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ABSTRACT Image restoration is an extensively studied area with lots of outstanding algorithms devel-
oped. Nevertheless, most existing methods still have some limitations that only apply to a single tailored
restoration task or suffer from long iterative reconstruction time or yield unstable results. To address these
challenges, this work presents a multi-noise andmulti-channel enhanced DeepMean-Shift Prior (MEDMSP)
for grayscale IR tasks. Specifically, we draw valuable high-dimensional prior knowledge by learning a
multi-noise stimulated DMSP network from color images with RGB-channels. Variable augmentation tech-
nique is then adopted for incorporating the higher-dimensional network prior into the iterative reconstruction
procedure. MEDMSP has been evaluated on different IR tasks and compared to a variety of state-of-the-art
methods. Experimental results show that the proposed method has better capability in image deblurring and
accurate compressive sensing reconstructions in terms of both visual and quantitative comparisons.

INDEX TERMS Image restoration (IR), multi-noise, multi-channel, deep mean-shift prior, iterative
reconstruction.

I. INTRODUCTION
Image restoration (IR) is one of the most fundamental
and popular topics in computational imaging. Its purpose
is to recover the original high-quality image u from its
degraded version y, whose typical degrading formulation can
be described as follows:

y = Hu+ n (1)

where H is a matrix representation of the degrading operator
and n is additive white Gaussian noise. Various restoration
scenarios are determined by different settings ofH . For exam-
ple, IR task could be deblurring for a blurring operator [1],
denoising for an identity operation [2]–[4] and compressive
sensing (CS) for an incoherently undersampling operator in
frequency domain [5], [6].

Since IR is often ill-posed, prior knowledge is effectively
adopted to recover the image, which can be obtained by
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solving:

min
u
‖Hu− y‖2 + λ prior(u) (2)

where ‖Hu− y‖2 is the l2-norm data-fidelity term and
prior(u) denotes an image prior to resolve the regulariza-
tion problem that weighted by parameter λ. To solve this
problem, diverse model-based optimization methods have
been developed, which normally have beautiful mathematical
explanations and stable solutions [7]–[15]. Despite encour-
aging performances have been achieved, these methods tend
to suffer from relatively time-consuming iterative procedures
and still require improve recovery accuracy [16].

On the other hand, deep learning has shown great poten-
tial in computer vision [17], [18] and it becomes a popular
choice to solve IR tasks [19]–[22]. These methods can be
regarded as the discriminative learning approaches, which
directly learn the parameters in prior term prior(u) by opti-
mizing a loss function on a number of clear-degraded image
pairs. For instance, Burger et al. [19] firstly proposed to
use the multi-layer perception (MLP) for image denoising.
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Dong et al. [20] presented a straightforward 3-layer convo-
lutional neural network (CNN) for super-resolution. It is
worth noting that with increased capacity of network design
and data collection, recent discriminative learning methods
have achieved promising performances [23]–[26]. However,
some discriminative learning methods only apply to a spe-
cialized IR task, which limits in flexibility and robustness.
For example, even on the same specific task such as image
deblurring [21], different models need to be trained separately
for different blur kernels and noise circumstances.

Recognizing that each categories of methods has its
own advantages and limitations, several researchers have
attempted to incorporate discriminative learning into the
model-based optimization to solve the general IR prob-
lems [27]–[30]. Especially, Zhang et al. [27] proposed a
denoising convolutional neural network (DnCNN) for IR
tasks with encouraging performances achieved. Unfortu-
nately, a remaining drawback of DnCNN is its requirement
for an expensive retraining whenever the scenarios (like the
noise level, noise type or desired measure of fidelity) change
a little bit. To address this issue, a denoising autoencoder
priors (DAEP) was proposed for different IR tasks [29], [31].
Additionally, a deep mean-shift prior (DMSP) being propor-
tional to the gradient of the logarithm of the image prior
was also proposed in [30]. Both DAEP and DMSP train only
one network and integrate it into the iterative restoration for
different IR tasks. However, its output is unstable which tends
to vary for different IR scenarios, but the performance can still
be improved [16].

Based on the above observations, we urgently require a
powerful neural network, which should not only be strongly
applied to different IR tasks, but also has the advantages
of stable model optimization. In this paper, we present a
multi-noise and multi-channel enhanced prior dubbed as
MEDMSP for grayscale IR tasks, which introduces two new
key features for DMSP and a new iterative algorithm for
incorporating high-dimensional prior into lower-dimensional
task. Specifically, our contributions could be summarized as
follows:
• Multi-noise stimulation is adopted for the prior design.
To enableMEDMSPmore robust and stable for different
IR tasks, multi-noise weighted strategy is adopted. This
design is motivated by the aggregation principle, indi-
cating that the multi-noise stimulation can avoid getting
into local solutions and make the iterative process more
stable [16].

