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ABSTRACT Many engineering, social, and biological complex systems consist of dynamical elements
connected via a large-scale network. Monitoring the network’s dynamics is essential for a variety of
maintenance and scientific purposes. Whilst we understand how to optimally sample and discretize a single
continuous dynamic element or a non-dynamic graph, we do not possess a theory on how to optimally
sample networked dynamical elements. Here, we study nonlinear dynamic graph signals on a fixed complex
network. We define the necessary conditions for optimal sampling in the combining time- and graph-domain
to fully recover the networked dynamics. We firstly interpret the networked dynamics into a linearized
matrix. Then, we prove that the dynamic signals can be sampled and fully recovered if the networked
dynamics is stable and their initialization and inputs (which are unknown) are bandlimited in the graph
spectral domain. This new theory directly maps optimal sampling locations and rates to the graph properties
and governing nonlinear dynamics. This can inform the placement of experimental probes and sensors on
dynamical networks especially for the case where the employed sensors are difficult to change. Also, this
guides the design of each sensor’s optimal sampling rate for further digital signal processing.Wemotivate the
reader with two examples of recovering the networked dynamics for: social population growth and networked
protein biochemical interactions with both bandlimited and arbitrary initialization and inputs.

INDEX TERMS Complex network, dynamical systems, graph signal processing, sampling theory.

I. INTRODUCTION
In networked ecosystems, each element has a functional
behaviour (e.g. a self-dynamic describable by a differ-
ential equation). When individual elements are coupled
together via a complex network (with coupling dynamics),
the whole networked system can exhibit the necessary com-
plex behaviour [1]. There are many examples of complex
networks with explicit (e.g. from phase synchronization [2] to
nonlinear dynamics [3]) or latent dynamics, spanning: urban
structure [4], social networks [5], economics [6], infrastruc-
ture [7], ecology [8], biology clocks [9], epidemic spread-
ing [10], and organizational structure [11]. Whilst many
such systems can be described by explicit differential equa-
tions (e.g. the mean behaviour is predictable), individual
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systems will differ due to usage, deterioration, and other
factors. This is reflected in parameter uncertainty. As such,
data monitoring of the network [12], [13] is essential for
both scientific study and maintaining operational capacity.
We propose to use the deterministic complex system frame-
work to identify the optimal sampling strategy. In the context
of the networked dynamical systems (see Fig. 1), we do
not yet know how to optimally sample the dynamic com-
plex networks from a joint graph- and time-domain perspec-
tive. Lack of sampling knowledge on dynamic graphs can
lead to over-sampling (expensive) or under-sampling (cannot
recover overall behaviour).

A. LITERATURE REVIEW
Optimal sampling for a single dynamic process is deter-
mined by the Nyquist sampling theorem. Optimal sampling
on combinatorial graphs is given by the theory of spectral
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FIGURE 1. Illustration of complex network governed by dynamic
equations: (a) individual dynamics, and (b) networked dynamics.

analysis [14], whereby a specific operator (e.g., the Laplacian
operator, [14], [15], and the weighted adjacent matrix [16])
is employed to analyze the spectrum components. Based on
these foundations, Graph Signal Processing (GSP) in recent
years integrates them to understand how to sample graph sig-
nals [15]–[24]. For instance, [15] first introduced the notion
of the Paley-Wiener spaces with respect to the operator on
combinatorial graphs, and analyzed the graph spectrum of
the signals that belong to that space. Further developments
proposed the concept of the uniqueness set of nodes that can
be used to sample and perfectly recover graph signals. Based
on these advances, [17], [18], [20]–[23] provided several
methods to find the uniqueness set. More recent work [25]
considers Joint Fourier Transform (JFT) for dynamic graphs,
but the sampling set changes with time, which is not use-
ful for some real-world sensing applications (e.g. optimal
sensor deployment). Whilst these studies contribute to the
advancement on how to select a fixed set of sampling nodes,
they cannot be used for sampling dynamic graph signals
governed by explicit nonlinear dynamics - see Fig. 1, as it
is difficult to design an operator that is capable of ensuring
the band-limitedness of all the dynamic graph signals.

The dynamic graph signal has been studied in [26]–[30],
which aimed at monitoring the dynamic graph signals (or
graph process) via a subset of nodes. Specially, the state-of-
the-art Kalman filter has been proposed in [30], which theo-
retically provides a minimum number of nodes to reconstruct
the bandlimited networked dynamics from the noisy obser-
vations. However, such schemes assumed a perfect known of
the bandlimited inputs, which are necessary for the inferences
of the initialization and the a posteriori states. Whilst these
inputs are generally assumed as a prior information in the
context of the control system [30], [31], such assumption
are a little strong for other network monitoring scenarios

(e.g., the water-distribution network where the inputs are the
random water-demands [32]). Moreover, there is a lack of
study on how to sample a continuous networked dynam-
ics from the combined time-graph domain. The relationship
between the optimal sampling rates between graph-domain
and time-domain remains unknown.

Different from the compressed sensing (e.g. a tensor) [33],
[34], dynamic graphs on the one hand give explicit knowledge
on its structural form, and on the other hand are governed by
nonlinear dynamics that have causal relations between their
time states. As such, whilst the notion of GSP with explicit
dynamics shares similarities with compressed sensing, it dif-
fers in its framework and application. Notably in our work,
we directly map optimal sampling locations and rates to the
graph properties and governing nonlinear dynamics, which
doesn’t rely on data properties (e.g., the sparse structure)
required by the tensor compressed sensing.

B. CONTRIBUTIONS & ORGANIZATION
In this work, we suggest a novel sampling theory from the
joint time- and graph-domains for dynamic and continuous
graph signals governed by explicit nonlinear dynamics. The
main contributions of this paper are listed as follows.

(1) We linearize the nonlinear networked dynamics, which
provides a pathway to finding the optimal graph sample set as
well as the cut-off frequency from the time-domain, provided
the overall network dynamics satisfy Lyapunov stability.1

In this view, sampling the dynamic network can be viewed
as time sampling on critical nodes.

(2) We provide the theory on the sampling node set for
continuous graph signals. With the help of the linearized
dynamics from (1), we prove that the linearized dynamic
graph signals have the same graph bandwidth with the input.
This indicates that we can use such bandwidth to determine
the sampling node set for loss-less sampling and recovery.

