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ABSTRACT Community discovery algorithms are important aspects of network science, especially as social
network structures become more complex. Multi-mode social networks have recently become a challenging
and popular topic in this field. At present, inner-mode relationship is mainly considered in community
discovery algorithms for social networks. Thus, the effect of the these methods is not well in clustering as
the intra-mode relationship is not considered in the clustering methods. In this paper, we propose a flexible
and robust clustering framework, MRTA ( the Multi-Similarity Regular Tri-Factorization Algorithm ), based
on non-negative tri-matrix factorization. MRTA has several advantages over the existing methods. First,
it achieves more consistent clustering results based on cluster indicator of inner-mode and intra-mode
relationships of multi-mode networks. Second, it can simultaneously cluster multiple modes, which is
impossible for single-mode clustering algorithms. Finally, it provides a multi-mode clustering solution that is
more robust to noise. We perform an efficient iterative update algorithm, and theoretically prove its accuracy.
Extensive experimental results of a variety of real and synthetic networks demonstrate the effectiveness of
our approach.

INDEX TERMS Cluster indicator, multi-mode social network, non-negative tri-matrix factorization.

I. INTRODUCTION
Ever since Watts proposed the small world phenomenon,
multi-mode and heterogeneous networks have been a subject
of keen interest for network science researchers [1], [4], [5],
[9], [10]. Algorithms for discovering social network com-
munities represent a classic yet challenging problem [21]
for this field of study. Some researchers have proposed that
complex networks have a community structure [22], [23],
i.e., they consist of multiple tightly knitted communities of
varying size. This property allows complex networks to be
examined from an entirely new perspective: the communities
that make up the complex network. For example, in theWeibo
social network, a community would refer to users with the
same interests and hobbies (e.g., music and movies). In a
research cooperation network, a community would consist

The associate editor coordinating the review of this manuscript and
approving it for publication was Maode Ma.

of researchers with the same research interests or field of
study. Several highly effective community discovery algo-
rithms are already available in the literature, like k-means
clustering [15], [24], spectral clustering [13], [25], [26], non-
negative matrix factorization (NMF) [6], [7], [12], [17], [27],
and non-negative matrix tri-factorization (NMTF) [19]–[21],
[28], [29].

In complex social networks, network may be collected
from multiple modes(objects) [2]. For example, Twitter net-
work, as shown in Figure 1, the network includes two differ-
ent modes: user mode and Twitter mode, and corresponding
relationships (interact, post, involve). In many applications,
the relational topic model (RTM) algorithm [30], [31] are
proposed in document network, which used the relationships
in document clustering. Ou-Yang et al. [18] proposed a
multi-network clustering method for multiple protein het-
erogeneous networks. NMF-based combinatorial clustering
algorithms [3], [8], [11], [20] had also been proposed in
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FIGURE 1. Twitter network instance.

FIGURE 2. An example of relationship graph of a three-mode network:
mode a, mode b, and mode c.

multi-mode network. Multi-mode network can fuse more
modes and their interaction relationships, the correctness of
clustering had been improved for existing clustering algo-
rithms based on multi-mode networks.

Despite the success of previous approaches in network
clustering, they still suffer from two limitations. First, they
usually assume that the nodes in different modes are for the
same type of nodes. First, the intra-mode nodes relationships
are one-to-one correspondence. But this assumption may not
be inconsistent with the nature of multi-mode networks. Sec-
ond, existing approaches tend to focus inner-mode relation-
ships and ignore intra-mode relationships thatmay affect their
clustering results. For example, in the Twitter network, a pair
of users may belong to the same community if they publish
similar content on Twitter, even if they rarely interact with
each other.

For social networks, relationship graphs can be constructed
between nodes of the inner-mode and between nodes with
intra-mode. Fig. 2 shows a example mode of a three-mode
network representing a social network. It shows 3 clusters in
mode a, 3 clusters in mode b and 2 clusters in mode c. It is
summarized in Table 1. This model graph describes three key
characteristics inmulti-mode network graphs that are relevant
to cluster indicators:

1) Nodes of the inner-mode will form clustering relation-
ships according to topological similarity, and the nodes

TABLE 1. Cluster pairs in Fig 2.

in such a relationship are typically unrelated to other
modes (e.g., Nodes 1 and 2 in mode a, Nodes 7 and
8 in mode b, and Nodes 6 and 8 in mode c ).

2) If the nodes of two modes are connected, a node
will have two types of connections: with nodes of the
inner-mode and with nodes from other modes. In this
case, the clustering relationship between nodes of the
inner-mode is affected by inter-mode connections (e.g.,
in mode a, Node 4 is connected to Nodes 2 and 5 as
well as Node 1 in mode b ). If the topological similarity
with Node 4 is only considered for nodes of the inner-
mode, ascertaining the clustering of Node 4 is difficult.
In this case, the relationship between Node 4 and the
nodes of other modes may play an important role in
determining its clustering. Because Node 4 of Mode a
is connected to Node 1 of Mode b and Node 1 of Mode
b is also connected to Node 5 of mode a, Node 4 should
be clustered with Node 5 in mode a.