• Multi-channel information is used for training a
high-dimensional prior, the merit of which is its capa-
bility in getting more valuable prior knowledge. This
high-dimensional prior in MEDMSP is learned among
R, G, B channels from color training images.

• An iterative algorithm has been introduced to incorpo-
rate the high-dimensional enhanced prior into grayscale
IR task. MEDMSP can tackle non-convex minimization
by adopting the proximal gradient and alternative itera-
tion optimization. The proposed method has been tested

for different IR tasks, and outstanding performances
have been achieved.

II. PRELIMINARY
IR is an ill-posed problem that should be regularized by
effective priors to obtain acceptable solutions. Many classi-
cal models have been developed for the regularization-based
image inverse problems, such as Tikhonov regularization [7]
and the well-known total variation [8], [9]. Although this kind
of methods effectively exploited the image local structure to
preserve image edges and could characterize the piecewise
constant signals well, they tended to over-smooth the image
resulting in some image details loss. The sparsity-based
techniques are more effective in representing local image
structures. It assumed that the image patch can be pre-
cisely described with a few elemental structures from an
off-the-shelf transformation matrix or a learned dictio-
nary. Indeed, the IR community has witnessed a flurry of
sparsity-based IR methods in the past decade [5], [10]–[15].
For example, Dong et al. proposed a hybrid method based
on wavelet-transform and sparse-redundant representations
model for IR [12]. Gu et al. put forward a weighted nuclear
norm minimization (WNNM) with application to image
denoising [15]. Dong et al. introduced a nonlocal low-rank
regularization (NLR) approach toward exploiting both the
group sparsity of similar patches and the non-convexity of
rank minimization [5]. Lately, neural networks are attractive
to solve IR since they allow for straightforward end-to-end
learning [27]–[31]. In this paper we also try to explore neural
networks as priors for grayscale IR tasks.

III. PROPOSED MEDMSP METHOD
Based on the naive DMSP model, this paper proposes a new
prior MEDMSP by introducing two key new features and
one new algorithm. First, multi-noise stimulation strategy is
proposed to improve the stability and robustness of the prior.
Second, high-dimensional prior information is obtained by
employing multi-channel learning for denoising autoencoder
(DAE) [29], [30]. Finally, proximal gradient method and
alternating iteration are adopted to address the grayscale IR
problem with the help of high-dimensional enhanced prior.

A. MULTI-NOISE STIMULATION
In [30], an interesting image prior prior(u) expresses the
image likelihood as the logarithm of the Gaussian-smoothed
true natural image distribution, i.e.,

prior(u) = log
∫
gσ (η)p(u+ η)dη (3)

where gσ (η) represents a local Gaussian kernel with standard
variance σ . p(u+ η) is true natural image distribution.

A crucial factor of DMSP is that they use a denoising
autoencoder (DAE) to learn the gradient of the prior in
Eq. (3). Concretely, the DAE network and the input image
are represented as rσ (u) and u, respectively, and then the
DAE output rσ (u) is trained by using Gaussian noise and an
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expected quadratic loss:

LDAE = Eη,u[‖u− rσ (u+ η)‖2] (4)

According to [31], it revealed that the output rσ (u) of the
optimal DAE is related to the true data density p(u) as:

rσ (u) = u−
Eη[p(x − η)η]
Eη[p(x − η)]

= u−

∫
gσ (η)p(u− η)ηdη∫
gσ (η)p(u− η)dη

(5)

They use the Gaussian derivative definition to rewrite the
numerator in Eq. (5) to remove η and obtain the relationship
between the DAE and the desired gradient of prior.

rσ (u) = u+
σ 2
∇
∫
gσ (η)p(u− η)ηdη∫

gσ (η)p(u− η)dη

= u+ σ 2
∇ log

∫
gσ (η)p(u− η)dη (6)

Thus, the gradient of the prior can bewritten using theDAE
error :

∇ prior(u) = ∇log
∫
gσ (η)p(u+ η)dη

= [(rσ (u)− u)]
/
σ 2 (7)

where rσ (u) expresses the output of DAE. The DAE in Eq. (7)
may be overfitted to noisy images [30]. To alleviate the
deficiency, they reformulated the prior to perform stochastic
gradient descent steps that include noise sampling [30] with:

prior(u) = log
∫
gσ (η)p(u+ η)dη

= log
∫
gσ2 (η2)