(3) We prove that the graph bandwidth maps to the cut-off
frequency from the time-frequency domain. This provides
a guide to determine the sampling rate and discretize the
continuous graph signals into digital domain for further sig-
nal processing analysis. More importantly, this relation indi-
cates an explicit mapping of the optimal sampling locations
and rates to the graph properties and the governing dynam-
ics. This framework provides the dynamical system insight
unavailable from previous GSP and data-driven compressed
sensing research. Our fixed optimal sampling nodes also
improves over current research [25] which yields dynamic
sampling nodes.

(4) We evaluate our proposed sampling theory via two dif-
ferent application domains: (a) networked social population
with linear dynamics, and (b) protein networks with nonlin-
ear biochemical interactions. We consider both bandlimited
and arbitrary inputs and the simulation results demonstrate
the successful recovery of the overall networked dynamics
with minimal loss. This suggests that the proposed sampling

1This is sensible for most stable real-world systems.
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FIGURE 2. Illustration of: (a) complex network with dynamic graph signals from governing nonlinear dynamics; (b) the sampling and recovering process
in terms of the combination of the time- and the graph-domain; and (c) the recovered network dynamics.

framework is beneficial to a wide range of scientific and
engineering applications.

The rest of this paper is structured as follows. In Section II,
we detail the networked nonlinear dynamical system model
considered. In Section III, we formulate a theory on joint
time- and graph-domain optimal sampling and explain
the necessary conditions for recovery of the dynamics.
In Section IV, we motivate the reader with two examples in
networked social population dynamics and networked protein
biochemical interactions. In Section V, we conclude the paper
and discuss potential future areas of research.

II. SYSTEM MODEL
In this section, we provide a concept of dynamic graph signals
governed by dynamic equations, and the background of the
graph sampling theory.

A. SYSTEM MODEL
Signal processing on dynamic graph signals is concerned
with the analysis and processing of signal-set where dynamic
signal elements are connected to each other with respect
to both the graph topology and the nonlinear dynamics on
the node and edge (as is shown in Fig. 1). The relation
is expressed through the graph G(V,W), in which V =
{1, · · · ,N },N ∈ N+ represents a set of the subscripts of the
nodes, and W is the adjacency matrix of the graph G(V,W).
For the node vn (n ∈ V), wn,m ∈ {0, 1} of W is the directed
edge from the node vm to the node vn. Therefore, the time-
varying signal xn(t) corresponding to vn can be described
as evolving in accordance to its self-dynamic function F(·),
an unknown input sn(t) and the mutualistic coupling function
G(xn(t), xm(t)) - see Fig. 1:

dxn(t)
dt
= F(xn(t))+

N∑
m=1

wn,m · G(xn(t), xm(t))+sn(t), (1)

sn(t) =
+∞∑
i=1

sn,i · δ(t − ti). (2)

In Eqs. (1)-(2), the input is characterized by a group of Dirac
functions δ(·) placed at specific time ti, i ∈ N+, with sn,i a
random weight. We here denote the graph signal as x(t) =
[x1(t), · · · , xN (t)]T , and the unknown input signal as s(t) =
[s1(t), · · · , sN (t)]T with si = [s1,i, · · · , sN ,i]T . Unlike the
traditional graph signal that considers only a fixed data on the
graph [15]–[24], we extend the concept to the time-varying
signals governed by the dynamical equations.

The purpose of this paper is to study how to determine the
sampling node set from graph-domain and the sampling inter-
val from time-domain to sample and discretize the continuous
networked signals and ensure the full recovery. To be specific,
we should compute the sample frequency, denoted as Fs via
the time-frequency perspective, as well as consider which
nodes should be regarded as the sampling nodes (shown
in Fig. 2), i.e., the composition of the sampling node set,
denoted asS ⊂ V . Also, we shouldmaintain a fixed sampling
node set S that does not vary with time, as changing the
sensor deployment in some real applications (e.g., the under-
water surveillance) may be impractical.

B. BACKGROUND
1) APPROPRIATE SAMPLING RATE OF TIME-DOMAIN
From the perspective of sampling and discretizing a contin-
uous signal via the time- and frequency-domain, one critical
demand is to compute the cut-off frequency �c, so that the
discrete version is of quality for further digital signal pro-
cessing (DSP). One basic method to measure the computed
cut-off frequency is to resort to the Nyquist sampling interpo-
lation.2 By assigning the sampling frequency as Fs ≥ �c/π ,
the time-domain signal x(t) can be sampled as x(k/Fs), and
then recovered as:

x̂(t) =
∑
k∈Z

x
(
k
Fs

)
· sinc

(
Fs

(
t −

k
Fs

))
, (3)

where sinc(t) = sinπ t/(π t) is the interpolation function.

2Note that compared to the studies in [26], [27], Nyquist sampling inter-
polation may not be the optimal one for signal sampling and reconstruction.
But here, we are interested in the sampling rate in order to discretize the
continuous signal, and we only use Nyquist theory to measure the rationality
of the derived cut-off frequency.
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2) GRAPH SAMPLING THEORY
Graph sampling theory samples the signal indexed on graph
nodes, denoted as x = [x1, · · · , xN ]T that has few supports
on a graph Fourier transform (GFT) operator, denoted as
F−1. Typically, F−1 is constructed via the eigenvectors of the
Laplacian or the adjacency matrix, which are related only to
the topology of the graph. Here we describe the graph sam-
pling theory via the adjacency matrix, and the GFT operator
F−1 can be given as: [16], [18],

W = F · diag{λ1, λ2, · · · , λN } · F−1, (4)

where λ1, λ2, · · · , λN are the arbitrarily ordered eigenvalues
(also referred as the graph spectral values). In this setting,
the graph sampling theory defines a bandlimited signal, and
provides the method to sample such signals as follows:
Definition 1: [18] A graph signal x is called

R-bandlimitedwith respect to theGFT operatorF−1, if all the
subscripts of non-zeros in x̃ = F−1x compose the band-set
R.3

Definition 2: [18] BL(R,F−1) is defined as a subspace
of RN , composed of all R-bandlimited graph signals with
respect to F−1.
Theorem 1: [15]–[24], [35] For any x ∈ BL(R,F−1),

there exists a subset S ⊂ V such that

x = FVR · (FTSR · FSR)−1 · FTSR · xS . (5)