3) Different modes may not have the same number of
nodes or clusters. For example, mode b has 12 nodes,
whereas mode c only has eight nodes. Mode b also has
three clusters while mode c has two clusters.

Based on these advances, we propose a generalized clus-
tering model for multi-mode networks that is based on the
aforementioned clustering-relevant characteristics of multi-
mode network graphs and integrates the characteristics of
social media content with social relationships between dif-
ferent types of entities. The model algorithm is based on
the matrix decomposition of social network relationships and
social media contents and incorporates clustering similarity
relationships for modes of the same type and of different
types. The algorithm also sparsely regularizes the correlation
matrix to enhance its robustness against noise. The proposed
model is a community discovery algorithm called the Multi-
Similarity Regular Tri-factorization Algorithm (MRTA). The
contributions to this paper are summarized below:

1 We propose a community discovery method based on
regularized cluster indicator relationships. We not only
consider the inner-mode relationships of clustering, but
also the intra-mode relationships of clustering. And,
our method also accounts for differences in the size
of the modes and the number of clusters of each
mode. Thus, our model can be adapted to a variety of
applications.

2 Because intra-mode relationships are intrinsically
noisy, this may decrease clustering effectiveness,
the L1-norm regularization is used to reduce the impact
on inconsistent correlations between the clustering pro-
cess. This ensures that the algorithm is robust against
noise.
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3 The proposed model is capable of simultaneously clus-
tering multiple modes and simultaneously enhancing
cluster associations between different modes.

4 The accuracy, robustness and convergence of the pro-
posed model were theoretical analysed. In addition,
it was experimentally assessed with simulated data and
several real multi-mode datasets. The effectiveness of
our method was thus validated theoretically and exper-
imentally.

The rest of this paper is organized as follows: Section II
reviews related studies. Section III shows related models and
preliminaries, presents the verification of the MRTA algo-
rithm,. Section IV describes experimental results from this
study. Section V concludes this study.

II. RELATED WORKS
When spectral clustering is performed with a conven-
tional matrix factorization clustering algorithm, the similar-
ity matrix A is usually assumed to be positive. In practical
applications, however, the similarity matrix is actually non-
negative. The generalized NMF proposed by Ding et al. [15]
is expressed as follows:

min
C,R

J = ||A− CRCT
||
2
F , (1)

where A ∈ Rn×n+ , H ∈ Rn×k+ , and R ∈ Rk×k+ ; A is a non-
negative and non-symmetric positive definite (s.p.d.) similar-
ity matrix; and C is the cluster indicator matrix. According to
Cholesky factorization, A ∼= CRCT . This has been proven to
be the best way to express matrix decomposition in clustering
algorithms, and we refer to this expression as weighted NMF.
Although the objective function is a convex function of any
C or R variable, the objective function of both C and R
would is a non-convex function. Based on the Karush-Kuhn-
Tucker (KKT) optimality condition, Shang et al. [7] and
Meng et al. [8] proposed a multiplicative iterative algorithm
for objective functions in the form of Eq. (1):

Rik ← Rik
(CTAC)ik
(CTCRC)ik

,

Cik ← Cik
(ACR)ik

(CRCTCR)ik
. (2)

Most studies have focused on matrix factorization for
single-mode networks and have generally emphasized the
importance of non-negativity and orthogonality for clus-
tering operations. However, modern information networks
are usually multi-mode networks that contain a variety of
subjects and correlations. The work of Ding et al. [15] on
non-negative matrix factorization has been extended to multi-
mode networks via the tri-factorization method (i.e.,NMTF)
for relational graphs [20], [21], [25], [28], [29]. NMTF-based
clustering adds orthogonality and non-negativity constraints
to matrix factorization to improve clustering accuracy. The
NMTF objective function is

min
F,S,G

J = ||S − FRGT ||2F ,

s.t. F ≥ 0, G ≥ 0, S ≥ 0,FTF = Ik , GTG = Ik . (3)

Likewise, the multiplicative iteration algorithm for G,F, and
R is:

Gik ← Gik

√
(RTFS)ik

(GGTRTFS)ik
,

Fik ← Fik

√
(RGST )ik

(FTFSGTG)ik
,

Rik ← Rik

√
(FT SG)ik

(FTFRGTG)ik
. (4)

In the paper, we focus on the study of NMTF

III. NON-NEGATIVE MATRIX FACTORIZATION BASED ON
CLUSTER INDICATOR SIMILARITY REGULARIZATION
Suppose that there exists a multi-mode network graph with
m modes {D1,D2, . . . ,Dm} and the inner-mode relationships
of each mode may be expressed as a matrix Ap(1 ≤ p ≤ m)
with Spq(1 ≤ p, q ≤ m) being the mode correlation matrix.
The definitions of each symbol are given in Table 1.

In this section, in subsection A, we first define the relations
between the network similarity matrix of cluster indicators.
Then, in subsection B, we present the proposed MRTA.
Finally, in subsection C, we propose an alternating iterative
update algorithm for C and R, prove its convergence, and
analyzed the time complexity of MRTA.