∫
gσ1 (η1)p(u+ η1 + η2)dη1dη2

≥

∫
gσ2 (η2) log[

∫
gσ1 (η1)p(u+ η1 + η2)dη1]dη2

= priorL(u) (8)

where σ12 + σ22 = σ 2. Jensen’s inequality is used in the
third line of Eq. (8). This leads to a new lower bound for
the prior, termed priorL(u). In ref. [30], the author addressed
overfitting issue by using the new lower bound priorL(u) with
σ1 = σ2 = σ

/√
2. Its gradient is:

∇priorL(u)

=
2
σ 2

∫
g
σ
/√

2
(η2)(r

σ
/√

2
(u+ η2)− (u+ η2))dη2 (9)

They further approximated the integral with a single noise
sample, which results in the stochastic evaluation of the
gradient as:

∇ priorsL (u) = 2(r
σ
/√

2
(u+ η2)− u)

/
σ 2 (10)

From the aforementioned illustration, we are inspired to
propose an enhanced DMSP prior for image restoration tasks.

FIGURE 1. The MWCNN architecture with 3-level for single-channel
grayscale image. Here DWT/IWT stands for the discrete/inverse wavelet
transform.

FIGURE 2. A color image and its corresponding R, G, B components.

By introducing new components to exploremore prior knowl-
edge, we draw the prior of Eq. (10) with three noise imple-
mentations under different noise levels.

∇ priorsL (u)

=
1

σ 2
1

(r
σ1

/√
2
(u+ η1)− u)

+
1

σ 2
2

(r
σ2

/√
2
(u+ η2)− u)+

1

σ 2
3

(r
σ3

/ √
2
(u+ η3)− u)

(11)

The multi-noise stimulation design is motivated by the
aggregation principle, which shows multi-model implemen-
tation can avoid getting into local solutions and make the
iterative process more stable [16]. Specifically, the extension
involves two advantages: First, prior with three different
noises leads to bigger model capacity, such as to enhance
the representation ability. Second, three implementations also
result in more robust. The rationality of setting the number of
the multi-noise implementations in Eq. (11) to be three will
be verified in the Experiment Section.

B. MULTI-CHANNEL ENHANCEMENT
Initially, we consider utilizing the multi-level wavelet-CNN
(MWCNN) artchiecture [24] as a cornerstone to train rσ (u)
for grayscale image restoration tasks. MWCNN is devel-
oped on the basis of multi-level wavelet packet transform
(WPT) [30]. MWCNN extends WPT by adding a CNN
block between any two levels of discrete wavelet transforms
(DWTs). After each level of transform, all the subband
images are taken as inputs to the CNN block, and then the
compact representation is learned as an input to subsequent
levels of DWT. As shown in Fig. 1, each CNN block is a
4-layer full connection without pooling and it takes all the
subband images as input. Each layer of the CNN block is
composed of convolution with 3×3 filters (Conv), batch nor-
malization (BN), and rectified linear unit (ReLU) operations.
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FIGURE 3. Visual example of the selected feature maps and the correlation analysis from MWCNN (a) and Dense-MWCNN (b).

As to the last layer of the last CNN block, Conv without BN
and ReLU is adopted to predict residual image.

The second key component of the proposed MEDMSP is
high-dimensional prior learning. The essence is to extend the
representation dimension by training the network from color
images with RGB-channels. Fig. 2 shows an illustration of a
color image. We can see that the RGB channels are geometri-
cal similar but exhibit different visual patterns. They possess
more valuable prior knowledge compared to a single-channel
grayscale image, which may provide the potential to better
image quality.

At the network training phase, we assume channel number
of the network input to be three and denote the vector variable
U = [U1,U2,U3] = [Ur ,Ug,Ub]. Motivated by the spirit of
densely connected convolutional network (DenseNet) [32],
we employ the MWCNNs as blocks and densely connect
them among RGB channels to form a higher-dimensional
network DAE rσ (U ), called Dense-MWCNN. As shown
in Fig. 3, we employ a color image with artificial noise as
input. As the levels of the DWT increases, the amount of
calculation will increase accordingly. Considering the com-
putational complexity and reconstruction effects, we chose to
use a combination of two-level DWT and three-level DWT.
First, we put the red component into the MWCNN-Block

with 2-level, and concatenate it with the green component
to form a two-channel image. Then, we put the two-channel
image into the MWCNN-Block with 2-level, and concate-
nate it with the blue component to generate a three-channel
intermediate image. Finally, we put the three-channel image
into the MWCNN-Block with 3-level to attain the estima-
tion of image. It should be noted that the MWCNN-Block
with 2-level only uses twice DWTs and IWTs but the
MWCNN-Block with 3-level uses three times DWTs and
IWTs.

