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ABSTRACT This paper presents a novel robust quaternion-based error state Kalman filter (ESKF) for
coping with modeling uncertainty in inertial measurement unit (IMU)-based attitude estimation. The smooth
variable structure filter (SVSF) has recently been proposed and proven to be robust to modeling uncertainty.
In an effort to combine the accuracy of an ESKF with the robustness of the SVSF, the ESKF and SVSF
algorithms have been merged to create the ESKF-SVSF algorithm. In particular, a comprehensive fault
detection strategy has been proposed to combine the optimality of the ESKF and the robustness of the SVSF.
The proposed ESKF-SVSF algorithm was validated on experimental data collected from a small unmanned
aerial vehicle (UAV) in the presence of faulty gyroscope signals. In the experiment, four faulty test cases were
considered, involving the injection of two types of faults into the raw gyroscope signals to simulate modeling
uncertainty. Although the proposed ESKF-SVSF algorithm incurs a slightly increased computational load,
the experimental results demonstrate that the proposed algorithm yields more accurate attitude estimates
than the conventional approach does in the presence of modeling uncertainty.

INDEX TERMS Attitude estimation, error state Kalman filter, inertial measurement units, modeling
uncertainty, quaternion, smooth variable structure filter.

I. INTRODUCTION
Accurate and reliable attitude estimation is crucial for the safe
navigation and control of aerial vehicles [1], ground vehicles
[2], underwater vehicles [3], and satellites [4]–[6]. However,
sensor and actuator faults may cause critical issues threaten-
ing the overall safety of such a vehicle; thus, there is an urgent
need for immediate fault identification and isolation [7]. For
instance, commercial aircraft are equipped with at least three
redundant inertial measurement units (IMUs) to cope with
various IMU fault situations [8].

Recently, microelectromechanical system (MEMS)-based
IMUs, which typically consist of a 3-axis accelerometer, a
3-axis gyroscope, and a 3-axis magnetometer, have become
popular for attitude estimation in various applications due
to their light weight, compact size, low power consumption,
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and low cost [9]. Additionally, these low-cost IMUs have
recently enabled related advances in industrial applications
of small unmanned aerial vehicles (UAVs). However, unlike
in commercial aircraft, redundant IMUs cannot be installed
in a small, low-cost UAV due to its limited payload and size
to ensure a fault-tolerant system of IMUs.

The well-known Kalman filtering technique has been
widely implemented for attitude estimation using IMUs [10].
This technique requires a complete mathematical descrip-
tion of the system and measurement models along with
their noise statistics. However, accurate modeling with low-
cost IMUs requires a complex, time-consuming process, and
the obtained model is inevitably susceptible to an unknown
constant bias or a time-varying random bias when an IMU
fault occurs. Such malfunctioning of IMUs can cause the
estimation performance of the Kalman filter to severely
deteriorate or can even cause the filter to diverge. Thus, an
appropriate mitigation algorithm for suppressing the effect
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of IMU faults is strongly required in the Kalman filtering
scheme [11].

In most Kalman filtering approaches for attitude estima-
tion, the attitude is first propagated by integrating the angular
rate from the gyroscope to serve as the input signal [12].
The attitude is then updated using the information from the
accelerometer and magnetometer. In static or low-dynamics
conditions, the accelerometer measures the Earth’s gravity
and provides information on the roll and pitch, while the
magnetometer primarily provides yaw information by mea-
suring the earth’s magnetic field [13]. Since the inclination
angle of the magnetic field is nonzero except on the Earth’s
equator, the magnetometer also provides some information
on the pitch and roll. Thus, an information fusion procedure
using both accelerometer and magnetometer measurements
can be used as the measurement update procedure in the
Kalman filtering scheme.

However, such an accelerometer-based measurement
update procedure is very sensitive to the excessive vibration
and external acceleration experienced when a UAV accel-
erates [14]. In addition, magnetometer measurements can
be easily interfered by external magnetic disturbances due
to the rotation of the motor or nearby steel bodies [15].
To address the aforementioned cases, several methods, such
as covariance adaptation [16], adaptive Kalman filtering
[17] and an adaptive cost function [18], have been suc-
cessfully proposed. The basic principle underlying these
filtering schemes is to adaptively compute the relative
weights of the information obtained from the gyroscope-
based predictions and the measurement update of the
accelerometer/magnetometer by adjusting the measurement
covariance.

However, the aforementioned approach often requires a
large number of data samples for detecting disturbances [19],
thus leading to slow response times and large estimation
errors. In addition, these algorithms focus only on the case
of accelerometer/magnetometer measurement faults and do
not consider the possibility of a faulty input gyroscope signal.
Thus, only gyroscope faults, such as system modeling uncer-
tainty, are considered in this paper, whereas acceleration and
magnetic disturbances are beyond the current scope.

Various approaches have been proposed for handling sen-
sor faults in UAV navigation [20]. Many studies have uti-
lized an aerodynamic model of an aircraft as the system
model for Kalman filtering [21]. However, the identification
of aerodynamic forces and moments is often a complex and
time-consuming process and may also be subject to high
uncertainty. A kinematic-model-based two-stage Kalman fil-
ter has been implemented to simultaneously estimate IMU
faults as augmented states [22]. However, for a system with
a high-dimensional state space, this approach may incur an
additional computational load due to the augmented states,
thus making it unsuitable for real-time application, and may
lead to a loss of numerical stability, particularly for ill-
conditioned systems [23]. In addition, a system model with
an unknown time-varying bias due to IMU faults cannot be

readily obtained. Thus, an augmented-state-based approach
is not considered in this paper.