A. MATRIX GRAPH OF CLUSTER INDICATOR SIMILARITY
The relationship between the network similarity matrix and
cluster indicators can be categorized into two cases:

1 In nodes of the inner-mode, a greater similarity
between the i-th and j-th nodes of mode q ((xq)i and
(xq)j, respectively), implies a greater similarity between
their cluster indicators (Cq)i and (Cq)j.

2 In multi-mode nodes, a stronger association between
the i-th node of mode p (xp)i and the j-th node of mode
q (xq)j implies greater similarity between their cluster
indicators ((Cp)i and (Cq)j, respectively).

There are many ways to express the above conditions.
In Case 1, the loss function may be expressed as

W1 =
1
2

nq∑
i,j=1

||(Cq)i − (Cq)j||2F (Aq)ij, (5)

where

(Aq)ij =

{
1 (xq)j ∈ N ((xq)i)
0 otherwise

i, j = 1, 2, . . . , nq, (6)

here, N ((xq)j) is the set of nodes that are adjacent to (xq)i.
Equation (5) may be expressed in matrix form as follows:

W1 =
1
2

nq∑
i,j=1

||(Cq)i − (Cq)j||2F (Aq)ij

=

nq∑
i=1

(Cq)i((Cq)i)T (Dq)ii −
nq∑
i,j=1

(Cq)j((Cq)j)T (Aq)ij
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= tr(CT
q DqCq)− tr(C

T
q AqCq)

= tr(CT
q LqCq), (7)

where the Laplacian matrix of mode p is given by
Lq = Dq−Aq. Dq is the angle matrix (i.e.,(Dq)ii =

∑
j(Aq)ij.

(Cq)i is the cluster indicator vector of node (xq)i.
In Case 2, the loss function cannot be expressed with

functions in the form of Equations (5) − (7) because the
existence of inter-mode relations clearly affects the cluster
indicators of each mode. Because the number of clusters in
eachmode can be different, the number of nodes in eachmode
can also vary. In this paper, the similarity between the cluster
indicators of (xq)i and (xq)j ((Cq)i and (Cq)j, respectively) is
expressed by the cosine similarity. Therefore, the cluster indi-
cator similarity matrix of the nodes in mode q is expressed as
CSq = CqCT

q . The cluster mapping index matrix of the nodes
of mode p in mode q is defined as C̃q = SpqCp. Because this
is also expressed in terms of cosine similarity, C̃Sq = C̃qC̃q

T .
Based on our definition of the cluster indicator similarity,
the loss function is defined as

W2 = ||CSq − C̃Sq||2F
=

∑
p,q

||SpqCp(SpqCp)T − CqCT
q ||

2
F , (8)

in the equation, the similarity association matrix(Spq)
between modes q and p is defined as:

(Spq)ij =

{
1 (xp)j ∈ Npq((xq)i)
0 otherwise

i = 1, 2, . . . , nq, j = 1, 2, . . . np, (9)

whereNpq((xq)i) is the set of adjacent nodes of node i of mode
q ((xq)i) in mode p.

B. MRTA MODEL
Based on the two similarity matrix graphs above, we propose
a non-negative matrix factorization model for a network with
m modes that is based on similarity graph regularization:

JMRTA
=

∑
p,q

||STpq − CpRpqC
T
q ||

2
F + ap

∑
p

tr(CT
p LpCp)

+bpq
∑
p,q

||SpqCp(SpqCp)T − CqCT
q ||

2
F

+cpq
∑
p,q

||Rpq||1

s.t. Rpq ≥ 0,Cp ≥ 0,CpCT
p = Ip, Spq ∈ Rnq×np ,

Cp ∈ Rnp×kp ,Rpq ∈ Rkp×kq , p, q = 1, . . . ,m, (10)

where ap, bpq, and cpq are regularization parameters. ap and
bpq use cluster indicator similarity matrix graphs to bal-
ance the first-order loss function, where as cpq reduces the
noise of the association graph Spq. Because the correlation
matrix or graph is intrinsically noisy, sparse L1-norm regular-
ization is used to reduce the noise. The optimization function
in Eq. (10) is obtained by combining these parts.

C. ITERATIVE UPDATE ALGORITHM
Because MRTA is a non-convex function of Cp,Rpq, and Cq,
directly solving for the global optimum of this model is not
realistically possible. Therefore, we propose an alternating
iterative optimization algorithm where one variable is fixed
while the convex optimization problem of the other variable
is minimized. This approach ultimately produces a stable
solution or local extremum.