To illustrate the advantages of the multi-channel learning
strategy, we provide some denoising results for the high
frequency subband and low frequency subband from the
Dense-MWCNN in Fig. 4. At the same time, we show the
feature maps and their correlations learned by MWCNN and
Dense-MWCNN in Fig. 5. Specifically, the training set used
by MWCNN is grayscale image, and the training set used
by Dense-MWCNN is color image. The feature maps of the
first convolution and its correlation after the third DWT in the
third module of Dense-MWCNN and MWCNN. We choose
16 feature maps out of 256 by firstly clustering them into
16 groups, and then randomly select one feature map from
each group to show as representative feature maps in Fig. 5.
It can be observed that the feature map in Dense-MWCNN
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FIGURE 4. Visual example of denoising results for high frequency subband and low frequency subband in the Dense-MWCNN.

contains more information and detail features than that in
MWCNN, indicating that the proposed network structure
helps to obtain better feature representations. Additionally,
we calculate the correlation among the 16 feature maps and
visualize the similarity measure as a matrix. We can see
that the correlation among feature maps in Dense-MWCNN
is lower (blue corresponds to low correlation whereas red
corresponds to high correlation). The lower the similarity
between the feature maps, the more patterns between differ-
ent feature maps. Hence, Dense-MWCNN in MEDMSP has
a more diverse feature representation.

C. MEDMSP FOR IR
The last key feature of MEDMSP is how to explore the
learned prior for IR tasks. As stated in Section III. A, it is
desirable to exploit different levels of artificial noise, e.g. with
standard variation σ1, σ2 and σ3. If the standard variation
σ1 is set relatively small, there will be more texture details

in the restored image while introducing a large amount of
noise. The σ3 value is relatively large, and it prefers to
produce smoother results but missing texture details. When
the σ2 value is set to be relatively medium, it contributes
to the average result. Therefore, we can average them with
the aim of preserving more details while removing more
degradations.

After the multi-channel samples are trained, we turn to the
restoration stage of single-channel image as shown in Fig. 6.
In the restoration stage, variable augumentation technique
is employed. At first, we copy and rearrange the single-
channel image u into the same image with multi-channel
formulation U = [u, u, u]. Since {U = [u, u, u]} ⊂
{U |U = [U1,U2,U3]}, it paves the way to apply the trained
multi-channel prior to the tested single-channel data. After
the multi-channel procedure, we average the three output
variable generated by the network to form the single-channel
variable. Mathematically, by calculating the gradient of the
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FIGURE 5. Visual example of the selected feature maps and the
correlation analysis from MWCNN (a) and Dense-MWCNN (b).

high-dimensional prior, it yields:

∇ priorsL(U )

=
1

σ 2
1

(r
σ1

/√
2
(U + η1)− U )

+
1

σ 2
2

(r
σ2

/√
2
(U+η2)−U )+

1

σ 2
3

(r
σ3

/√
2
(U+η3)−U )

(12)

Then, the proposed MEDMSP model can be rewritten as a
proximal gradient descent method:{

uk = uk−1 − mean[∇ priorsL(U
k−1)]

/
ρ

uk+1 = argmin
u
‖Hu− y‖2 + γ

∥∥u− uk∥∥2 (13)

where ρ represents the gradient step size and γ denotes a
balance parameter.

At each iteration, the intermediate results are obtained
by employing the mean operator to the output of the
three-channel network. As revealed at the previous section,
this manipulation benefits from two aspects: One is that
the image prior is guided from higher-dimensional structural
prior. The other is that the multi-replication of the denoising
operator facilitate better denoising and preserve more texture
detail.

The second minimization in Eq. (13) is a standard least
square (LS) problem, which can be solved as follows:

(γHTH+ 1)uk+1 = γHT y+ uk (14)

uk+1 =
γHT y+ uk

(γHTH+ 1)
(15)

Algorithm 1 MEDMSP
Enhanced Training Stage
For color training images U = [Ur ,Ug,Ub] collected from
the dataset, crop it to be 192×192×3 image blocks, and use
the network in Fig. 3 to train the clear-noisy image pairs.
Robust Reconstruction Stage
Initialization: u0 = HT y
for k = 1→ K do
1: Form the auxiliary variable U k

= [uk , uk , uk ] ;
2: Calculate ∇ priorsL(U

k ) in Eq. (12);
3: uk = uk−1 − mean[∇ priorsL(U

k )]
/
ρ ;

4: Calculate uk+1 = γHT y+uk

(γHTH+1) Eq. (15);
end for

TABLE 1. Recovery PSNR/SSIMs of MEDMSP by varying the number of
the multi-noise implementation for image Barbara with 15% random
sampling pattern.

