Expert Syst. Appl., vol. 83, pp. 379–395, Oct. 2017.

[16] H. Liu, B. Liu, H. Zhang, L. Li, X. Qin, and G. Zhang, ‘‘Crowd evacuation
simulation approach based on navigation knowledge and two-layer control
mechanism,’’ Inf. Sci., vols. 436–437, pp. 247–267, Apr. 2018.

[17] L. Crociani, G. Lämmel, and G. Vizzari, ‘‘Multi-scale simulation for crowd
management: A case study in an urban scenario,’’ in Proc. Int. Conf. Auton.
Agents Multiagent Syst. Cham, Switzerland: Springer, 2016, pp. 147–162.

[18] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive survey of
multiagent reinforcement learning,’’ IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[19] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

[20] M. L. Littman, ‘‘Markov games as a framework for multi-agent reinforce-
ment learning,’’ in Proc. 11th Int. Conf. Mach. Learn., 1994, pp. 157–163.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ in Proc. NIPS Workshop Deep Learn., 2013, pp. 1–10.

[23] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 529–541.

[24] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
33th Int. Conf. Mach. Learn., New York, NY, USA, 2016, pp. 1045–1054.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
Comput. Sci., vol. 8, no. 6, pp. 187–201, 2015.

[26] V. Konda and J. N. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[27] A. Lissovoi and C. Witt, ‘‘Runtime analysis of ant colony optimiza-
tion on dynamic shortest path problems,’’ Theor. Comput. Sci., vol. 561,
pp. 73–85, Jan. 2015.

[28] T. T. Mac, C. Copot, D. T. Tran, and R. D. Keyser, ‘‘A hierarchical global
path planning approach for mobile robots based on multi-objective particle
swarm optimization,’’ Appl. Soft Comput., vol. 59, pp. 68–76, Oct. 2017.

[29] Y. Tusi and H.-Y. Chung, ‘‘Using ABC and RRT algorithms to improve
mobile robot path planning with danger degree,’’ in Proc. 5th Int. Conf.
Future Gener. Commun. Technol. (FGCT), Aug. 2016, pp. 21–26.

[30] S. Wang, H. Liu, K. Gao, and J. Zhang, ‘‘A multi-species artificial bee
colony algorithm and its application for crowd simulation,’’ IEEE Access,
vol. 7, pp. 2549–2558, 2018.

[31] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar,
‘‘A deterministic improved Q-learning for path planning of a mobile
robot,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 5,
pp. 1141–1153, Sep. 2013.

[32] T. X. Sang, T. Kiet, and N. ThiUyen, ‘‘Path finding algorithms for
autonomous robots based on reinforcement learning,’’ Int. J. Adv. Res.
Comput. Eng. Technol., vol. 6, no. 4, pp. 2278–2293, 2017.

[33] R. S. Sutton, ‘‘Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding,’’ in Proc. Adv. Neural Inf. Process. Syst.,
1996, pp. 1038–1044.

[34] A. I. Panov, K. S. Yakovlev, and R. Suvorov, ‘‘Grid path planning with
deep reinforcement learning: Preliminary results,’’ Procedia Comput. Sci.,
vol. 123, pp. 347–353, Jan. 2018.

[35] D. L. Cruz and W. Yu, ‘‘Path planning of multi-agent systems in unknown
environment with neural kernel smoothing and reinforcement learning,’’
Neurocomputing, vol. 233, pp. 34–42, Apr. 2017.

[36] X. Lei, Z. Zhang, and P. Dong, ‘‘Dynamic path planning of unknown
environment based on deep reinforcement learning,’’ J. Robot., vol. 2018,
Sep. 2018, Art. no. 5781591.

[37] Z. Sui, Z. Pu, J. Yi, and X. Tan, ‘‘Path planning of multiagent constrained
formation through deep reinforcement learning,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[38] O. J. Akinwande, H. Bi, and E. Gelenbe, ‘‘Managing crowds in haz-
ards with dynamic grouping,’’ IEEE Access, vol. 3, pp. 1060–1070,
2015.

[39] L. Lyu and J. Zhang, ‘‘Toward modeling emotional crowds,’’ IEEE Access,
vol. 6, pp. 55893–55906, 2018.

[40] H. Zhang, H. Liu, X. Qin, and B. Liu, ‘‘Modified two-layer social force
model for emergency earthquake evacuation,’’ Phys. A, Stat. Mech. Appl.,
vol. 492, pp. 1107–1119, Feb. 2018.

[41] N. Pelechano and N. I. Badler, ‘‘Modeling crowd and trained leader behav-
ior during building evacuation,’’ IEEE Comput. Graph. Appl., vol. 26,
no. 6, pp. 80–86, Nov./Dec. 2006.

[42] M. Fachri, S. Juniastuti, S. M. S. Nugroho, and M. Hariadi, ‘‘Crowd
evacuation using multi-agent system with leader-following behaviour,’’ in
Proc. 4th Int. Conf. NewMedia Stud. (CONMEDIA), Nov. 2017, pp. 92–97.

[43] S. Juniastuti, M. Fachri, S. M. S. Nugroho, and M. Hariadi, ‘‘Crowd
navigation using leader-follower algorithm based reciprocal velocity obsta-
cles,’’ in Proc. Int. Symp. Electron. Smart Devices (ISESD), Nov. 2016,
pp. 148–152.

[44] Y. Ma, R. K. K. Yuen, and E. W. M. Lee, ‘‘Effective leadership for crowd
evacuation,’’ Phys. A, Stat. Mech. Appl., vol. 450, pp. 333–341, May 2016.

[45] H. Dong, X. Gao, T. Gao, X. Sun, and Q. Wang, ‘‘Crowd evacuation
optimization by leader-follower model,’’ IFAC Proc. Vol., vol. 47, no. 3,
pp. 12116–12121, 2014.

[46] J. A. Hartigan and M. A. Wong, ‘‘A K-means clustering algorithm,’’ Appl.
Stat., vol. 28, no. 1, pp. 100–108, 1979.

[47] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, ‘‘Mean
field multi-agent reinforcement learning,’’ in Proc. 35th Int. Conf. Mach.
Learn. (PMLR), vol. 80, 2018, pp. 5571–5580.

[48] H. Liu, B. Xu, D. Lu, and G. Zhang, ‘‘A path planning approach for crowd
evacuation in buildings based on improved artificial bee colony algorithm,’’
Appl. Soft Comput., vol. 68, pp. 360–376, Jul. 2018.

SHANGFEI ZHENG was born in 1997. He is
currently pursuing the master’s degree with the
College of Computer Science and Engineering,
Shandong Normal University, China. His main
research interests include deep reinforcement
learning and evacuation simulation.

HONG LIU received the Ph.D. degree from the
Chinese Academy of Sciences, in 1998. She is
currently a Professor of computer science with the
School of Information Science and Engineering,
Shandong Normal University. She has published
more than 200 refereed articles. Her main research
interests include computational intelligence and
cooperative design.

147770 VOLUME 7, 2019