Such S satisfies

rank (FSR) = |R|, (6)

where FSR (FVR) denotes the sub-matrix of F with rows
selected via subscripts in S (V) and columns selected via
subscripts in R, and xS denotes the sampled vector of x by
selecting subscripts in S.
It is noteworthy that directly utilizing the graph sampling

theory to identify the sampling node set S for dynamic
networked signal x(t) is challenging. The operators that are
related only with the graph topology (e.g., the adjacency
matrix, and the Laplacian matrix) cannot maintain that the
evolved signals with different time belong to the identical
BL(R,F−1). Saying x(t1) ∈ BL(R,F−1), then we cannot
ensure x(t2) ∈ BL(R,F−1), for t1 6= t2 given the dynamics.
This will cause R = {1, · · · ,N }, and inevitably S ≡ V ,
or at least a time-varying sampling node set for different time,
i.e., St1 6= St2 . In this view, it is demanding to study how to
maintain the dynamic x(t) beingR-bandlimited with respect
to some operator that combines both the graph topology and
the underlying dynamics, and here come our work.

3It is true that the cardinality of R can be |R| = r < N , indicating a
similar concept of r-sparse transformation of signal x. Different from the
concept of r-sparse vector in compressed sensing where the positions of
the non-zero elements are unknown, in the case of graph sampling theory,
we know the positions (subscripts) of these non-zero elements. Hence,
the size of the sampling node set |S| can be smaller as opposed to that used
by compressed sensing [18].

III. SAMPLING FOR DYNAMIC GRAPH SIGNAL
In this section, we elaborate our sampling theory on dynamic
graph signals. We aim to find the sampling node set S ⊂ V
from the graph domain, and the cut-off frequency�c from the
time-frequency domains. So, the discrete samples on nodes in
S can be derived as

XS =

 xn1 (0/Fs) · · · xn1 (K/Fs)
...

. . .
...

xn|S| (0/Fs) · · · xn|S| (K/Fs),

 (7)

where Fs ≥ �c/π is the sampling frequency,
{n1, · · · , n|S|} = S, and K/Fs represents the total time that
is of interest. The recovered signal x̂(t) will be computed as:

x̂(t) = 8 · XS ·9, (8)

where 9 = [sinc(Fs(t − 0/Fs)), · · · , sinc(Fs(t − K/Fs))]T

is given by the Nyquist Theorem as the interpolation matrix
from the time domain, and 8 is denoted as the recovery
matrix from the graph domain.

A. ASSUMPTIONS OF NETWORK STABILITY
Given that most of the network applications work on the
stable area, we hereby assume an existence of the equilibrium
point xe of Eq. (1), and consider the Lyapunov stability of the
dynamic graph signals.
Assumption 1: [36]We say x(t) has the Lyapunov stability

on point xe, if and only if for any ε > 0, there exists a δ > 0
such that, if ||x(0)− xe|| < δ, then for every t > 0 we have

||x(t)− xe|| < ε.

With the help of the assumption of the Lyapunov stability,
the non-linear dynamics of the graph signals can be approx-
imated via the linearized components. We next elaborate the
linearizing process and its causing error.

1) LINEARIZE DYNAMICS
Given the Assumption 1, x(t) converges to xe, and therefore
x(∞) = xe. For convenience, we specify:

y(t) = x(t)− xe, (9)

and thus limt→∞ y(t) = y(∞) = 0. Then, analyzing the
group of nonlinear differential equations in Eq. (1) can be
viewed as studying its linear approximations as follows:

dy(t)
dt
= Jf (xe) · y(t)+ o (‖y(t)‖)+ s(t)

≈ Jf (xe) · y(t)+ s(t), (10)

where o (‖y(t)‖) are terms that go to zeros faster than the first
order for t →+∞. Jf (xe) is the Jacobian matrix of function
f : RN

→ RN at xe, where f (·) is the simplified evolution
function of Eq. (1), i.e., dx(t)/dt = f (x(t)) + s(t). Jf (xe) is
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computed as:

Jf (xe) ,


∂f (t)
∂x1(t)

· · ·
∂f (t)
∂xN (t)

...
. . .

...
∂f (t)
∂x1(t)

· · ·
∂f (t)
∂xN (t)


∣∣∣∣
x(t)=xe

. (11)

Further, an intuitive form of Eq, (11) is expressed, as we
take Eq. (1) into Eq. (11), i.e.,

Jf (xe) =W ◦ JG(xe)+ diag
{
∂F
∂x1

, · · · ,
∂F
∂xN

} ∣∣∣∣
xe
, (12)

where ◦ represents the Hadamard product, and JG(xe) is
the Jacobian matrix of function G(·, ·) at xe. From Eq. (12),
it is observed that Jf (xe) combines both the topology of
the network (as is represented by the adjacency matrix W),
as well as the dynamic equations (i.e., the mutualistic cou-
pling functions G(·, ·) and the self-dynamics F(·) in Eq. (1)).

2) LINEARIZED ERROR
After the derivation of the linearized dynamics, we measure
the linearized error via the effectiveness equation [1], [37].
In essence, effectiveness equation of a networked dynamic
reduces the N -dimension signals (indexed on N nodes) into
1-dimension. For example, given the signal y(t), its effective-
ness is computed as [1]:

dyeff(t)
dt

= βeff · yeff(t), (13)

where yeff(t) = 1T ·W · y(t)/(1TW1), and βeff = 1T ·Wdin,
with the nth entry of din as dn =

∑N
m=1 wn,m, and 1 ,

[1, · · · , 1]T of size N × 1.
With the help of the 1-dimensional effectiveness yeff(t)

of the N -dimensional y(t), one can use such effectiveness
to measure the linearized error. To be specific, let denote
the linearized version of y(t) in Eq. (10) as yl(t), and the
linearized error is characterized by the l1-norm, i.e., err =∫
+∞

0 ‖yl(t)−y(t)‖l1dt . Then, such error can be measured via
the effectiveness error if:

c1 · err ≤
∫
+∞

0
|yl,eff(t)− yeff(t)|dt ≤ c2 · err (14)

for some positive constant c1 and c2, where yl,eff(t) =
1TWyl(t)/(1TW1) can be computed via Eq. (13) with the
same Adjacency matrix determined βeff.
We prove Eq. (14) in the following. The right-hand of