IV. EXPERIMENTS
We implement the proposed architecture inMatlab and run all
experiments on a desktop computer equipped with Intel Core
i7-7700 central processing unit and GeForce Titan XP. Our
training set is constructed by using images from DIV2K [33].
Concretely, we collect 400 images from DIV2K and cut the
training images into M = 91789 patches with the size of
192× 192 in the training stage. Image patches with different
noisy levels are used to train models for learning a mapping
from noisy images to de-noising results. Three models are
used with the noise level σ1 = 3, σ2 = 8 and σ3 = 10,
respectively. The quality of the reconstruction is quantified
by Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity (SSIM) [34]. Testing images used in the experiments
are depicted in Fig. 7.

A. ALGORITHM PROPERTY
In MEDMSP, employing the multi-noise implementation for
the prior formulation and utilizing the multi-channel images
as network input at training phase are two main innovations.
In this section, we investigate the impact of these two features
with different settings.

First, we investigate the optimal number for themulti-noise
stimulation from 1 to 4. As can be observed in Table 1, when
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FIGURE 6. Illustration of the multi-channel network scheme at the training stage and the variable augmentation technique
used for single-channel intermediate image at the iterative IR phase.

FIGURE 7. Six experimental test images: Barbara, Boats, Cameraman,
Baboon, Pappers, Straw.

FIGURE 8. Convergence tendency of MEDMSP with three-channel 3-noise
and single-channel 1-noise implementation.

the number of the multi-noise implementation increases,
the obtained PSNR/SSIM values increase accordingly. The
PSNR obtained with 2-noise implementation outperforms
1 dB than that with 1-noise implementation. 3-noise
implementations gains 0.5 dB higher PSNR values than

that with 2-noise implementation. The PSNR obtained with
4-noise implementation is better than that with 3-noise imple-
mentation. However, as the number of the multi-noise stim-
ulation increases, the computational cost becomes larger.
Therefore, we set the number of multi-noise implementation
to be 3.

Second, we study the impact of the multi-channel enhance-
ment. Table 2 records the performance of MEDMSP with
three-channel training data. It can be seen that, the PSNR
values of three noises is higher than a single noise in terms
of multi-channel and single-channel circumstances. Under
three and single noise situation, the PSNR results using
multi-channel are 0.67 dB and 0.68 dB higher than the single
channel, respectively.

TABLE 2. Recovery PSNR/SSIMs of MEDMSP by varying the number of
the multi-channel inputs for image Peppers with 15% random sampling
pattern.

Finally, the PSNR curve obtained utilizing three-channel
3-noise and single-channel 1- noise are shown in Fig. 8.
We can see that both cases approximate to converge after
around 200 iterations. Furthermore, MEDMSP not only
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FIGURE 9. Visual quality comparison of image deblurring. Top: image Barbara on Gaussian kernel: 17× 17, δd = 2.55. Middle: image Peppers on Gaussian
kernel: 17× 17, δd = 7.65. Bottom: image Boats on Gaussian kernel: 25× 25, δd = 7.65. From left to right: noisy and blurred image, the deblurred images
obtained by LevinSps, EPLL, DAEP, DMSP, DPE, MEDAEP and MEDMSP.

TABLE 3. Recovery PSNR/SSIMs of six test images under various blur size with different level noise.

achieves higher value but also obtains more stable perfor-
mance with multi-channel and multi-noise implementations,
where fluctuation phenomenon has been avoided.

B. IMAGE DEBLURRING
In this section, we evaluate our method on image deblurring
tasks, where two blur kernels in different sizes (i.e. 17 × 17

and 25 × 25, created from Matlab function fspecial) are
used. Six grayscale images are tested to verify the per-
formance of MEDMSP with comparison to local/nonlocal
sparsity-enforcing methods including Levin et. al. [35] and
EPLL framework [36], three deep prior derived methods
containing Deep Prior Ensemble (DPE) [37], DAEP [29] and
MEDAEP [38], and the baseline DMSP [30]. The setting
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TABLE 4. Reconstruction PSNR/SSIMs of six test images at various sampling trajectories and sampling percentages.

of parameter λ in MEDMSP is the same as that in
DMSP.