1) UPDATING THE Cπ VARIABLE
We must now solve for Eq. (10). According to the KKT
optimality condition, the Lagrangian objective function of
Cπ (J (Cπ )) is

J (Cπ ) =
∑
pπ∈A

||STpπ − CpRpπC
T
π ||

2
F

+

∑
πq∈A

||STπq − CπRπqC
T
q ||

2
F

+

∑
pπ∈A

bpπ ||SpπCp(SpπCp)T − CπCT
π ||

2
F

+

∑
πq∈A

bπq||SπqCπ (SπqCπ )T − CqCT
q ||

2
F

+aπ tr(CT
π LπCπ )− tr(3πC

T
π )

+tr(Γπ (CT
π Cπ − Ikπ )). (11)

To generalize this expression, we calculated the update rules
of mode. In particular, 3π and Γπ are matrices where every
term is a Lagrangian operator. Taking the derivative of L(Cπ )
with respect to Cπ yields

∇Cπ = −2
∑
pπ∈A

SpπCpRpπ + 2
∑
pπ∈A

CπRTpπC
T
p CpRpπ

−2
∑
πq∈A

STπqCqR
T
πq + 2

∑
πq∈A

CπRπqCT
q CqR

T
πq

+2aπLπCπ + 4
∑
πq∈A

bπqSTπqSπqCπC
T
π S

T
πqSπqCπ

+2CπΓπ . (12)

Because of the KKT optimality condition, Cπ ≥ 0. Hence,
3π ◦ Cπ = 0 and ∇Cπ = 0. This yields

Cπ ← Cπ ◦

√
F(Cπ )
M (Cπ )

, (13)

where

F(Cπ )

= 2
∑
pπ∈A

SpπCpRpπ + 2
∑
πq∈A

STπqCqR
T
πq

+2aπL−π Cπ + 4
∑
pπ∈A

bpπSpπCpCT
p S

T
pπCπ

+4
∑
πq∈A

bπqSTπqCqC
T
q SπqCπ , (14)
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M (Cπ )

= CπCT
π [2

∑
pπ∈A

SpπCpRpπ + 2
∑
πq∈A

SπqTCqRTπq

+4
∑
pπ∈A

bpπSpπCpCT
p S

T
pπCπ

+4
∑
πq∈A

bπqSTπqCqC
T
q SπqCπ ]

+4
∑
πq∈A

bπqSTπqSπqCπC
T
π S

T
πqSπqCπ + 2aπL−π Cπ

−4CπCT
π

∑
πq∈A

bπqSTπqSπqCπC
T
π S

T
πqSπqCπ , (15)

here,L−π is the negative part of Lπ , i.e., L−π =
|Lπ |−Lπ

2 . The
symbols ◦, (·)(·) , and

√
· symbols used in this equation are all

operation symbols based on matrix terms.

2) UPDATING THE RPQ VARIABLE
Because of the intrinsic properties of matrices,
tr(AB) = tr(BA), tr(A) = tr(AT ) and ||STpq −
CpRpqCT

q ||
2
F = tr((STpq − CpRpqCT

q )(S
T
pq − CpRpqCT

q )
T ).

Therefore, the Lagrangian objective function of Rpq(J (Rpq))
may be expressed as:

J (Rpq)= tr(SpqSTpq)−2tr(C
T
p S

T
pqCqR

T
pq)

+ tr(CpRpqCT
q CqR

T
pqC

T
p )+cpqRpq−tr(3pqRTpq), (16)

where 3pq is a symmetric matrix in which every term is a
Lagrangian operator. Because Rpq ≥ 0, the Lagrangian of
||Rpq||1 is cpqRpq. Taking the derivative of J (Rpq) with respect
to Rpq yields

∇Rpq = −2C
T
p RpqCq+2C

T
p CpRpqC

T
q Cq+cpq−3pq. (17)

Because KKT optimality requires Rpq ≥ 0, then ∇Rpq = 0
and 3pqRpq = 0. Therefore,

Rpq← Rpq ◦

√√√√ CT
p STpqCq

CT
p CpRpqCT

q Cq +
1
2cpq

. (18)

In summary, MRTA may be described as follows:

3) CONVERGENCE ANALYSIS
To ensure that the alternating update algorithm in Section C.
Causes the objective function to decrease monotonically,
an auxiliary function in an EM-like algorithm is used to verify
the convergence of the objective function.
Definition 1: G(u, u,) is an auxiliary function of F(u) if

G(u, u,) ≥ F(u), and G(u, u) = F(u) is an auxiliary function
of F(u).
Theorem 1: If G is an auxiliary function of F, then F

decreases monotonically with an updating equation in the
following form:

u(t+1) = argmin
u

G(u, u(t)). (19)

Algorithm 1 MRTA for Clustering
Require: m-mode graph, where the similarity matrix of

each mode is Ap, p = 1, 2, . . . ,m, the mode correlation
matrix is Spq, p, q = 1, 2, . . . ,m, and the parameters are
ap, bpq, cpq, p, q = 1, 2, . . . ,m.

Ensure: Clustering of each mode Cp, p = 1, 2, . . . ,m
Normalize all similarity and correlation matrices
for p=1 to m do
randomly initialize Cp as a value in (0, 1]

end for
for p=1 to m do
for q=1 to m do
randomly initialize the cluster association index
matrix Rpq

end for
end for
repeat
for p=1 to m do
update Cp according to Equation (13)

end for
for p=1 to m do
for q=1 to m do
update Rpq according to Equation (18)

end for
end for

until convergence

Proof 1: Because G(u(t+1), u(t)) ≤ G(u(t), u(t)), Defini-
tion 1 then gives F(u(t+1)) ≤ G(u(t+1), u(t)) ≤ G(u(t),
u(t)) = F(u(t)).
Below, we show that the equation for updating Rpq also has
an auxiliary function.
Theorem 2: The following is the auxiliary function

of J (Rpq):