Eq. (14) is proved by:

|yl,eff(t)− yeff(t)| =
|1T ·W(yl(t)− y(t))|
|1T ·W · 1|

≤
‖W(yl(t)− y(t))‖l1
|1T ·W · 1|

≤
‖W‖l1
|1T ·W · 1|

· ‖yl(t)− y(t)‖l1 . (15)

The left-hand can be proved by considering the minimum of

c(t) =
|yl,eff(t)− yeff(t)|
‖yl(t)− y(t)‖l1

=
1

|1T ·W · 1|
·
|1T ·W(yl(t)− y(t))|
‖yl(t)− y(t)‖l1

. (16)

It is observed from Eq. (16) that the minimal c(t) is zero
when yl(t)− y(t) takes from the null-space ofW, denoted as
null(W). However, yl(t)− y(t) cannot be always the element
of null(W) for all t ∈ (0,+∞), and therefore there exists
some t for c(t) > 0. As such, some positive c1 exist such that
the left-hand of Eq. (14) holds.

After the linearization of the non-linear dynamic under the
assumption of the Lyapunov stability, we next analyze how to
derive the sampling node set, S, the recovery matrix 8, and
the cut-off frequency �c for these linearized dynamic sys-
tems, by analyzing the properties of the Jacobian linearized
matrix Jf (xe).

B. GRAPH-DOMAIN BANDLIMITED SIGNALS
With the help of the linearized approximation of the dynam-
ics in Eqs. (10)-(12), we here consider the case where
both the initialization y(0) and the unknown inputs si are
R-bandlimited with respect to Jf (xe). In fact, this generally
holds for most of the graph signals such as ARMA graph pro-
cess [30], wave propagations [30], and signal diffusion [30].
Themore general cases of initialization and inputs are studied
in Section III. C.

1) SAMPLING FROM GRAPH DOMAIN
In order to analyze the graph frequency with respect to Jf (xe),
we diagonalize Jf (xe) as:

Jf (xe) = U · diag{µ1, · · · , µN } · U−1, (17)

where µi, i ∈ {1, · · · ,N } is the eigenvalues, U =

[u1, · · · ,uN ] is the non-singular matrix composed of the
corresponding eigenvectors.

As such, according to Definitions 1-2, the subspace
BL(R,U−1) is constructed and we have y(0), si ∈

BL(R,U−1), given their R-bandlimitedness property. Then,
we state that all signals y(t) ∈ BL(R,U−1) by Lemma 1
and Theorem 2, and therefore, the sampling node set S and
the recovery matrix 8 can be derived from aforementioned
Theorem 1.
Lemma 1: Given d(y(t))/dt = Jf (xe) · y(t), if y(0) ∈

BL(R,U−1), then y(t) ∈ BL(R,U−1).
Proof: y(t) can be computed as

y(t) = et·Jf (xe) · y(0). (18)

Its graph Fourier transformation with respect to Jf (xe) is:

ỹ(t) = U−1 · et·Jf (xe) · y(0)

= U−1 ·
∞∑
k=0

tk

k!
· Jf (xe)k · y(0)

=

+∞∑
k=0

tk

k!
· diag{µ1, · · · , µN }

k
· U−1 · y(0)

=

+∞∑
k=0

tk

k!
· diag{µk1, · · · , µ

k
N } · ỹ(0), (19)
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where ỹ(0) = U−1 · y(0) and Jf (xe)0 = IN×N , the identity
matrix of size N × N . This suggests that the subscripts of
the non-zero elements of ỹ(t) coincide with those of ỹ(0), and
therefore all belong toR. Hence, given Definition 2, it proves
that y(t) ∈ BL(R,U−1).
Theorem 2: Given d(y(t))/dt = Jf (xe)y(t) + s(t),

if y(0), si = [s1,i, · · · , sN ,i]T ∈ BL(R,U−1), then y(t) ∈
BL(R,U−1).

Proof: According to Eq. (2), s(t) =
∑
+∞

i=1 si ◦ δ(t −
ti) with δ(t − ti) = [δ(t − ti), · · · , δ(t − ti))]T of size N ×
1. The proof is equivalent to prove y(t) ∈ BL(R,U−1) for
any t ∈ [0, t1) ∪ · · · ∪ [t+∞,+∞). According to Lemma 1,
it is proved the y(t) ∈ BL(R,U−1) for any t ∈ [0, t1). Then,
we notice that y(t1) = et1·Jf (xe) · y(0) + s1. Thus, if s1 ∈
BL(R,U−1), then y(t1) ∈ BL(R,U−1). Taking y(t1) as the
bandlimited initialization, the proof of y(t) ∈ BL(R,U−1) for
interval t ∈ [t1, t2) is straightforward according to Lemma 1.
Similarly, we can extend this fact for all the intervals, and
therefore prove y(t) ∈ BL(R,U−1).

After the proof of y(t) ∈ BL(R,U−1), the sampling
method for y(t) from graph domain can be designed via the
existing Theorem 1. To be specific, in order to select the
sampling node set S such that rank(USR) = |R|, one option
is to computeS by finding themaximal |R| smallest singulars
of USR, i.e., [18]

S = argmax
S⊂V

σmin (USR) , (20)

where σmin(·) denotes the minimum singular of the matrix.
Based on Eq. (20), the recursive greedy algorithm can be
implemented by finding and adding the row, i.e., S ←
S ∪ {n}, such that n = argmaxi σmin(U(S∪{i})R). Then,
the recovery matrix 8 can be computed as 8 = UVR ·
(UT

SR · USR)−1 · UT
SR, based on which the recovery

process can be pursued as ŷ(t) = 8 · yS (t), with
yS (t) the sampled signals selected from the sampling node
set S.
As such, we determine the sampling node set S and the

recovery matrix that can reconstruct the dynamic graph sig-
nals from the graph domain. One major difference between
the studies in [30] and our work is that we need to
surveillance the sampling node at each discrete time. The
reasons is explained as follows. Here, we analyze the lin-
earized dynamics dy(t)/dt = Jf (xe)y(t) + s(t) with the
R-bandlimited signals of both the unknown initialization y(0)
and the unknown inputs s(t). In this view, the overall prob-
lem of signal reconstruction cannot be casted equivalently
as computing y(0) from the samples and taking y(0) into
Eq. (18), since we still do not know the exact time and the
form of the inputs s(t). As such, the monitoring of potential
inputs requires the samples from S at each discrete time.
Also, such discrete time serves as the fundamental role for
discrete-version signals to maintain the characteristics of the
continuous networked signals, and we will study how to
determine such sampling rate from the time-domain in the
following.