As an alternative approach, the smooth variable structure
filter (SVSF), introduced in 2007, has been proven to be
robust to modeling uncertainty. An extended Kalman filter
(EKF) [24], an unscented Kalman filter (UKF) [24], and a
cubature Kalman filter (CKF) [25] have all been merged with
the SVSF to address modeling uncertainty, and the simulation
results demonstrate improved robustness and accuracy of esti-
mation. In contrast to the augmented-state-based approach,
the SVSF is relatively easy to implement and incurs only a
slight increase in computational complexity [25]. Simulation
results obtained using the SVSF have been presented in many
previous papers [24]–[26], but few results obtained based on
real-world data have been reported.

To the best of our knowledge, several studies have verified
robust attitude estimation algorithms for cases of accelerom-
eter/magnetometer measurement faults, whereas very few
studies have investigated the feasibility of attitude algorithms
that are robust to faults in the angular rate estimates obtained
from gyroscope data. The main motivation of this paper is
to propose a new robust attitude estimation algorithm called
the ESKF-SVSF algorithm, which effectively combines the
accuracy of an error state Kalman filter (ESKF) with the
robustness of the SVSF. In particular, a comprehensive fault
detection strategy has been proposed to effectively switch
between the ESKF and SVSF according to the fault diagnosis.
The proposed ESKF-SVSF algorithm has been validated on
an IMU dataset collected from aUAV in the presence of faults
in the angular rate signals from the gyroscope.

This paper is organized as follows. The ESKF for attitude
estimation, including sensor modeling and system kinemat-
ics, is presented in Section II. In Section III, the SVSF
formulation is presented. In Section IV, the proposed com-
prehensive fault detection strategy is presented. In Section V,
the experimental results and discussion are presented. Con-
clusions and future work are presented in Section VI.

II. ERROR STATE KALMAN FILTER FOR QUATERNION
KINEMATICS FOR ATTITUDE ESTIMATION
An arbitrary orientation can be represented by a unit quater-
nion as follows:

q = qw + qx i+ qyj+ qzk =
[
qw
qυ

]
=


cos(θ/2)
exsin(θ/2)
eysin(θ/2)
ezsin(θ/2)

 (1)

where qw is referred to as the real part of the quaternion and
qυ = qx i + qyj + qzk is the vector part. θ is the rotation
angle, and ē =

[
ex , ey, ez

]T is the axis of rotation. Note
that Hamilton’s quaternion convention, rather than the JPL
quaternion convention, is used in this paper.

The quaternion must satisfy the following norm constraint:

|q| =
√
qTq =

√
qTw + qTx + qTy + qTz = 1 (2)
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The successive quaternion product operation is defined as

p⊗ q =
[

pwqw − pυTqυ
pwqυ + qwpυ + pυ × qυ

]
(3)

q−1 = [qw,−qυ ]T (4)

q⊗ q−1 = [1, 0, 0, 0]T (5)

where ⊗ denotes quaternion multiplication and q−1 is the
inverse quaternion of q.

The reference frame of the strap-down IMU is referred to as
the body-fixed frame {b}. The navigation frame is denoted by
{n}. In this paper, the local north-east-down (NED) frame is
used as the navigation frame. An arbitrary 3-dimensional vec-
tor in the body-fixed frame, vb, can be transformed into the
corresponding vector in the navigation frame, vn, as follows:

vn = Rn
b(q)vb (6)

where rotation matrix Rn
b(q) ∈ SO(3) represents the relative

orientation with respect to the navigation frame as follows:

Rn
b(q) =

 qw2 + qx2 − qy2 − qz2 2(qx · qy − qw · qz)
2(qx · qy + qw · qz) qw2 − qx2 + qy2 − qz2

2(qx · qz − qw · qy) 2(qy · qz + qw · qx)

2(qx · qz − qw · qy)
2(qy · qz − qw · qx)

qw2 − qx2 − qy2 − qz2

 . (7)

A. PROBLEM FORMULATION
Consider the following discrete nonlinear system and mea-
surement models:

xk = f (xk−1,uk ,wk )

zk = h(xk , vk ) (8)

where k is the time index, xk is the state, uk is the input,
and zk is the measurement. f and h are the system and mea-
surement models, respectively. The nonlinear system noise
and measurement noise are typically assumed to be white
Gaussian noise, such that vk ∼ N (0,Qk ) and vk ∼ N (0,Rk ),
respectively, where N (µ,

∑
) denotes a normal distribution

with a mean of µ and a covariance of
∑

.
In comparison to a direct quaternion-based Kalman filter,

the ESKF approach has several distinctive advantages. First,
the error state system is always relatively small and lies near
the origin, thus preventing possible singularities and gimbal
lock issues while ensuring the validity of linearization at all
times [30]. Moreover, the ESKF approach ensures numeri-
cal stability and allows the quaternion to be handled in its
minimal representation [31]. Thus, in the algorithm proposed
in this paper, an ESKF is used as the base filter, and the
robustness of the SVSF is integrated into the measurement
update of the ESKF to mitigate the modeling uncertainty.

The basic working principle of an ESKF is to treat the true
state (xt ) as a combination of the nominal state (x) and an
error state (δx), where the error state represents the difference
between the nominal state and the true state, thus yielding the
following relationship [32]:

xt = x⊕ δx (9)

where ⊕ denotes the typical addition operation for all state
variables ∈ R3 except for the quaternion state. For the quater-
nion state, the error state is defined in the local frame as
follows:

qt = q⊗ δq (10)

where δq = [1, δθ/2]T denotes the attitude error [33].
In the following subsections, the states of the ESKF for

attitude estimation are defined in terms of a 10-element true-
state vector (xt ), a 10-element nominal-state vector (x), and a
9-element error-state vector (δx), as follows:

xt = [qt ωbt abt ]T ∈ R10 (11a)

x = [q ωb ab]T ∈ R10 (11b)

δx = [δθ δωb δab]T ∈ R9 (11c)

where {qw, qx , qy, qz} ∈ qt , {ωbx , ωby, ωbz} ∈ ωbt ,
and {abx , aby, abz} ∈ abt represent the true quaternion
expressed in the navigation frame, the true gyroscope bias,
and the accelerometer bias expressed in the body-fixed frame,
respectively.