G(Rpq,R(t)pq)

= −2
∑
i,k

(CT
p S

T
pqCq)ik (R

(t)
pq)ik

(
1+

log(Rpq)ik

(R(t)pq)ik

)

+

∑
i,k

(CT
p CpR

(t)
pqCT

q Cq)ik (Rpq)
2
ik

(R(t)pq)ik

+cpq
∑
i,k

(Rpq)2ik + (R(t)pq)2ik
2(R(t)pq)ik

−

∑
i,k

(3pq)ik (R(t)pq)ik
(
1+

log(Rpq)ik

(R(t)pq)ik

)
. (20)

Proof 2: The function F(Rpq) of J (Rpq) that depends only
on Rpq is known to be expressed as follows:

F(Rpq) = −2tr(CT
p S

T
pqCqR

T
pq)+ tr(CpRpqC

T
q CqR

T
pqC

T
p )

+ cpqRpq − tr(3pqRTpq).
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The first term of F(Rpq) is then

−2tr(CT
p S

T
pqCqR

T
pq) = −2

∑
i,k

(CT
p S

T
pqCq)ik (Rpq)ik .

Because Z ≥ 1 + log(Z ) is known, it follows that Z ≥ 0.
If Z = (Rpq)ik

(R(t)pq)ik
, then

(R(t)pq)ik
(
1+ log

(Rpq)ik

(R(t)pq)ik

)
≤ (Rpq)ik .

Hence, the first term of G(Rpq,R
(t)
pq) must be greater

than or equal to the first term of F(Rpq):

−2
∑
i,k

(CT
p S

T
pqCq)ik (R

(t)
pq)ik (1+ log

(Rpq)ik

(R(t)pq)ik
)

≥ −2tr(CT
p S

T
pqCqR

T
pq).

The second term of F(Rpq) is tr(CpRpqCT
q CqR

T
pqC

T
p ) =

tr(RTpqC
T
p CpRpqC

T
q Cq). According to Theorem 6 in [29]:

The second term of G(Rpq,R
(t)
pq) is then greater than or equal

to the second term of F(Rpq):∑
i,k

(CT
p CpR

(t)
pqCT

q Cq)ik (Rpq)
2
ik

(R(t)pq)ik
≥ tr(CpRpqCT

q CqR
T
pqC

T
p ).

Given the inequality where X2
+ Y 2

≥ 2XY ,
X = (R(t)pq)ik ,Y = (Rpq)ik . The third term of G(Rpq,R

(t)
pq)

is greater than or equal to the third term of F(Rpq):

cpq
∑
i,k

(Rpq)2ik + (R(t)pq)2ik
2(R(t)pq)ik

≥ cpq(Rpq)ik .

Like the proof for the first term, the fourth term ofG(Rpq,R
(t)
pq)

is greater than or equal to the fourth term of F(Rpq):

−

∑
i,k

(3pq)ik (R(t)pq)ik (1+
log(Rpq)ik

(R(t)pq)ik
) ≥ −tr(3pqRTpq).

Ergo, G(Rpq,R
(t)
pq) ≥ F(Rpq). Furthermore, when

R(t)pq = Rpq,G(Rpq,Rpq) = F(Rpq).
The updating process based on G(Rpq,R

(t)
pq) is shown

below:

∂G(Rpq,R
(t)
pq)

∂(Rpq)ik
= −2(CT

p S
T
pqCq)ik

(R(t)pq)ik
(Rpq)ik

+2
(CT

p CpR
(t)
pqCT

q Cq)ik (Rpq)ik

(R(t)pq)ik

+cpq
(Rpq)ik

(R(t)pq)ik
− (3pq)ik

(R(t)pq)ik
(Rpq)ik

.

Because ∂G(Rpq,R
(t)
pq)

∂(Rpq)ik
= 0, then

(3pq)ik = −2(CT
p S

T
pqCq)ik + 2

(CT
p CpR

(t)
pqCT

q Cq)ik (Rpq)
2
ik

(R(t)pq)2ik

+cpq
(Rpq)2ik
(R(t)pq)2ik

.

Given that Rpq is non-negative,

(R(t+1)pq )ik ← (R(t)pq)ik

√√√√ (CT
p STpqCq)ik

(CT
p CpR

(t)
pqCT

q Cq)ik +
1
2cpq

.