2) SAMPLING FROM TIME DOMAIN
After deriving the sampling node set S, and the recovery
matrix 8, we will deduce the time-domain cut-off frequency
�c via Lemma 2 and Theorem 3.
Lemma 2: Consider dy(t)/dt = Jf (xe)y(t) satisfying Lya-

punov stability. Given that we are only interested in fre-
quency components of time-domain larger than a threshold
ε, the time-domain cut-off frequency�c can be computed as:

�c = max
j∈R

∣∣Im[µj]
∣∣+

√
‖y(0)‖22
ε2

−min
j∈R

Re[µj]2. (21)

Proof: According to Eq. (18), each yn(t) of y(t) can be
expressed as:

yn(t) =
∑
j∈R

un,j · ỹj(0) · eµjt , (22)

where ui,j is the entry ofU. Given that y(t) is Lyapunov stable,
the eigenvalues of Jf (xe) have non-positive real values [36],
i.e., Re[µj] ≤ 0. Hence, the time-frequency Fourier transform
of yn(t) is computed as:

Yn(�) =
∫
+∞

0

∑
j∈R

un,j · ỹj(0) · eµjt · e−i�tdt

=

∑
j∈R

un,j · ỹj(0)
∫
+∞

0
eRe[µj]t−i(�−Im[µj])tdt

=

∑
j∈R

un,j · ỹj(0)

−Re[µj]+ i
(
�− Im[µj]

) . (23)

The magnitude of Yn(�) is computed as:

|Yn(�)| =

∣∣∣∣∣∣
∑
j∈R

un,j · ỹj(0)

−Re[µj]+ i
(
�− Im[µj]

)
∣∣∣∣∣∣

≤

∑
j∈R

∣∣∣∣∣ un,j · ỹj(0)

−Re[µj]+ i
(
�− Im[µj]

) ∣∣∣∣∣
≤

∑
j∈R

|un,j · ỹj(0)|√
Re2[µj]+

(
�− Im(µj)

)2 . (24)

We can learn from Eq. (24) that the imaginary parts of the
eigenvalues contribute to the left/right shift of �. Hence, for
any � > max

j∈R

∣∣Im[µj]
∣∣, we have:

|Yn(�)| <

∑N
j=1 |un,j · ỹj(0)|√

min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2

<

√∑N
j=1 u

2
n,j
∑N

j=1 ỹj(0)2√
min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2
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=
‖ỹ(0)‖2√

min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2

=
‖U · ỹ(0)‖2√

min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2

=
‖y(0)‖2√

min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2

. (25)

Then, by making the right-hand of Eq. (25) smaller than ε,
we derive the cut-off frequency �c given by Lemma 2.
Theorem 3: Given dy(t)/dt = Jf (xe)y(t)+ s(t) satisfying

Lyapunov stability, the time-domain cut-off frequency�c can
be computed as:

�c = max
j∈R

∣∣Im[µj]
∣∣+

√
‖y(0)‖22 +

∑
i ‖si‖

2
2

ε2
−min

j∈R
Re[µj]2.

(26)

Proof: According to Lemma 2, the Fourier-transform
of y(t) is the summation of Eq. (23) with different inputs si.
As such, the magnitude of Yn(�) is

|Yn(�)| <
‖y(0)‖2 +

∑
i ‖si‖2√

min
j∈R

Re[µj]2 +
(
�−max

j∈R

∣∣Im[µj]
∣∣)2

. (27)

Bymaking the right-hand of Eq. (27) smaller than ε, we prove
Theorem 3.

With the help of Theorem 3, we compute the cut-off fre-
quency �c, which can be used to determine the sampling
rate to discretize the continuous graph signals. Also, one can
resort to the Shannon sampling interpolation in Eqs. (7)-(8)
to verify the rationality of such computed �c.

C. GENERAL CASE WITH ARBITRARY INITIALIZATION
It is noteworthy that the R-bandlimited property of the ini-
tialization and the inputs may not be easily satisfied for
some monitoring tasks. Such y(0), si /∈ BL(R,U−1) renders
difficulties for monitoring the graph signals, as the oper-
ator Jf (xe) cannot maintain the R-bandlimitedness of the
signal y(t), thereby making the computation of reliable S
and �c challenging. Here, inspired by the sampling theories
deduced with the bandlimited signals, we provide an imper-
fect sampling method for this case from both the time and
graph -domain.

From the perspective of graph-domain sampling, an intu-
itive idea is to select the subscripts of the |S| smallest mag-
nitudes of real parts of eigenvalues asR, and regard y(0) and
si as the approximated R-bandlimited signals. We explain
the reason in the following. According to Eq. (19), the graph
Fourier transformation of y(t) for jth graph-frequency

component is:

ỹj(t) = eµj·t ỹj(0)+
∑
ti≤t

eµj·(t−ti)s̃j,i, (28)

based onwhich the energy in terms of the integral with respect
to t can be computed as:

Ej =
∫
+∞

0
|ỹj(t)|dt =

|ỹj(0)+
∑

i s̃j,i|
|Re[µj]|

, (29)

where Re[µj] < 0 according to the Lypunov stability assump-
tion. As such, given the randomness of both y(0) and si, one
option is to minimize the energies of the un-selected graph-
frequency parts, and thereby we neglect the N − |S| largest
|Re[µj]|. According to Eq. (29), the reconstructed error is
computed as follows:∫
+∞

0
‖ŷ(t)− y(t)‖2dt≤

‖y(0)‖2+
∑

i ‖si‖2
|Re[µ]|

·
N−|S|
N

. (30)

where |Re(µ)| represents the |S| + 1 smallest |Re(µn)| for
n ∈ {1, · · · ,N }.