The conversion between Euler angle [φ, θ, ψ]T and the
corresponding quaternion can be summarized as follows:

q

=


cos(φ/2)cos(θ/2)cos(ψ/2)+sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)−cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2)+sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)−sin(φ/2)sin(θ/2)cos(ψ/2)


φθ
ψ

 =

atan2

(
2(qwqx + qyqz)
1− 2(q2x + q2y)

)
asin

(
2(qwqy − qzqx)

)
atan2

(
2(qwqz + qxqy)
1− 2(q2y + q2z )

)
 .

B. SENSOR MODELING
A typical IMU measures 3-axis accelerations, 3-axis angu-
lar rates, and 3-axis magnetic fields with respect to the
body-fixed frame. The measurements obtained from an IMU
are typically corrupted by white Gaussian noise and slowly
varying bias terms. The following model represents the rela-
tionship between themeasured IMU signals and the true ones.
It should be noted that the effects of misalignment and scale
factor errors of the IMU are ignored, under the assumption
that the effects of these parameters can be reduced through
proper calibration.

1) GYROSCOPE
The three-axis gyroscope measures the angular rate about
each of three axes, as follows:

ωm = ωt + ωbt + ωn (12)

whereωm ∈ R3 is themeasured angular rate signal,ωt ∈ R3 is
the true angular rate signal, ωbt ∈ R3 is a slowly varying bias
term for the gyroscope, and ωn ∈ R3 is zero-mean Gaussian
noise.
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2) ACCELEROMETER
The accelerometer measures gravity minus acceleration.
However, in static or low-dynamics conditions, the dominant
factor affecting the accelerometer measurement is gravity,
and thus, the measurement can be approximated as fol-
lows [17]:

am = Rn
b(q)

T (at − g)+ abt + an

≈ Rn
b(q)

T
·

 0
0
−g0

+ abt + an

=

 2(qx · qz − qw · qy)
2(qy · qz + qw · qx)

qw2 − qx2 − qy2 − qz2

+ abt + an (13)

where am ∈ R3 is the measured acceleration signal, abt ∈ R3

is the true acceleration, an ∼ N (0, σa) is zero-mean Gaussian
noise, abt ∈ R3 is a slowly varying accelerometer bias term,
and g0 = [0, 0, 1]T is the true normalized gravitational accel-
eration in the navigation frame, serving as the unit vector.

3) MAGNETOMETER
The 3-axis magnetometer providesmeasurements of themag-
netic field as follows:

mm = Rn
b(q)

T
· H̄+mn

= Rn
b(q)

T
·

H cos(ϕinc) cos(ϕdec)
H cos(ϕinc) sin(ϕdec)

H sin(ϕinc)

+mn (14)

where mm ∈ R3 is the measured magnetic field,
mn ∼ N (0, σm) is zero-mean Gaussian noise, H̄ is the Earth’s
magnetic field vector expressed in the navigation frame, H
is the magnitude of the magnetic flux density, ϕdec is the
declination angle, and ϕinc is the inclination angle of the
Earth’s magnetic field [34]. The last three parameters (H,
ϕdec, and ϕinc) vary with the geodetic location and time and
can be obtained from the World Magnetic Model (WMM)
database.

C. SYSTEM KINEMATICS
In the ESKF formulation, the true-state, nominal-state, and
error-state kinematics are addressed. The true-state kinemat-
ics, including noise, can be represented as follows [35]:

q̇t = 1
2qt ⊗ (ωm − ωbt − ωn) (15a)

ω̇bt = ωω (15b)

ȧbt = aω (15c)

where ωω and aω represent the bias driving noise for the
gyroscope and accelerometer, respectively, corresponding to
the process noise.

The nominal-state kinematics represents the system
dynamics without noise or perturbations and can be expressed
as follows:

q̇ =
1
2
q⊗ (ωm − ωb) (16a)

ω̇b = 0 (16b)

ȧb = 0 (16c)

The linearized dynamics of the error-state kinematics can
be obtained by reformulating the true-state equations given in
(15) as the corresponding combination of the nominal state as
expressed in (16) with an error state and simplifying up to all
second-order infinitesimals as follows:

δθ̇ = −[ωm − ωb]×δθ − δωb − ωn (17a)

δω̇b = ωω (17b)

δȧb = aω (17c)

where

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 (18)

D. ERROR STATE KALMAN FILTER FORMULATION
The nominal state does not include the noise terms in (15)
and is propagated by integrating the nominal kinematics
expressed in (16) as follows:

x̂+k−1 = f (x̂−k−1,uk−1, 0) (19)

where the superscripts + and − denote a posteriori and a
priori estimates, respectively. The corresponding 10-element
nominal-state vector kinematics (in terms of q, ωb, and ab) is
represented as follows:

q̂−k = q̂+k−1 ⊗ q {(ωm − ωb)1t} (20a)

ω̂
−

b,k = ω̂
+

b,k−1 (20b)

â−b,k = â+b,k−1 (20c)

where 1t denotes the sampling time corresponding to the
IMU publishing rate and has an almost constant value of
approximately 250Hz. Linear evolution of ω during 1t is
assumed. Thus, the first-order quaternion integrator can be
implemented as follows [31]:

q̂−k = q̂+k−1 ⊗
(
q(ω̄1t)+

1t2

24

[
0

ωk−1 × ωk

])
(21)

where ω̄ = 0.5(ωk+1 + ωk ) is the average angular rate.
The error-state kinematics expressed in (17) can be inte-

grated as follows:

δx̂−k = FN ,k−1δx̂+k−1 (22)

Generally, the step of predicting the error state δx̂k as
expressed in (22) can be neglected because the value of δx̂k is
initially set to zero and returns to zero. The a priori covariance
P−k is updated as follows:

P−k = FN ,k−1P+k−1F
T
N ,k−1 + FiQiFTi (23)

where FN is the transition matrix and can be obtained via
Euler integration of (17) with respect to the error state δx.
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Fi is the perturbation Jacobian of (17) with respect to the
perturbation vector i, as follows:

Fi = ∂f (x, · )
/
∂ω =

−I3×3 03×3 03×3
03×3 −I3×3 03×3
03×3 03×3 I3×3


where Qi is the covariance matrix of the perturbation
impulses, given by

Qi =

 2i 03×3 03×3
03×3 �i 03×3
03×3 03×3 Ai


with

2i = �n1t2 = σ 2
ωn
1t2I3×3

[
rad2

]
(24a)

�i = �ω1t = σ 2
ωω
1tI3×3

[
rad2/s2

]
(24b)

Ai = Aω1t = σ 2
aω1tI3×3

[
m2/s4

]
(24c)

where σ 2
ωn

[rad/s], σ 2
ωω

[rad/s/
√
s], and σ 2

aω [m/s2/
√
s] can be

determined from the information given in the IMU’s specifi-
cation sheets or through Allen variance analysis [36].

Continuous differential equations of the form ẋ = f (x, u)
can be integrated by taking the exponential Taylor series, as
follows:

FN =
N<∞∑
n=0

1
n!
An1tn

= I + A1t +
1
2
A21t2 + · · · +

1
N
AN1tN

∼= I + A1t

where FN is approximated only by the first-order term since
the sampling time 1t is extremely short.

A = ∂f (x, ·)
/
∂δx =

 2 −I3×3 03×3
03×3 03×3 03×3
03×3 03×3 03×3


where

2 = −[ωm − ωb]×

The measurement update of the ESKF will be executed
whenever valid acceleration and magnetometer measure-
ments are available. The Kalman gain of the ESKF, Kk , is
calculated as follows:

Kk = P−k Hk
T (HkP−k Hk

T
+ Rk )−1 (25)

with

Hk =
∂h
∂δx

∣∣∣∣
x
=

∂h
∂xt

∣∣∣∣
x

∂xt
∂δx

∣∣∣∣
x
= HxXδx

where

Xδx =
[
Qδθ 0
0 I14×15

]
and, in turn,

Qδθ =
∂(q⊗ δq)
∂δθ

=
∂(q⊗ δq)
∂δq

∣∣∣∣
q

∂δq
∂δθ

∣∣∣∣
δθ̂=0

=
∂([q]Lδq)
∂δq

∣∣∣∣
q

∂

[
1
1
2δθ

]
∂δθ

∣∣∣∣∣∣∣∣
δθ̂=0

= [q]L
1
2


0 0 0
1 0 0
0 1 0
0 0 1


The Jacobian Hx with respect to the nominal state can be

obtained as follows for the acceleration and magnetic field,
respectively:

Hx =

[
−g0

Rb
n (q) (1 : 3, 3)

∂q
03×3 I3×3

]
(26)

Hx =

[
∂
(
Rb
n (q) H̄

)
∂q

03×3 03×3

]
(27)

The a posteriori estimate of the error state δx̂+k and the a
posteriori covariance P+k are updated as follows:

δx̂+k = Kk (zk − h(x̂−k )) (28)

P+k = (I−KkHk )P−k (29)

After the completion of the ESKFmeasurement update, the
nominal state (x) must be updated through appropriate com-
bination with the a posteriori error state (δx̂k

+), as follows:

x̂+k ← x̂−k ⊕ δx̂+k (30)

The update of the corresponding 10-element nominal-state
vector with the a posteriori error state can be expressed as
follows:

q̂+k = q̂−k ⊗ q{δθ̂+k } (31a)

ω̂
+

b,k = ω̂
−

b,k + δω̂
+

k (31b)

â+b,k = â−b,k + δâ
+

k (31c)

After the nominal state has been updated with the error
state, the mean of the error state δx̂+k becomes zero. To
complete the ESKF measurement update, the a posteriori
covariance must be updated with this modification:

P+k = Gk P+k GT
k (32)

where

Gk =
∂g
∂δx

∣∣∣∣
δx̂+
=

[
I−

[
1
2δθ̂k

+
]
×

0

0 I6×6

]
.

Notably, the operation expressed in (31a) in particular
may induce the violation of the quaternion normalization
constraint given in (2) as a result of linearization and arith-
metic errors. To avoid such a case, a brute-force quaternion
normalization operationmust be performed if the discrepancy
with respect to the unit quaternion is greater than some small
proportion of the noise level (say 10−7) [37].

q̂+k =
q̂+k∣∣q̂+k ∣∣ (33)
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FIGURE 1. Concept of SVSF estimation [24].

TABLE 1. Comprehensive fault detection strategy.

III. SMOOTH VARIABLE STRUCTURE FILTER
The basic formulation of the SVSF, which has a predictor-
corrector structure, was first introduced in 2007 [38] [39] and
is inspired by sliding mode control and observer techniques.
The SVSF ensures that the estimated state remains in the
so-called existing subspace around the true-state trajectory
by means of a discontinuous gain, as shown in Fig. 1. The
SVSF approach has been proven to be reliable and robust
against system modeling and noise uncertainties [40] [41]
and [42]. Essentially, the SVSF approach can be applied to
any model-based differential linear and/or nonlinear equa-
tions. The SVSF strategy consists of recursive prediction and
update stages, similar to the Kalman filtering approach, and
can be summarized as follows [26]:

x̂−k+1 = f (x̂+k ,uk ) (34)

P−k+1 = FkP+k F
T
k +Qk (35)

Algorithm 1 Proposed ESKF-SVSF Algorithm
Input: ωm
Measurements: am, mm
Initialization: q̂0, ω̂b,0, âb,0
Time update:

1. Propagate the nominal state
x̂−k+1 = f (x̂+k , uk−1, 0)

2. Propagate the error state
δx̂−k+1 = FN , k δx̂+k

3. Compute the a priori error covariance
P−k+1 = FN , k P+k FTN , k + FiQi FTi

Measurement update:
4. Run the chi-square fault detection via (50) - (51)
5. Run the SPRT fault detection
via (52) - (56)

6. Run the estimate difference fault detection
via (57) - (58)

7. Run the comprehensive fault detection strategy
via Table 1

if diagnosis = F then
8. Compute the SVSF gain
Kk+1 = H+k+1diag

[(∣∣∣e−z,k+1∣∣∣+ γ ∣∣∣e+z,k ∣∣∣)
◦ sat

(
ψ
−1

e−z,k+1
)]

diag
(
e−z,k+1

)−1
9. Compute the a posteriori error state
δx̂+k+1 = Kk+1(zk+1 − h( x̂−k+1))

10. Update the a posteriori nominal state with the
a posteriori error state
x← x ⊕ δx̂+k+1

11. Renormalize the quaternion

q̂+k =
q̂+k∣∣q̂+k ∣∣

12. Compute the a posteriori error covariance
P+k+1 = (I−Kk+1Hk+1)P−k+1 (I−Kk+1Hk+1)

T

+Kk+1Rk+1KT
k+1

13. Update the a posteriori error covariance
P+k+1 = Gk+1 P+k+1G

T
k+1

14. Compute the a posteriori innovation
e+z,k+1 = zk+1 − ẑ+k+1

else if diagnosis = N
15. Compute the Kalman gain
Kk+1 = P−k+1Hk+1

T (Hk+1P−k+1Hk+1
T
+ Rk+1)−1

16. Run steps 9 - 13

where

Fk =
∂f
∂x

∣∣∣∣
x̂−k ,uk

(36)

An a priori innovation e−z,k+1 can be calculated from the
corresponding predicted measurement ẑ−k+1 as follows:

ẑ−k+1 = h(x̂−k+1) (37)

e−z,k+1 = zk+1 − ẑ−k+1 (38)

The distinctive difference between the Kalman and SVSF
approaches is how the gain is formulated. The SVSF gain can
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FIGURE 2. UAV system used in the experiment.

be expressed as a function of the a priori and a posteriori
innovations e−z,k+1 and e+z,k , the smoothing boundary layer
width ψ , and the SVSF convergence rate γ , as follows:

Kk+1 = H+k+1diag
[(∣∣∣e−z,k+1∣∣∣+ γ ∣∣∣e+z,k ∣∣∣)
◦ sat

(
ψ
−1

e−z,k+1
)]

diag
(
e−z,k+1

)−1
(39)

Here, ◦ and the superscript+ denote Schur multiplication and
the pseudoinverse of a matrix, respectively.ψ

−1
is a diagonal

matrix constructed from the smoothing boundary layer width
ψ and is defined as follows:

ψ
−1
=


1
ψ1

0 0

0
. . . 0

0 0 1
ψm

 (40)

The measurement Jacobian Hk+1 in (39) is defined as fol-
lows:

Hk+1 =
∂h
∂x

∣∣∣∣
x̂−k+1,uk

(41)

The saturation function in (39) is expressed as shown in the
following equation:

sat
(
ψ
−1

e−z,k+1
)

=


1, e−z,k+1/ψ i ≥ 1
e−z,k+1/ψ i, −1 < e−z,k+1/ψ i ≤ 1
−1, e−z,k+1/ψ i ≤ −1

(42)

Then, the a posteriori error covariance P+k+1 can be com-
puted as follows:

P+k+1 = (I−KKk+1Hk+1)P−k+1(I−Kk+1Hk+1)
T

+Kk+1Rk+1KT
k+1 (43)

For utilization in later iterations when calculating the
SVSF gain given in (39), the updated measurement estimate
ẑ+k+1 and the a posteriori innovation e+z,k+1 are computed
as follows:

ẑ+k+1 = h(x̂+k+1) (44)

FIGURE 3. The proposed ESKF-SVSF algorithm concept. The reference
vectors g0 and H̄ are the true normalized gravitational acceleration and
geomagnetic vectors, respectively, in the navigation frame. ωm, am and
mm are the measured angular rate from the gyroscope, the measured
acceleration from the accelerometer, and the measured magnetic field
from the magnetometer, respectively. Artificial faults were injected into
the raw angular rate signal.

TABLE 2. Detailed sensor data specifications for the measurement noise.

e+z,k+1 = zk+1 − ẑ+k+1 (45)

Note that the estimation performance of the SVSF
approach under the normal condition is not optimal, although
the SVSF exhibits robustness in the presence of a system
fault [24]. Therefore, it is beneficial to combine both the
optimality of ESKF and the robustness of SVSF. To address
the above issues, the concept of the varying smoothing bound-
ary layer (VBL) has recently been proposed, yielding the
new SVSF-VBL algorithm [24]. Specifically, under normal
operating conditions when no system fault is detected, the
SVSF-VBL algorithm utilizes standardKF gains. Conversely,
in the presence of a system fault, the SVSF-VBL utilizes the
robust SVSF gain in (39).

The VBL can be obtained by minimizing the trace of the a
posteriori covariance with respect to the smoothing boundary
layer term ψ as follows [24]:

δ
(
trace[P+k+1]

)
δψ

= 0 (46)

Then, the VBL solution can be obtained by

ψ =
(
Ā−1Hk+1P−k+1H

T
k+1S

−1
k+1

)−1
(47)

where

Sk = Hk+1P−k+1H
T
k+1 + Rk+1 (48)

and

A =
(∣∣∣e−z,k+1∣∣∣+ γ ∣∣∣e+z,k ∣∣∣) (49)

The SVSF-VBL algorithm results in a better estimation
result since the VBL can provide a continuous indication of
the detected system fault. Thus, the SVSF-VBL algorithm
switches to the conventional Kalman filter when ψ exceeds
a certain threshold, meaning that there is a system fault.
However, it has been reported that the SVSF-VBL algorithm
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TABLE 3. Detailed sensor data specifications obtained using the Allen variance for the process noise.