Because G(Rpq,R
(t)
pq) is the auxiliary function of J (Rpq),

the updating equation causes J (Rpq) to decrease monotoni-
cally.
Theorem 3: The following is the auxiliary function of

J (Cπ ):

G(Cπ ,C (t)
π )

= −2
∑
pπ∈A

∑
i,k

(SpπCpRpπ )ik (C (t)
π )ik (1+ log

(Cπ )ik

(C (t)
π )ik

)

+

∑
pπ∈A

∑
i,k

(C (t)
π RTpπC

T
p CpRpπ )ik (Cπ )

2
ik

(C (t)
π )ik

−2
∑
πq∈A

∑
i,k

(STπqCqR
T
πq)ik (C

(t)
π )ik (1+ log

(Cπ )ik

(C (t)
π )ik

)

+

∑
πq∈A

∑
i,k

(C (t)
π RπqCT

q CqR
T
πq)ik (Cπ )

2
ik

(C (t)
π )ik

+aπ
∑
i,k

((L+π C
(t)
π )ik (Cπ )2ik )

(C (t)
π )ik

−aπ
∑
i,k

(L−π )ik (C
(t)
π (C (t)

π )T )ik (1+ log
(CπCT

π )ik

(C (t)
π (C (t)

π )T )ik
)

−2
∑
pπ∈A

bpπ
∑
i,k

(SpπCpCT
p S

T
pπ )ik (C

(t)
π (C (t)

π )T )ik

(1+ log
(CπCT

π )ik

(C (t)
π (C (t)

π )T )ik
)

+

∑
pπ∈A

bpπ
∑
i,k

(C (t)
π )ik (Cπ )2ik
(C (t)
π )ik

−2
∑
πq∈A

bπq
∑
i,k

(STπqCqC
T
q Sπq)ik (C

(t)
π (C (t)

π )T )ik

(1+ log
(CπCT

π )ik

(C (t)
π (C (t)

π )T )ik
)

+

∑
πq∈A

bπq
∑
i,k

(STπqSπqC
(t)
π (C (t)

π )T STπqSπq)ik (CπC
T
π )

2
ik

(C (t)
π (C (t)

π )T )ik

−

∑
i,k

(3π )ik (C (t)
π )ik (1+ log

(Cπ )ik

(C (t)
π )ik

)

+

∑
i,k

(C (t)
π 0π )ik (Cπ )2ik
(C (t)
π )ik

. (21)

Proof 3: Let

J (Cπ ) =
∑
pπ∈A

||STpπ − CpRpπC
T
π ||

2
F

+

∑
πq∈A

||STπq − CπRπqC
T
q ||

2
F
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+aπ tr(CT
π LπCπ )

+

∑
pπ∈A

bpπ ||SpπCp(SpπCp)T − CπCT
π ||

2
F

+

∑
πq∈A

bπq||SπqCπ (SπqCπ )T − CqCT
q ||

2
F

−tr(3πCT
π )+ tr(3π (C

T
π Cπ − Ikπ ).

If only the part of the expression that is relevant to Cπ is
considered, then

F(Cπ )

=

∑
pπ∈A

(−2tr(CT
p S

T
pπCπR

T
pπ )+ tr(CpRpπC

T
π CπR

T
pπC

T
p ))

+

∑
πq∈A

(−2tr(CT
π S

T
πqCqR

T
πq)+ tr(CπRπqC

T
q CqR

T
πqC

T
π ))

+aπ tr(CT
π L
+
π Cπ )− aπ tr(C

T
π L
−
π Cπ )

+

∑
pπ∈A

bpπ (−2tr(SpπCpCT
p S

T
pπCπC

T
π )+ tr(CπC

T
π ))

+

∑
πq∈A

bπqtr(SπqCπCT
π S

T
πqSπqCπC

T
π S

T
πq

−2SπqCπCT
π S

T
πqCqC

T
q )− tr(3πC

T
π )

+tr(π (CT
π Cπ − Ikπ ).

Therefore, according to the properties of traces
tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC),
tr(ATB) = tr(ABT ) = tr(BTA) = tr(BAT ) =

∑
i,k AikBik

We have

tr(CT
p S

T
pπCπR

T
pπ )

= tr(RTpπS
T
pπC

T
p Cπ ) =

∑
i,k

(CpSpπRpπ )ik (Cπ )ik .

because (C (t)
π )ik (1+ log

(Cπ )ik
(C (t)
π )ik

) ≤ (Cπ )ik Therefore,∑
i,k

(CpSpπRpπ )ik (C (t)
π )ik (1+log

(Cπ )ik

(C (t)
π )ik

)

≤ tr(CT
p S

T
pπCπR

T
pπ ).

Similarly,

−2tr(STπqCqR
T
πqC

T
π ) = −2

∑
i,k

(STπqCqR
T
πq)ik (Cπ )ik

≤ −2
∑
i,k

(STπqCqR
T
πq)ik (C

(t)
π )ik (1+ log

(Cπ )ik

(C (t)
π )ik

).

According to Theorem 6 in [29],

tr(CπRπqCT
q CqR

T
πqC

T
π ) = tr(CT

π CπRπqC
T
q CqR

T
πq)

≤

∑
i,k

(C (t)
π RπqCT

q CqR
T
πq)ik (Cπ )

2
ik

(C (t)
π )ik

.

No further elaboration is provided since the proof is similar to
the one given above. The auxiliary function described above
is thus obtained.

The convergence of F(Cπ ) when updated by Cπ ←

Cπ ◦
√

F(Cπ
M (Cπ )

is similar to the updating process based on

G(Rpq,R
(t)
pq). Because G(Cπ ,C

(t)
π ) ≥ F(Cπ ),G(Cπ ,Cπ ) =

F(Cπ ), and
∂G(Cπ ,C

(t)
π )

∂(Cπ )ik
= 0 are established, it can be readily

demonstrated that Cπ ← Cπ ◦
√

F(Cπ
M (Cπ )

under the KKT
optimality condition. However, we have chosen to omit this
detail since the proof is similar to the one above and to limit
the length of this paper.