We then analyze the time-domain sampling. Given that
as y(0) and si are not R-bandlimited with respect to Jf (xe),
the sampling theory from Theorem 3 cannot hold, since all
the eigenvalues of Jf (xe) contribute to the cut-off frequency
�c. As such, a similar form of cut-off frequency �c from the
time-domain is obtained by changing the range of eigenval-
ues’ indices of Theorem 3 to following equations, i.e.,

�c = max
j∈{1,··· ,N }

{
∣∣Im[µj]

∣∣}
+

√
‖y(0)‖22 +

∑
i ‖si‖

2
2

ε2
− min

j∈{1,··· ,N }
{Re[µj]}2. (31)

As such, we derive the graph-domain sampling node set
S, and time-domain cut-off frequency �c, for any unknown
arbitrary initialization and inputs.

D. EXPLICIT RELATIONSHIP BETWEEN OPTIMAL
SAMPLING AND GRAPH DYNAMICS
It is important to stress that a key benefit of our framework is
the creation of an explicit relationship between the time- and
graph-domain cut-off frequencies, the graph properties, and
the nonlinear dynamics. We will elaborate this relationship
from three aspects.

(i) The networked dynamics characterized by the
self-dynamic function and the mutualistic coupling equations
in Eq. (1) is interpreted by the linearized matrix Jf (xe) from
Eq. (10). For example, the stability of the network can be
analyzed via the real parts of the eigenvalues of Jf (xe) (seen
from Fig. 3(a)).

(ii) In the case of the graph-domainR-bandlimited initial-
ization and inputs with respect to Jf (xe), it is proved from
Theorem 2 that y(t) ∈ BL(R,U−1), and therefore the graph
non-zero frequency indices of y(t) compose the set R. This
R further maps the eigenvalues (graph-domain frequencies)
illustrated in Fig. 3(a), such that only the bases (eigenvectors)
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FIGURE 3. Illustration of the relations between graph-domain band-set R = {1,4,5}, the time-domain cut-off frequency �c, and
the underlying graph structure and its governing nonlinear dynamics Jf (xe). Subplots: (a) network stability area for the eigenvalues
of Jf (xe), which is also the graph-domain frequencies whose subscripts belong to R; and (b) the magnitude of time-frequency
Fourier transform |Yn(�)| for the graph-domain R-bandlimited signals. It can be seen that the eigenvalues of Jf (xe) whose
subscripts belong to R (i.e., µ1, µ4, µ5) determines the shape of |Yn(�)|. This further demonstrates that the time-domain cut-off
frequency �c can be determined by Theorem 3.

whose subscripts of eigenvalues belongs to R have non-zero
coefficients.

(iii) This graph-domain bandlimited set R further leads to
the computation of the time-domain cut-off frequency, as only
the subscripts of eigenvalues of Jf (xe) that belongs toR affect
the shape of the time-frequency Fourier transform (seen from
Fig. 3(b)). Specially, a direct relation of �c and R is shown
in Theorem 3. In summary, as is illustrated in Fig. 3, we can
see that the time-domain cut-off frequency �c is related to
the eigenvalues whose subscripts belong to R, which in turn
is related to the optimally sampled graph structure and the
underlying dynamics.

IV. SIMULATIONS
In the following analysis, the performance of our proposed
sample theory will be evaluated. First, we examine the per-
formance in the case when the unknown y(0) and si are
R-bandlimited with respect to Jf (xe). Then, the general cases
in which y(0), si /∈ BL(R,U−1) is evaluated. To do so,
we specify the root mean square error (RMSE) of x̂(t), t ∈
[0,T ], i.e.,

RMSE = E{x̂(t)− x(t)}

w

√√√√1t

NT

T/1t−1∑
k=0

‖x̂(k1t )− x(k1t )‖22, (32)

where 1t is the sample rate whose corresponding
time-domain frequency is much greater than the cut-off
frequency, i.e., 1/1t = 4�c/π .

Note that in this simulation, it is difficult to provide
any comparison with existing sampling methods, as most
of the referenced works (e.g., [25], [30]) concentrated on
discrete-time graph process rather than continuous signals.
In addition, their works prefer the dynamic sampling set
selections varying with the time, which may not be suitable
for sensor placement requiring fixed sampling node set S for
sensor deployment.

As such, we just make a comparison with their works
by stating the differences. For the study in [25], the author
designed a joint Fourier-Graph sampling method, by using
the topology-based Laplacian operator, and the Discrete
Fourier Transform (DFT) matrix. The difference lies in that
they did not consider how tomaintain anR-bandlimited prop-
erty for the time-varying graph signals, and therefore cannot
obtain a fixed sampling node set for sensor placement. For
the study in [30], the sequential Kalman filter was designed
to track the discrete graph signals under the assumptions
of known inputs. However, such scheme cannot address the
unknown inputs challenges, as the unknown inputs lead to the
unavailability of the transitional probability density function,
which blocks the predict-stage of current state from the last
state. More importantly, they did not analyze the case when
the initialization and the inputs are not R-bandlimited (as
what we do in Section III. C).

For this simulation, the involved dynamic functions are
configured as follows. As far as both the linear and nonlinear
dynamic networks are concerned, we consider two types of
dynamic models [3]:

dxn(t)
dt
= −Bxn(t)+R

N∑
m=1

wn,mxm(t)+
+∞∑
i=1

sn,iδ(t−ti), (33)

dxn(t)
dt
= F − Bxn(t)+ R

N∑
m=1

wn,m · xn(t) · xm(t)

+

+∞∑
i=1

sn,i · δ(t − ti). (34)

Eq. (33) is referred as the linear population dynamics (PD)
model, where each node’s population has a self growth
rate −B and also depends on the migration strength R
from neighbouring connected nodes. Eq. (34) is referred as
the non-linear protein interaction model that describes the
nonlinear dynamics of protein-protein interactions captured
by mass-action kinetics (MAK). The detailed parameters
and explanations for the differential equations are found
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FIGURE 4. Performance of the sampling theory on PD linear dynamic network with bandlimited initialization and inputs: (a) RMSE with respect to both
the sample frequency Fs and the graph sample size |S|, (b) illustrates one tangent plane of (a), RMSE related to the sample frequency Fs with fixed graph
sample size |S|, and (c) shows another tangent plane, the RMSE affected by only the graph sample size |S|.

in [3]. In Eqs. (33)-(34), we assign the number of nodes
N = 500, and leave other parameters randomly config-
ured such that they satisfy the Lypunov stability assumed in
Assumption 1.