FIGURE 4. (a) Raw acceleration signals. (b) Raw angular rate signals. (c) Raw magnetic field signals.

may not be applicable to all engineering applications [44]. In
certain applications, the VBL cannot present a reliable indica-
tion of system faults; thus, the SVSV-VBL algorithm cannot
switch to the robust SVSF gain in the presence of a system
fault. Without appropriately switching to the robust SVSF
gain, the SVSF-VBL eventually fail to track the accurate state
under a system fault.

The multiple model adaptive estimator (MMAE)-based
fault detection algorithm has recently been proposed to iden-
tify system faults [44]. However, theMMAE runs in a parallel
filter, introducing computational burden. In addition, select-
ing the appropriate subfilter model to detect system faults
is unrealistic in practical engineering applications. Alterna-
tively, the interacting multiple model (IMM) filter can be
utilized to address the aforementioned issue, but the IMM
filter, which consists of a number of subfilters corresponding
to different fault models, incurs a substantial computational
burden [43]. Therefore, to address the aforementioned prob-
lem, we propose an alternative algorithm for the SVSF-VBL
based on a comprehensive fault detection strategy.

IV. FAULT DETECTION ALGORITHM
Note that the estimation performance of the ESKF will sur-
pass that of the SVSF when there is no modeling uncertainty.

TABLE 4. Four faulty test cases.

Thus, our strategy is to utilize the output of the ESKF in the
absence of a system fault and the SVSF in the presence of a
system fault, whichmay result in a better estimation result. To
achieve the aforementioned strategy, accurate fault detection
is highly required.

A. CHI-SQUARE-BASED FAULT DETECTION
The statistical parameter for measurement fault detection can
be defined as follows [27], [28]:

ε̄k = ν
T
k P
−1
zz,kνk (50)

where νk = zk − h( x̂−k ) and Pzz,k = HkP−k Hk
T
+ Rk are the

innovation sequence and innovation covariance, respectively.
The hypothesis test for evaluating system failure based on the
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FIGURE 5. Comparison between the raw and faulty angular rate signals in
the experiment (Faulty Case 1, Scenario 1): (a) x-axis, (b) y-axis, and
(c) z-axis.

chi-square fault detection is as follows [29]:{
H0 : ε̄k < λ Normal
H1 : ε̄k ≥ λ Fault

(51)

where λ can be determined based on a desired confidence
level of the chi-square distribution. In this paper, a 95% confi-
dence level was utilized. The chi-square-based fault detection
is suitable for detecting sudden system errors, but it is not
adequate for detecting a slowly increasing or constant-level
system fault.

B. SPRT-BASED FAULT DETECTION
In contrast to the chi-square fault detection, the SPRT-based
fault detection is the statistical hypothesis test for sequential
datasets and can identify slowly increasing or constant-level
system faults [27]. Utilizing the sequential dataset of the
innovation sequence, the binary hypothesis test for evaluating
system failure can be expressed as follows:

H0 : p(νj|H0) = 1
2πn/2P1/2zz,j

exp
[
−0.5νTj P

−1
zz,jνj

]
H1 : p(νj|H1) =

1
2πn/2P1/2zz,j

exp
[
−0.5(νj − µ)Tj P

−1
zz,j(νj − µj)

] (52)

FIGURE 6. Comparison between the raw and faulty angular rate signals in
the experiment (Faulty Case 2, Scenario 1): (a) x-axis, (b) y-axis, and
(c) z-axis.

Then, the likelihood ratio according to the maximum pos-
teriori probability can be obtained by

Lk =
p(ν1, · · · , νk |H1)
p(ν1, · · · , νk |H0)

=

k∏
j=1

p(νj|H1)
p(νj|H0)

(53)

Performing the logarithmic transformation on (53), a log-
arithmic likelihood ratio can be obtained in the recursive
formulation as follows:

3k = ln [Lk ] = ln

 k∏
j=1

p(νj|H1)
p(νj|H0)


= ln

k−1∏
j=1

p(νj|H1)
p(νj|H0)

+ ln
[
p(νk |H1)
p(νk |H0)

]
=3k−1 +13k .

(54)

According to the Wald method [45], the threshold value
Tsprt can be determined by

Tsprt = ln

(
1− pm
pf

)
(55)

where pm and pf denote the missed and false alarm rates,
respectively.
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FIGURE 7. Comparison between the raw and faulty angular rate signals in
the experiment (Faulty Case 3, Scenario 2): (a) x-axis, (b) y-axis, and
(c) z-axis.

Then, the hypothesis test for evaluating system failure
based on the SPRT-based fault detection is as follows:{

H0 : 3k < Tsprt Normal
H1 : 3k ≥ Tsprt Fault

(56)

To prevent unwanted accumulated values beyond the
threshold, the feedback reset algorithm is implemented to
reset 3k to zero after the detected fault ceases [27].

C. ANGLE-DEVIATION-BASED FAULT DETECTION
The angle deviation obtained by the ESKF and SVSF can be
used to detect the modeling uncertainty because the ESKF
only yields a stable estimation result in the absence of a
system fault, while the SVSF always yields a stable estima-
tion, although it is not the optimal solution in the absence
of a system fault. The absolute difference of the Euler angle
estimation can be expressed as follows:∣∣αk − α̂k ∣∣ = ∣∣∣(φk + θk + ψk)− (φ̂k + θ̂k + ψ̂k)∣∣∣ (57){

H0 :
∣∣αk − α̂k ∣∣ < Test Normal

H1 :
∣∣αk − α̂k ∣∣ ≥ Test Fault

(58)

where αk and α̂k denote the summation of the Euler angle
estimate obtained by the ESKF and SVSF, respectively. Test

FIGURE 8. Comparison between the raw and faulty angular rate signals in
the experiment (Faulty Case 4, Scenario 2): (a) x-axis, (b) y-axis, and
(c) z-axis.

denotes the threshold for the angle difference. Note that the∣∣αk − α̂k ∣∣ parameter may have no statistical significance, but
it can be utilized as one of the parameters to detect system
faults.