The PSNR and SSIM values of test images by various blur
kernels with different level noise are summarized. As shown
in Table 3, MEDMSP produces the best average PSNR/SSIM
values among all comparative methods. Specifically with the
blurring kernel size to be 25×25, the average PSNR value of
MEDMSP gains over nearly 3dB than that in the naive DMSP.
Thus, we can deduce that the proposed MEDMSP method
yields highly competitive performance compared with other
leading deblurring methods at various noise variances and
blur kernel sizes.

Visual quality comparisons of image deblurring at blurring
kernel size 9 × 9 and Gaussian noise level δd = 7.65 for
image Peppers, blur kernel size 9×9 and Gaussian noise level
δd = 2.55 for image Barbara and blurring kernel size 17×17
and Gaussian noise level δd = 2.55 for gray image Boats are
shown in Fig. 9. it can be observed that LevinSps andDPE can
deblur better but retain a lot of noise, and DAEP can remove
noise better while the image is still blurry. EPLL can well
reconstruct the piecewise smooth regions but often fails to
recover fine image details.MEDAEP can remove noise better,
but the reconstructed is too smooth to recover fine detail of
image.MEDMSP can not only remove noise but also preserve
the structure details. More specifically, it produces cleaner
and sharper image edges and textures than other competing
methods.

C. CS RECOVERY
This session evaluates the proposed method for CS recov-
ery. Comparison experiments are conducted to test images
using a variety of sampling schemes, with different
under-sampling factors and patterns. The proposed method
MEDMSP is compared with the reference-derived sparse

representation method PANO [6], grouped low-rank based
method NLR-CS [5], reconstruction method based on decou-
pling BM3D (BM3DRec) [39], the end-to-end deep archi-
tecture ADMM-Net [40], DC-CNN [41] and the baseline
DMSP-MWCNN. DMSP-MWCNN is a hybrid algorithm
that employing MWCNN as the learnt network in DMSP
scheme.

Table 4 exhibits the PSNR and SSIM results of these
methods. It can be observed that MEDMSP achieves the best
values for all sampling ratios and test images. The average
PSNR values obtained by BM3DRec and DMSP-MWCNN
rank in the second and third at all sampling rates, respectively.
Supervised learning ADMM-Net is comparable to the sophis-
ticated model-based approach NLR-CS, yet is inferior to the
higher-dimensional modeling of BM3DRec and MEDMSP.
Moreover, PANO and DC-CNN are not ideal when recover-
ing natural images.

FIGURE 10. Recovery results at 15% random sampling. From left to
right: Mask, Original, PANO, NLR-CS, BM3DRec, DMSP-MWCNN, DC-CNN
and MEDMSP.

Figs. 10 and 11 show the visual comparisons on two
test images. In Fig. 10, the reconstruction with MEDMSP
method exhibits higher resolution than those with PANO and
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FIGURE 11. Recovery results at 10% radial sampling. From left to
right: Mask, Original, PANO, NLR-CS, BM3DRec, DMSP-MWCNN, DC-CNN
and MEDMSP.

NLR-CS, and there is almost devoid of aliasing artifacts.
The single-channel based DMSP-MWCNN still exists some
artifacts. The restored image of DC-CNN is more blurred.
At the same time, the reconstruction depicted in Fig. 11 also
indicates that MEDMSP preserves the texture details well.
Moreover, we present an enlargement area to reveal the struc-
tures and fine details preserved by each algorithm. As can be
observed in the zoom-in regions enclosed by green box, only
the proposed MEDMSP successfully preserves the vertical
line-like pattern.

V. CONCLUSION
This work proposes a MEDMSP for IR tasks with two
new features introduced, namely, multi-noise stimulation
and multi-channel enhancement. An iterative algorithm is
also introduced, which paves a new way to explore the
higher-dimensional network-induced prior information for
low level IR tasks. The proposed method not only possesses
the merits of the powerful neural network for drawing valu-
able prior knowledge but also has the stability of model-based
methods. The robustness of the proposed method has been
tested on different IR tasks such as image deblurring and com-
pressive reconstruction, with superior performances achieved
compared to state-of-the-art methods.

REFERENCES
[1] A. Beck and M. Teboulle, ‘‘Fast gradient-based algorithms for constrained

total variation image denoising and deblurring problems,’’ IEEE Trans.
Image Process., vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Image denoising by
sparse 3-D transform-domain collaborative filtering,’’ IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[3] Y. Chen and K. J. R. Liu, ‘‘Image denoising games,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 23, no. 10, pp. 1704–1716, Oct. 2013.