A. PERFORMANCE WITH BANDLIMITED INITIALIZATION
We first evaluate the performance for the graph-domain ban-
dlimited initialization and inputs by studying the RMSE in
both the linear model and the nonlinear model.

1) LINEAR MODEL
We illustrate the performance of the sampling theory via the
combining time- and graph- domains from Fig. 4. Fig. 4(a)
provides the RMSE with respect to the joint time-domain
sample frequency Fs and the graph sample size |S|. We can
see that with the increases of both Fs and |S|, the RMSE
decreases, suggesting that the performance of recovering the
dynamic graph signals improves, as more samples from both
the time- and the graph- domains are involved. This can be
also demonstrated in Fig. 4(b) and Fig. 4(c), whereby the two
tangent planes of Fig. 4(a) are given.

Fig. 4(b) investigates the changes of the RMSEs that varied
by the time-domain sample frequency Fs, as the various
fixed graph sample sizes |S| are considered. With the growth
of Fs, the RMSEs are decreasing. Also, it compares the cases
whether the fixed graph sample size is larger than the cut-off
graph sample size, i.e., |S| ≷ |R|. In the case of |S| > |R|,
the RMSE decreases from 10−1 to 10−15 as Fs grows from
100 to 10−4. This is because that, an increase of time-domain
sample frequency Fs means a growth number of samples
from the time-domain, which improves the performance of
recovery, according to the Nyquist sample theory. It is also
noteworthy that the RMSE from a graph sample size no lesser
than the cut-off graph sample size i.e., |S| ≥ |R| equals to the
Benchmark whereby all the nodes are sampled i.e., |S| = N .
This is because that in a linear model e.g., the PD model,
a perfect recovery can be achieved as rank (USR) = |R|
is reaching. Then, we consider the case where |S| < |R|.
We can observe that the RMSE decreases little with the
growth of the time-domain sample frequency Fs, as the
perfect recovery cannot be realized if graph sample size is
smaller than |R|.

Fig. 4(c) illustrates the RMSEs with respect to the graph
sample size |S| with the fixed time-domain sample frequen-
cies. As aforementioned. we can firstly observe that the
RMSEs decrease with the growth of |S|. Then, we can see
that the RMSE from the case Fs > �c/π is lower as opposed
to that from Fs < �c/π , since the recovery performance
of the latter case are deteriorated by the lack of samples
from time-domain. Also, the threshold ε of the magnitude
of the frequency transform from Theorem 3 matters, as the
computation process of the cut-off frequency �c neglects
the frequency parts whose magnitudes are smaller than the
threshold. This leads to the gap between the benchmark with
a larger Fs = 4�c/π and the RMSE whose Fs = �c/π .
Furthermore, we can notice that, after the graph sample
size reaches the size of R i.e., |S| = |R| the RMSEs
converges to a limitation. The reason can be categorized as
that, in the case of a linear model such as the PD model,
Theorem 2 holds true. In other words, if the initialization
and the inputs are R-bandlimited with respect to Jf (xe) (i.e.,
y(0), si ∈ BL(R,U−1)), then y(t) ∈ BL(R,U−1), which
suggests that we can use any S as a sampling set such
that rank (USR) = |R|, and the signals can be perfectly
recovered.

2) NONLINEAR MODEL
The performance of the sampling theory via the joint time-
and graph- domains is illustrated from Fig. 5. Fig. 5(a) shows
the RMSE with respect to both the time-domain sample
frequency Fs and the graph sample size |S|. It is intuitive
that as Fs and |S| increase, the RMSE keeps decreasing,
which suggests that the recovery of dynamic graph signals
become better as more samples are considered. This can be
also demonstrated in Fig. 5(b) and Fig. 5(c), whereby the two
tangent planes of Fig. 5(a) are provided.

Fig. 5(b) illustrates RMSEs that are influenced only by
the time-domain sample frequency Fs, as we fix the graph
sample size |S|. We can observe that with the increase
of Fs, the RMSEs are decreasing. Moreover, it compares
the cases whether the fixed graph sample size is larger than
the cut-off graph sample size, i.e., |S| ≷ |R|. For the case
|S| > |R|, the RMSE decreases at first (from 10−1 to 10−5),
and then converges to a limit (as 10−5), which is different
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FIGURE 5. Performance of the sampling theory on MAK nonlinear dynamic network with bandlimited initialization and inputs: (a) RMSE with respect to
both the sample frequency Fs and the graph sample size |S|, (b) illustrates the tangent plane of (a), RMSE corresponding to the sample frequency Fs as
the graph sample size |S| is fixed, and (c) gives another tangent plane, the RMSE influenced by only the effect of graph sample size |S|.

from Fig. 4(b). The reasons are given as follows. Firstly,
as the time-domain sample frequency Fs becomes larger,
the performance of recovery improves given by the Nyquist
sample theory. Then, given the linear approximation of the
nonlinear network in Eq. (10), there exists an error limitation
measured by Eq. (14), which cannot be surpassed only by
increasing Fs. This limitation (computed as 10−5 − 10−15)
is illustrated by the benchmark in Fig. 5(b) that uses sam-
ples of all the nodes from the graph i.e., |S| = N . It is
also noteworthy that after Fs surpasses the cut-off frequency
�c/π , the RMSE are still decreasing. This is because the
computation of �c from Theorem 3 ignore the frequency
parts whose amplitudes are smaller that the threshold ε. Also,
we consider the case where |S| < |R|. We can observe that
the RMSE decreases little as the sample frequency grows.
This is because if graph sample size is small, we cannot
recover the signals for all N nodes, which limits the RMSE
from being decreased.