D. COMPREHENSIVE FAULT DETECTION STRATEGY
As discussed above, the chi-square-, SPRT-, and angle-
deviation-based fault detection strategies have their advan-
tages and disadvantages; thus, it is important to combine
these different methods to accurately find system faults. By
combining the shortcomings and advantages of these three
methods, an integrated fault detection diagnosis strategy can
be summarized as shown in Table 1. The proposed approach
effectively merges the ESKF and SVSF estimation methods,
yielding the novel ESKF-SVSF algorithm, as summarized in
Algorithm 1. In summary, the novel ESKF-SVSF algorithm
switches to the SVSF when a fault is detected, and vice versa.

V. EXPERIMENT
To validate the proposed ESKF-SVSF algorithm, an exper-
iment was conducted using a small UAV platform with a
MEMS-based IMU, as shown in Fig. 2. The IMU con-
sists of an LSM303D integrated accelerometer/magnetometer
unit and an L3GD20 gyroscope. The update rates of the
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TABLE 5. Performance comparison between the ESKF, ESKF-SVSF, and ESKF-SVSF (proposed) algorithms for the normal case and the four faulty cases (all
values expressed in units of degrees).

FIGURE 9. Attitude estimation results for the normal case: (a) roll,
(b) pitch, and (c) yaw.

accelerometer and magnetometer are 250Hz and 10Hz,
respectively. A one-hour static experiment was conducted to
analyze the Allan variance, and the measurement noise and
process noise of the sensors are summarized in Tables 2 and 3,
respectively.

The full states of the GPS/INS Kalman filter, including the
position, velocity, attitude, angular rate bias, and acceleration
bias, were obtained on the same experimental data and used
as our best estimates of the true attitude [35]. Fig. 4(a), (b),
and (c) show the raw gyroscope, accelerometer, and magne-
tometer outputs, respectively, during the experiment.

To demonstrate the validity of the proposed ESKF-SVSF
algorithm in the presence of modeling uncertainty, four

FIGURE 10. Attitude estimation results for Faulty Case 1 (Scenario 1):
(a) roll, (b) pitch, and (c) yaw.

different faulty test cases, involving fault injection with a
short time duration (Scenario 1) and with a long time duration
(Scenario 2), were investigated, as summarized in Table 4.
The use of the IMU signals in the ESKF-SVSF algorithm
is illustrated in Fig. 3. In each scenario, two types of faults,
namely, constant and random gyroscope faults, were injected
into the raw gyroscope data from the experiment to simu-
late modeling uncertainty. Figs. 5 and 6 show the raw and
faulty gyroscope signals for Cases 1 and 2, respectively,
corresponding to Scenario 1. The fault occurrence times
are 124 s, 136 s, and 148 s, each with a time duration of
0.5 s. Figs. 7 and 8 show the raw and faulty gyroscope
signals for Cases 3 and 4, respectively, corresponding to
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FIGURE 11. Attitude estimation results for Faulty Case 2 (Scenario 1):
(a) roll, (b) pitch, and (c) yaw.

Scenario 2. Here, the time interval for fault injection is
132–141 s.

The filters were programmed and implemented using
MATLAB 2017b on a PC with an Intel Core i7-6500U CPU
operating at 2.50GHz. The rootmean square errors (RMSEs),
averaged absolute values of bias (AAVBs), and maximum
absolute errors (MAEs) of attitude estimation are presented
to evaluate the performance of the proposed algorithm. The
AAVB metric is generally used to analyze the bias of state
estimates [46]. That is, a smaller AAVB indicates a higher
probability that the state estimates will be unbiased.

RMSE =

√
1
T

∑T

k=1
(xk − x̂k )

2 (59)

AAVB =
1
T

∑T

k=1

∣∣x(k)− x̂(k)
∣∣ (60)

MAE = max
k

(
∣∣x(k)− x̂(k)

∣∣) (61)

The constant smoothing boundary layer widths for the
SVSF were set to ψ = [0.1, 0.1, 0.08]T and ψ =

[0.2, 0.2, 0.1]T for the accelerometer and magnetometer
measurements, respectively. The SVSF convergence rate
γ was set to 0.1. These parameters were chosen empiri-
cally to minimize the estimation error based on the sys-
tem/measurement noise statistics.

The RMSEs, AAVBs, andMAEs of the roll, pitch, and yaw
angles obtained by the ESKF and ESKF-SVSF algorithms
for the normal case and the four faulty test cases are sum-
marized in Table 5. Fig. 9(a), (b), and (c) show the attitude
estimation results of the ESKF and ESKF-SVSF algorithms

FIGURE 12. Attitude estimation results for Faulty Case 3 (Scenario 2):
(a) roll, (b) pitch, and (c) yaw.

FIGURE 13. Attitude estimation results for Faulty Case 4 (Scenario 2):
(a) roll, (b) pitch, and (c) yaw.

in the normal case, i.e., without fault injection. It can be seen
from Fig. 9 that the ESKF estimation results are closer to the
true attitude than the ESKF-SVSF results are. This finding
confirms the optimality of the ESKF when the system and
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FIGURE 14. Fault detection result for Faulty Case 1 (Scenario 1): (a) true
fault, (b) chi-square fault detection, (c) SPRT fault detection, and (d) angle
deviation fault detection.

measurement models are accurate, with no modeling error
[47]. However, the proposed ESKF-SVSF yields the same
estimation result as the ESKF since it can switch to the ESKF
when no system fault is detected. Specifically, as shown in
Table 5, the estimation performance of the proposed ESKF
is the same as that of the ESKF, which is better than that of
the ESKF-SVSF without the comprehensive fault detection
strategy for the normal case.

