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ABSTRACT It is very important to understand the input features and the neural network parameters required
for optimal path loss prediction in wireless communication channels. In this paper, an extensive investigation
was conducted to determine the most appropriate neural network parameters for path loss prediction in Very
High Frequency (VHF) band. Field measurements were conducted in an urban propagation environment to
obtain relevant geographical and network information about the receiving mobile equipment and quantify
the path losses of radio signals transmitted at 189.25 MHz and 479.25 MHz. Different neural network
architectures were trained with varying kinds of input parameters, number of hidden neurons, activation
functions, and learning algorithms to accurately predict corresponding path loss values. At the end of the
experimentations, the performance of the developed Artificial Neural Network (ANN) models are evaluated
using the following statistical metrics:Mean Absolute Error (MAE),Mean Squared Error (MSE), RootMean
Squared Error (RMSE), Standard Deviation (SD) and Regression coefficient (R). Results obtained show
that the ANN model that yielded the best performance employed four input variables (latitude, longitude,
elevation, and distance), nine hidden neurons, hyperbolic tangent sigmoid (tansig) activation function, and
the Levenberg-Marquardt (LM) learning algorithm with MAE, MSE, RMSE, SD and R values of 0.58 dB,
0.66 dB, 0.81 dB, 0.56 dB and 0.99 respectively. Finally, a comparative analysis of the developed model with
Hata, COST 231, ECC-33 and Egli models showed that ANN-based path loss model has better prediction
accuracy and generalization ability than the empirical models.

INDEX TERMS Artificial neural network, path loss, radio propagation, wireless channel, machine learning.

I. INTRODUCTION
Wireless communication is fast evolving with diverse dis-
ruptive enabling technologies, thereby leading to a serious
demand for high quality signal strength and larger net-
work capacity [1]. Information and Communication Tech-
nology (ICT) has been identified as a veritable tool for
the achievement of Sustainable Development Goals (SDGs)
by 2030 [2]. However, wireless connectivity and coverage
required for sustainable digital transformation is still not
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globally available; and this poses a challenge to the timely
accomplishment of the desired SDGs. With this in mind, it is
evident that the extension of the wireless connectivity and
coverage to the yet-to-be-reached population would facilitate
global digital transformation, thus providing the necessary
technology required for the development of ICT services in
the underserved areas. In a bid to design efficient wireless
communication systems, the propagation factors affecting
the radio channel often pose serious challenges to radio
network engineers whose responsibility is to ensure that
subscribers are provided with high speed Internet services
at optimum Received Signal Strength (RSS) [3]. For such
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efficient network design to be achieved, accurate and reliable
path loss models are highly essential for radio network cov-
erage and signal interference predictions.

Path loss is a form of signal fading which occurs due
to attenuation of signal power between the receiving and
transmitting stations [4]. The signal attenuation is mainly
due to physical propagation mechanisms such as reflection,
refraction, diffraction and scattering. Prediction models can
be used to determine the most suitable location for wireless
communication system deployment [5]. Improper placement
of base stations in a wireless system will result in poor
network performance and low Quality of Service (QoS). It is,
therefore, helpful to develop an optimal path loss predic-
tion model for the design of efficient and effective wireless
communication systems. Moreover, radio network engineers
have no control over the physical obstructions in the wireless
channel. The simple solution is to correctly account for all
losses in the wireless channel during radio network planning
and optimization processes.

Radio propagation models are mathematical functions that
characterize radio wave propagation in a given environment
based on certain terrain and network information about the
transmitter, the receiver and the propagation environment.
Deterministic propagation models are based on physical laws
of wave propagation [6] and they produce accurate prediction
results but with high computational complexity. On the other
hand, empirical propagation models are simpler and easier to
use because they are dependent on observations and measure-
ments carried out in a given environment [7]. However, they
tend to produce higher prediction errors than deterministic
models.

Machine learning is a technique aimed at improving system
performance based on a flexible model architecture and good
amount of appropriate data. Recently, machine learning has
gained recognition in several fields including autonomous
driving, computer vision, speech recognition etc. Previous
studies have considered the suitability of different machine
learning techniques for path loss prediction [8]–[12].