4) COMPLEXITY ANALYSIS
The time complexity of MRTA is examined in this section.
First, the updating of Rpq and Cπ involves matrix multiplica-
tions. The time complexity of Cπ is O(tm(n̂2k̂ + n̂k̂2 + n̂3)),
where m is the number of modes in the network, n̂ is the
maximum value of np, k̂ is the maximum value of kp, and
t is the number of iterations needed for convergence. For
example, Eq.(13) shows that n̂3 can be obtained from the
matrix multiplication of STπqSπq. The time complexity of Rpq
is O(tm(n̂2k̂ + n̂k̂2 + k̂3)). Similarly, Eq. (18) shows that n̂2k̂
can be calculated from the matrix multiplication of CT

p Cp.
Therefore, the total time complexity of MRTA is O(tm(n̂2k̂+
n̂k̂2 + n̂3)).

IV. EXPERIMENTAL VALIDATION
A. DATA SETS
To evaluate the efficiency of our proposed MRTA, we test
them on three social network datasets were used in this exper-
iment: Politics-UK, Politics-IE and DBLP in the following
experiments. We give more descriptions for these three social
datasets:

The Politics-UK dataset contained the Twitter content
and social network relationships of 419 Members of Par-
liament (MPs) in the United Kingdom from five different
parties. The Politics-IE dataset contained the Twitter content
and social network relationships of 348 MPs in Ireland from
seven different parties. The association relationships and data
contents of the Politics-UK and Politics-IE datasets consisted
of the follower relationships and tweets of the MPs.

The DBLP bibliography contained 8293 papers published
by 6604 authors in 16 top-level conferences across four fields
of study. The details are presented in Table 2. We focused on
the author and conference modes of the DBLP dataset. The
relationships between the author and conference modes are
shown in Fig. 1.In the DBLP dataset, the similarity matrix A1
of theG1 data mode (conferences) was the cosine between the
eigenvectors of two conferences, i.e., A1 = cos(F1,F2). The
G2 data mode (authors) represented collaborations between
authors; in other words, each A(i,j)2 term in the similarity
matrix A2 of G2 represents the number of collaborations
between the i-th and j-th authors. The author-conference
correlation matrix reflects the number of articles published
by an author in a conference, while the paper-conference
correlation matrix reflects the publication of a paper in a con-
ference. Finally, the author- paper correlation matrix reflects
the writing of a paper by an author.
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TABLE 2. Description of various symbols.

TABLE 3. Brief Statistics of Datasets.

B. PARAMETER SELECTION AND EVALUATION METRICS
To facilitate the assessment of our algorithm, all of the
algorithms was tuned for leave-one-out cross validation. The
proposed MRTA had three parameters: the same-mode simi-
larity regularization parameter (ap), two-mode similarity reg-
ularization parameter (bpq), and robustness parameter (cpq).
The same values were assigned to these parameters in all
of the following experiments. The number of clusters was
equal to the number of types of data, and the performance
of each algorithm was evaluated according to the clustering
accuracy (ACC) and normalized mutual information (NMI)
indices. The evaluating indices were defined as follows:
Definition 2: Clustering accuracy (ACC):

ACC =

∑n
i=1 δ(C̃i,map(C̃i))

n
. (22)

C̃i and Ci correspond to the cluster indicator vector of xi
and the cluster indicator vector calculated by the clustering
algorithm, respectively. δ(x, y) is a delta function that is 1 if x
and y are identical and 0 otherwise. The map function is the
optimal mapping function. A higher ACC value indicates that
the clustering algorithm is more effective.
Definition 3: Normalized mutual information (NMI):

NMI =
MI (C̃,C)

max(H (C̃),H (C))
. (23)

MI (C̃,C) is the mutual information of C̃ and C, while H (C̃)
and H (C) are the information entropies of C̃ and C, respec-
tively. A higher NMI indicates that the clustering algorithm
is better quality.

C. COMPARATIVE ALGORITHMS
To demonstrate the effectiveness of our algorithm, we com-
pared our algorithm with Spectral clustering (SC) [32],
theNon-symmetricmatrix factorization(SNMF) [6], theNon-
negative tri-factorization NMTF [20] and The relational topic

FIGURE 3. ACC with the Politics-UK, Politics-IE, and DBLP datasets.

FIGURE 4. NMI with the Politics-UK, Politics-IE, and DBLP datasets.

model (RTM) [30]. The comparative algorithms are all listed
below. MRTA was compared to the following algorithms:
(1) SC is a matrix decomposition algorithm based on the

graph similarity matrix A that calculates the k the
largest singular eigenvectors of this matrix. Graph clus-
tering is then performed by applying the k-means clus-
tering algorithm to these eigenvectors.

(2) SNMF is a binary matrix factorization algorithm based
on the graph similarity matrix A that uses an opti-
mization algorithm to obtain the values of the cluster
indicators.