[4] J. Dai, O. C. Au, L. Fang, C. Pang, F. Zou, and J. Li, ‘‘Multichannel
nonlocal means fusion for color image denoising,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 23, no. 11, pp. 1873–1886, Nov. 2013.

[5] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang, ‘‘Compressive sensing via
nonlocal low-rank regularization,’’ IEEE Trans. Image Process., vol. 23,
no. 8, pp. 3618–3632, Aug. 2014.

[6] X. Qu, D. Guo, B. Ning, Y. Hou, Y. Lin, S. Cai, and Z. Chen, ‘‘Undersam-
pled MRI reconstruction with patch-based directional wavelets,’’ Magn.
Reson. Imag., vol. 30, no. 7, pp. 964–977, Sep. 2012.

[7] H. W. Engl, K. Kunisch, and A. Neubauer, ‘‘Convergence rates for
Tikhonov regularisation of non-linear ill-posed problems,’’ Inverse Prob-
lems, vol. 5, no. 4, p. 523, 1989.

[8] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise
removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,
pp. 259–268, 1992.

[9] A. Chambolle, ‘‘An algorithm for total variation minimization and appli-
cations,’’ J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97, 2004.

[10] M. Elad and M. Aharon, ‘‘Image denoising via sparse and redundant
representations over learned dictionaries,’’ IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[11] J. Yang, J. Wright, T. Huang, and Y.Ma, ‘‘Image super-resolution as sparse
representation of raw image patches,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2008, pp. 1–8.

[12] J. Mairal, M. Elad, and G. Sapiro, ‘‘Sparse representation for color image
restoration,’’ IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69,
Jan. 2008.

[13] W.Dong, X. Li, L. Zhang, andG. Shi, ‘‘Sparsity-based image denoising via
dictionary learning and structural clustering,’’ inProc. IEEEConf. Comput.
Vis. Pattern Recognit., Jun. 2011, pp. 457–464.

[14] W. Dong, L. Zhang, G. Shi, and X. Li, ‘‘Nonlocally centralized sparse
representation for image restoration,’’ IEEE Trans. Image Process., vol. 22,
no. 4, pp. 1620–1630, Apr. 2013.

[15] S. Gu, L. Zhang,W. Zuo, and X. Feng, ‘‘Weighted nuclear normminimiza-
tion with application to image denoising,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 2862–2869.

[16] G. Alain and Y. Bengio, ‘‘What regularized auto-encoders learn from the
data-generating distribution,’’ Comput. Sci., vol. 15, no. 1, pp. 3563–3593,
2012.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[18] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[19] H. C. Burger, C. J. Schuler, and S. Harmeling, ‘‘Image denoising: Can plain
neural networks compete with BM3D?’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2392–2399.

[20] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Image super-resolution using
deep convolutional networks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[21] L. Xu, J. S. J. Ren, C. Liu, and J. Jia, ‘‘Deep convolutional neural network
for image deconvolution,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 1790–1798.

[22] S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang,
‘‘Accelerating magnetic resonance imaging via deep learning,’’ in Proc.
IEEE Int. Symp. Biomed. Imag., Apr. 2016, pp. 514–517.

[23] S. Liu, J. Pan, and M.-H. Yang, ‘‘Learning recursive filters for low-level
vision via a hybrid neural network,’’ inProc. Eur. Conf. Comput. Vis., 2016,
pp. 560–576.

[24] P. Liu, H. Zhang, K. Zhang, L. Lin, andW. Zuo, ‘‘Multi-level wavelet-CNN
for image restoration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Jul. 2018, pp. 773–782.

[25] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR) Workshops, Jul. 2017, vol. 1, no. 2, p. 4.

[26] K. Zhang, W. Zuo, and L. Zhang, ‘‘Learning a single convolutional super-
resolution network for multiple degradations,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., vol. 6, Jun. 2018, pp. 3262–3271.

[27] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
Denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[28] K. Zhang, W. Zuo, S. Gu, and L. Zhang, ‘‘Learning deep CNN denoiser
prior for image restoration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., vol. 2, Jul. 2017, pp. 3929–3938.

[29] S. A. Bigdeli and M. Zwicker, ‘‘Image restoration using autoencod-
ing priors,’’ 2017, arXiv:1703.09964. [Online]. Available: https://arxiv.
org/abs/1703.09964

[30] S. A. Bigdeli, M. Zwicker, P. Favaro, and M. Jin, ‘‘Deep mean-shift priors
for image restoration,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 763–772.