By contrast, Figs. 10 and 11 depict the attitude estimation
results in Faulty Cases 1 and 2 (Scenario 1). The ESKF-
SVSF algorithm yields better attitude estimation results,
while the attitude estimates obtained with the ESKF signif-
icantly deviate from the true values during the fault injection
time intervals at 124 s, 136 s, and 148 s. It can similarly
be observed from Figs. 12 and 13 that in Faulty Cases 3

FIGURE 15. Fault detection result for Faulty Case 2 (Scenario 1): (a) true
fault, (b) chi-square fault detection, (c) SPRT fault detection, and (d) angle
deviation fault detection.

and 4 (Scenario 2), the estimation errors under the ESKF-
SVSF algorithm are also much smaller, resulting in improved
robustness. Thus, it can be concluded that although the esti-
mation solution of the SVSF is not optimal, as shown in Fig. 9
for the case inwhich there is no systemmodeling discrepancy,
it is apparently robust to modeling uncertainty.

In particular, the estimated yaw obtained via the ESKF
severely deviates from the true yaw during times of fault
injection, as shown in Figs. 10 and 11, whereas the estimated
yaw obtained via the ESKF-SVSF algorithm closely follows
the true yaw during these intervals. This severe yaw deviation
might be due to the accumulation of roll and pitch angle
error since the roll and pitch error will contribute to the
calculation described in (14), thus yielding incorrect yaw
predictions.
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FIGURE 16. Fault detection result for Faulty Case 3 (Scenario 2): (a) true
fault, (b) chi-square fault detection, (c) SPRT fault detection, and (d) angle
deviation fault detection.

In addition, as shown in Figs. 10–13, the proposed ESKF
outperforms the ESKF and the ESKF-SVSFwithout the com-
prehensive fault detection strategy for all four fault scenar-
ios. This performance improvement of the proposed ESKF-
SVSF can be attributed to the comprehensive fault detection
scheme of accurate detection of system faults. Specifically,
Figs. 14–17 show the fault diagnosis result, combining the
fault detection of the chi-square, SPRT, and angle devia-
tion based on Table 1. As shown in Figs. 14–15, the chi-
square-based fault detection is sufficient for detecting the
fast-growing fault in a short time, belonging to fault scenario
1. However, the chi-square fault detection is not suitable for
detecting the constant-level fault in a relatively long time,
but the SPRT can accurately detect such a fault, as shown in
Figs. 16–17. Therefore, overall, the proposed fault detection

FIGURE 17. Fault detection result for Faulty Case 4 (Scenario 2): (a) true
fault, (b) chi-square fault detection, (c) SPRT fault detection, and (d) angle
deviation fault detection.

algorithm can accurately identify system faults in most cases,
as shown in Figs. 14(a), 15(a), 16(a), and 17(a), although
complete system fault detection is not always achievable.
Based on the fault diagnosis result, the proposed ESKF-SVSF
can switch to the ESKF for guaranteeing optimality when
no fault is detected and to the SVSF for ensuring robustness
when a fault is detected, resulting in a better estimation result.

Although the proposed ESKF-SVSF algorithm is robust
to system modeling uncertainty, it also has a few disadvan-
tages, as follows [24]: its computational complexity is slightly
increased due to the introduction of the calculation of the
SVSF gain, as shown in Table 6; a priori or application-
specific information is needed to determine an appropriate
fixed smoothing boundary layer width ψ (based on the noise
statistics); and numerical errors may occur if the innovation
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TABLE 6. Computation times for the ESKF, ESKF-SVSF, and proposed
algorithms.

ez,k is exceedingly small and is not corrected (leading to
division by zero when computing the SVSF gain as given in
(39)). Note that the estimation result of the SVSF-VBL [24]
is not presented in this paper since the computation of ψ in
(47) often leads to numerical error due to the division by zero.

VI. CONCLUSION
Attitude estimation that is robust to modeling uncertainty is
crucial for the safe and reliable navigation of UAVs. This
paper proposes a novel robust attitude estimation algorithm
based on the ESKF and SVSF algorithms. The accuracy of
an ESKF and the robustness of the SVSF are effectively
combined to achieve improved attitude estimation, resulting
in a novel robust attitude estimation algorithm called the
ESKF-SVSF algorithm.

The proposed ESKF-SVSF algorithm has been validated
on experimental data collected from a small UAV in the pres-
ence of modeling uncertainty, and its performance has been
comparedwith that of the ESKF approach. In this experiment,
two types of fault bias signals were intentionally injected into
the raw gyroscope signals to simulate modeling uncertainty.
Fault bias often occurs when a UAV experiences excessive
vibration or in the case of a faulty IMU and causes the filter
results to diverge from the actual operation state.

The experimental results demonstrate that the proposed
ESKF-SVSF algorithm greatly improves the accuracy of state
estimation in the presence of a small bias compared with
the conventional ESKF algorithmwhen modeling error arises
due to IMU faults. In particular, the proposed comprehensive
fault detection scheme combining different methods was able
to accurately detect the system fault. Based on the fault
diagnosis, the proposed ESKF-SVSF not only guarantees
the optimality of the ESKF but also the robustness of the
SVSF. Future work will focus on combining the results of
the ESKF and ESKF-SVSF algorithms using multimodel fil-
tering approaches. This will allow the optimality of the ESKF
to be maintained during fault-free operation while preserving
the robustness of the ESKF-SVSF algorithm in the case of
fault occurrence.
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