(3) NMTF is a matrix tri-factorization algorithm based
on the correlation matrix S that uses an optimization
algorithm to obtain the values of the cluster indicators.

(4) RTM models inter-mode links S as a random binary
number. RTM is a clustering matrix factorization algo-
rithm that uses the graph similarity matrix A as a refer-
ence and inter-mode links S as regularization terms.

D. PERFORMANCE ANALYSIS
The effectiveness of MRTA was assessed via comparisons
with conceptually similar matrix factorization algorithms.
Spectral clustering and SNMF are matrix factorization algo-
rithms meant for single-mode data, whereas NMTF, RTM,
and MRTA are matrix factorization algorithms meant for
multi-mode data. The proposed MRTA is based on matrix
factorization but also considers the data content and the
relationship between the mode correlation matrix and cluster
indicator matrix.

In the following experiment, we compiled the clustering
results obtained by the authors of eachmethod. The clustering
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FIGURE 5. ACC as a function of the percentage increase of noise in R12
on with the simulated network: (a) G1 and (b) G2.

TABLE 4. Number of Iterations to Converge.

quality of each clustering algorithm was then compared via
ACC and NMI.

The averaged clustering results obtained by MRTA
and the four above algorithms after 30 trials are shown
in Figs. 3 and 4. For multi-mode social networks, matrix
factorization methods that considered correlated relations
showed markedly better clustering effectiveness than matrix
factorization methods that only considered the contents of
the social network data. This is because social relationships
reflect a users interests more accurately than social network
data because a user can publish a wide variety of data in social
networks. MRTA had the best clustering effectiveness of the
five algorithms because it also incorporates a correlation
matrix as well as the relationship between the data content
and cluster indicators.

E. ROBUSTNESS ANALYSIS
Two simulated data networks (G1 andG2) were constructed to
compare the robustness of MRTA to that of RTM and NMTF.
Only multi-mode clustering algorithms were included in this
comparison because the robustness analysis was conducted
by adding noise to the correlation data.

Fig. 5 shows that MRTA produced better clustering
results than NMTF and RTM with varying noise levels.

FIGURE 6. ACC as a function of the percentage increase of noise in R12
on with the DBLP dataset: (a) conference network G1 and (b) author
network G2.

FIGURE 7. Convergence curves of the MRTA with the simulated and
Politics-IE datasets: (a) simulated network G1, (b) the Politics-IE dataset.

Fig. 5(a) shows that MRTA had a gradually decreasing ACC
with increasing noise, whereas RTM and NMTF exhibited
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substantial fluctuations in ACC with increasing noise. Thus,
MRTA is more robust than other currently available multi-
mode clustering algorithms.

To further assess the robustness ofMRTA, it was compared
with the above algorithms when noise was added in varying
proportions to the author-conference correlation matrix of
the DBLP dataset (a real dataset). The details of this dataset
are given in Table 2. Fig. 6 shows that the clustering of the
conference mode was generally immune to noise, whereas
the clustering of the author mode was sensitive to noise. This
was mainly because similar authors are more likely to publish
articles in similar conferences. MRTA still outperformed all
other algorithms in terms of robustness.

F. CONVERGENCE ANALYSIS
The convergence analysis was conducted by plotting the
convergence of MRTA when clustering the simulated dataset
and Politics-IE dataset. Fig. 7 illustrates the convergence of
the simulated dataset and Politics-IE dataset with a varying
number of iterations. TABLE 4 describes the number of
iterations to converge. The number of iterations required for
convergence increased with the network size. Nonetheless,
the objective function always converged to a fixed value as
the number of iterations increased.

V. CONCLUSION
We propose MRTA as a novel method for clustering multi-
mode social networks. MRTA is a clustering algorithm that is
well-suited to the characteristics of modern social networks.
Because of the non-negativity and orthogonality of cluster
indicators in matrix tri-factorization clustering algorithms,
MRTA is also constrained by similarity relationships between
cluster indicators of the inner-mode or different modes. These
constraints are based on the relationship between cluster indi-
cators and the similarity graph of data belonging to the inner-
mode as well as the relationship between cluster indicators
and the mode correlation graph. This approach provides a
more accurate reflection of the cluster indicator relationships
of multi-mode social networks under conventional cluster
indicator constraints.

The proposed MRTA is based on two clustering relation-
ship graphs: single-mode cluster indicator relationship graphs
and multi-mode cluster indicator relationship graphs. These
graphs are based on the three features of social network
data proposed in this work. MRTA also includes measures to
improve its robustness with respect to multi-mode correlation
relationships. In reality, network data tend to contain a large
number of uncertainties (i.e., noise), which interferes with
clustering operations. Therefore, the resistance of the cluster-
ing algorithms performance to noise needs to be strengthened
to improve its robustness.

An alternating iterative update rule was derived, and the
accuracy and convergence of the iterative algorithm were
validated via auxiliary functions. MRTA was experimen-
tally validated via performance, robustness, and convergence
analyses with simulated and real social network datasets.

The numerous experimental analyses showed thatMRTA out-
performed currently available clustering algorithms in terms
of the clustering quality and robustness.
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