[31] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘‘Extracting and
composing robust features with denoising autoencoders,’’ in Proc. 25th Int.
Conf. Mach. Learn., 2008, pp. 1096–1103.

[32] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700–4708.

VOLUME 7, 2019 150091



M. Zhang et al.: Multi-Noise and Multi-Channel Derived Prior Information for Grayscale IR

[33] E. Agustsson and R. Timofte, ‘‘NTIRE 2017 challenge on single image
super-resolution: Dataset and study,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, Jul. 2017, pp. 1122–1131.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[35] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, ‘‘Image and depth
from a conventional camera with a coded aperture,’’ ACM Trans. Graph.,
vol. 26, no. 3, p. 70, 2007.

[36] D. Zoran and Y. Weiss, ‘‘From learning models of natural image patches
to whole image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 479–486.

[37] R. Liu, L. Ma, Y. Wang, and L. Zhang, ‘‘Learning converged propagations
with deep prior ensemble for image enhancement,’’ IEEE Trans. Image
Process., vol. 28, no. 3, pp. 1528–1543, Mar. 2019.

[38] S. Li, B. Qin, J. Xiao, Q. Liu, Y. Wang, and D. Liang, ‘‘Multi-channel and
multi-model-based autoencoding prior for grayscale image restoration,’’
IEEE Trans. Image Process., vol. 29, pp. 142–156, Jun. 2019.

[39] E. M. Eksioglu, ‘‘Decoupled algorithm for MRI reconstruction using
nonlocal blockmatchingmodel: BM3D-MRI,’’ J.Math. Imag. Vis., vol. 56,
no. 3, pp. 430–440, Nov. 2016.

[40] Y. Yang, J. Sun, H. Li, and Z. Xu, ‘‘Deep ADMM-net for compressive
sensing MRI,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 10–18.

[41] J. Schlemper, J. Caballero, J. V. Hajnal, A. Price, and D. Rueckert, ‘‘A deep
cascade of convolutional neural networks for MR image reconstruction,’’
in Proc. Int. Conf. Inf. Process. Med. Imag. Riverside, CA, USA: Springer,
2017, pp. 647–658.

MINGHUI ZHANG received the B.S. degree
from Chongqing University, Chongqing, in 1990,
majoring in biomedical engineering. He is cur-
rently with the Department of Electronic Informa-
tion Engineering, Nanchang University, Jiangxi,
China. His research interests include image com-
pression and restoration, MRI reconstruction, and
pattern recognition.

YUAN YUAN is currently pursuing the master’s
degree with the School of Information Engineer-
ing, Nanchang University. Her current research
interests include wavelet sparse representations,
deep learning, and image reconstruction.

FENGQIN ZHANG is currently pursuing the
master’s degree with the School of Informa-
tion Engineering, Nanchang University. Her cur-
rent research interests include CT reconstruction,
wavelet transforms, multichannel learning, image
restoration, and deep learning.

SIYUAN WANG is currently pursuing the mas-
ter’s degree with the School of Information
Engineering, Nanchang University. His current
research interests include wavelet transforms,
multichannel learning, compressed sensing, deep
learning, image processing, computer vision, and
MRI.

SHANSHAN WANG received the B.S. degree in
biomedical engineering from Central South Uni-
versity, Hunan, China, in 2009. She is currently
pursuing the Ph.D. degree in biomedical engineer-
ing and computer science as a cotutelle student
with Shanghai Jiao Tong University, Shanghai,
China, and The University of Sydney, Sydney,
NSW, Australia. She is working with the Paul C.
Lauterbur Research Center for Biomedical Imag-
ing, Shenzhen Institute of Advanced Technology.

Her current research interests include inverse problem in medical imaging
and image processing, such asMR/PET image reconstruction, image denois-
ing, and dictionary learning.

QIEGEN LIU received the B.S. degree in applied
mathematics from the Gannan Normal College,
and the M.Sc. degree in computation mathematics
and the Ph.D. degree in biomedical engineering
from Shanghai Jiaotong University. Since 2012,
he has been with the School of Information Engi-
neering, Nanchang University, Nanchang, China,
where he is currently an Associate Professor.
He also holds a postdoctoral position at UIUC
and the University of Calgary. His current research

interests include compressed sensing, image reconstruction, and pattern
recognition.

150092 VOLUME 7, 2019