Fig. 5(c) gives the RMSEs with respect to the graph sam-
ple size |S| via the fixed time-domain sample frequencies.
As aforementioned, the RMSEs decrease with the growth
of |S|. Then, we can see that the RMSE from the case
Fs > �c/π outperforms the one of Fs < �c/π , as the
error from the latter case are restricted by the lack of samples
from the time-domain. Also, the threshold of the magnitude
of the frequency transform from Theorem 3 matters, as the
computed cut-off frequency �c ignores those whose ampli-
tudes are lesser than the threshold. This gives rise to the gap
between the benchmark with a larger Fs = 4�c/π and the
RMSE whose Fs = �c/π . In addition, we can notice that
unlike Fig. 4(c) where the RMSEs converges to a limitation
after the graph sample size is greater than the cut-off sample
size i.e., |S| ≥ |R|, the RMSEs are still decreasing. The
reason can be categorized as that, the graph sample theory
we deduced in Theorem 2 is based on the linear system. It is
true that Theorem 2 is still suitable for the nonlinear cases
if their dynamic functions satisfy the Lyapunov stability,
but the high-order term in Eq. (10) yields the error unless
all the nodes from the graph are sampled, i.e., |S| = N .
Also, this error gap can be demonstrated and computed via
the Benchmark whose sample size is |S| = N .

B. PERFORMANCE WITH ARBITRARY INITIALIZATION
We then examine our proposed sampling method for arbi-
trary initialization and inputs via the nonlinear model of
Eq. (34). The performance of signal recovery is shown
in Fig. 6. Fig. 6(a) provides the RMSE varying with both the
time-domain sample frequency Fs and the graph sample size
|S|. Similar to the bandlimited cases, the RMSE decreases
as Fs and |S| increase, demonstrating a higher successful
recovery of dynamic graph can be achieved, as more samples
are applied.

Fig. 6(b) illustrates RMSEs with respect to only the
time-domain sample frequency Fs, as fixed the graph sample
sizes are considered. It is observed that with the increase
of Fs, the RMSEs are decreasing. Then, it gives the result of
comparison between different graph sample sizes, i.e., |S| =
4N/5 and |S| = 2N/5. We can easily see that the graph
sample size |S| serves as the basic condition for the per-
formance of recovery. This is because if graph sample size
is small (i.e., |S| = 2N/5), we cannot recover the signals
for all N nodes, rendering the RMSE as a constant. Further-
more, we analyze the case with larger graph sample size,
i.e., |S| = 4N/5. We can observe that the RMSE decreases
at first (from 10−1 to 10−2), and then converges to a limit
(as 10−2), which is higher than that from Fig. 5(b). The
reasons can be categorized as follows. Firstly, just like the
bandlimited cases, the performance of recovery improves
with a larger time-domain sample frequency Fs, and the
aforementioned limitation of the linear approximation con-
tributes to its convergence. Second, different from the ban-
dlimited cases, we select |S| smallest magnitudes of real
parts of eigenvalues as R, and regard y(0) and si as the
approximatedR-bandlimited signals. In this view, an error is
inevitable as we neglect parts of the dynamics when sampling
and recovering the signals (as is shown in Eq. (30)). This
limitation (computed as 10−2 − 10−15) is illustrated by the
benchmark in Fig. 6(b) that uses samples from all the nodes
from the graph i.e., |S| = N . We should also note that
after Fs surpasses the cut-off frequency�c/π , the RMSE are
still decreasing. This is because the computation of �c from
Eq. (31) ignore the frequency components whose magnitudes
are smaller that the threshold ε.
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FIGURE 6. Performance of the sampling theory on MAK nonlinear dynamic network with arbitrary initialization and inputs: (a) RMSE with respect to both
the sample frequency Fs and the graph sample size |S|, (b) illustrates one tangent plane of (a), RMSE related to the sample frequency Fs with fixed graph
sample size |S|, and (c) shows another tangent plane, the RMSE affected by only the graph sample size |S|.

Fig. 6(c) illustrates the RMSEs with respect to the graph
sample size |S| where the time-domain sample frequencies
Fs are fixed. As aforementioned, the RMSEs decrease with
the growth of |S|. Yet the reason is not only the linear approx-
imation as the bandlimited cases have, the approximation of
arbitrary initialization and inputs to the bandlimited one in
Section III. C matters, since we ignore the N − |S|minimum
energies in Eq. (29) from the graph frequency domain. Then,
we can see that the RMSE from the case Fs > �c/π outper-
forms that of Fs < �c/π , since the error from the latter case
are restricted by the lack of samples from time-domain. Also,
the gap between the benchmark with a larger Fs = 4�c/π

and the RMSE whose Fs = �c/π is obvious. This is mainly
because the computation of the cut-off frequency �c ignores
the parts whose magnitudes are lesser than the threshold.

V. CONCLUSION & FUTURE RESEARCH
In this paper, we developed a theory for the time- and
graph-domain joint sampling of a networked dynamical sys-
tem with unknown bandlimited initialization and inputs in
the graph spectral domain. We first interpret the networked
dynamics into a linearized matrix, from which the stability
of the network can be analyzed via its eigenvalues. Then,
We prove that the dynamic signals can be sampled and fully
recovered if the network are stable and their initialization and
inputs are bandlimited with respect to the matrix.

Unlike other high-dimensional data sets, we consider
dynamical graphs with nonlinear dynamics that have explicit
causal relations between nodes. Therefore, our sampling
theory is able to directly map optimal graph sampling
locations and rates to the graph properties and governing
nonlinear dynamics. Changes in the underlying dynamics
or the network structure will be able to directly inform
the optimal data sampling process (see Fig. 3). Together
with recent advances in understanding how topology inter-
acts with dynamics [1], [13], we now understand how the
aforementioned factors influence both time- and graph-
domain information sampling.

The application domains extend across many engineering,
social, and biological complex systems, and we demonstrate

our theory on a linear population dynamic (PD) model and a
non-linear protein interaction (MAK) model. For recovering
the dynamics, our results show that the RMSE drop dramati-
cally by several orders of magnitude when we sample above
the optimal sampling rate.

The limitation of our work thus far as been on studying
first order one-dimensional Markovian nonlinear dynamics
and bandlimited initialization and inputs. Many complex sys-
tems are a multiplex of different network and dynamics (e.g.
multiplexed transport networks [38]), with dynamics in at
least two-dimensions with higher order differential equations
(e.g. water distribution networks [39] and electricity supply
networks [7]), and have non-Markovian dynamics (e.g. have
extended memory of epidemic networks [10]). Extending our
framework to such network dynamics will be the focus of our
future work.
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