Artificial Neural Network (ANN) is an adaptive system
which makes modifications to its structure and response char-
acteristics in the course of a training process [13]. The ideol-
ogy behind the neural network is derived from the biological
nervous system. ANNs are referred to as adaptive statistical
tools which are capable of modeling the behavior of the
biological nervous systems in information processing. ANN
behaves in a similar way to human beings in the sense that,
with the aid of some examples related to a given process,
they are able to represent that process. In essence, ANN
learns by example. Due to their flexibility and simplicity,
their applications in tough areas (such as pattern recognition,
regression) have proven to be successful in several fields like
physics, medicine, engineering, statistics and econometrics.
A suitable algorithm is employed for training the preferred
model in a controlled manner, bearing the generalization fac-
tor in mind. Generalization in a neural network occurs when
developed ANN model demonstrate the ability to properly

obtain the input-output mapping for test data excluded from
the training data set. In general, the generalization ability
of a neural network is strictly associated its complex-ability.
In fact, the more complex a network is, the poorer its pro-
cess approximation on points not included in the training
set (that is, the testing set). The phenomenon is regarded as
overfitting.However, a simple model is also not ideal due to
its inability to provide a good fit to the training data.

The idea of ANN was introduced to path loss predictions
with the aim of overcoming the shortcomings of the empirical
and deterministic models [8]. ANNmodels have proven to be
easier to deploy than deterministic models and they are also
more accurate than empirical models [14]. In addition, ANN
can be adapted for path loss predictions in rural, suburban
and urban propagation environments. Basically, path loss
prediction is classified as a regression problem. In this case,
ANNmodel is trained with field measured data to understand
the non-linear relationship between the output variable (path
loss) and the dependent/input variables such as the frequency
of transmission, building height, receiver antenna height,
transmitter antenna height, separation distance between the
base station and the mobile station etc. Determination of
the appropriate input/feature vector and the correct setting
of neural network parameters needed for optimal path loss
prediction is very crucial. This is the motivation for this
present study. The rest of the paper is organized as follows:
Section II presents the review of related work and main con-
tributions; Section III presents the measurement set-up and
data collection process as well as the training, validation and
testing of ANN models; Section IV presents and discusses
results obtained from the experimentations; and Section V
concludes the paper.

II. REVIEW OF RELATED WORK AND MAIN
CONTRIBUTIONS
Many researchers have developed ANN models for path
loss predictions. Piacentini and Rinaldi [15] proposed the
use of machine learning and dimensionality reduction tech-
niques for path loss prediction. The authors assessed the
effects of dimensionality reduction on path loss prediction
accuracy. Also, the abilities of ANN and Support Vector
Machines (SVM) to efficiently solve the regression prob-
lem were examined. For the ANN model, a two-layered
multilayer perceptron was selected as the neural network
architecture and its generalization ability was evaluated using
cross-validation technique. SVMs were trained usingLibrary
for Support Vector Machines (LIBSVM)while Fortran 90was
used to implement the algorithms for dimensionality reduc-
tion techniques. It was reported that dimensionality reduction
improved the prediction accuracy of the machine learning
models but ANN yielded better results than SVM.

Eichie at al. [16] and Popescu et al. [17] investigated the
analysis of empirical models and ANN model for path loss
prediction. The ANN inputs were propagation parameters
and the radio network data were acquired through drive test
along preferred suburban and rural routes. The prediction
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results of the ANN model were compared with the ones
obtained based on the use of basic empirical path loss models
namely: Egli, COST-231, Hata and Ericsson models. ANN-
based path loss model yielded better results when compared
to basic models. The authors concluded that ANN model is
useful for accurate path loss prediction in rural and suburban
propagation environments.

Cerri et al. [18] suggested the use of Multi-Layer Percep-
tron (MLP) for path loss prediction in urban areas. ANN was
trained using backpropagation (BP) algorithm. Comparison
of results with analytical models showed that the proposed
method is efficient for radio network planning and optimiza-
tion. Sotiroudis and Siakavara [19] also proposed the use
of ANN models for prediction of path loss in urban areas.
Their work seems similar to other general research works
but they aimed at discovering the needed amount and kind
of information to be used as network inputs. The network
input information is the terrain profile of the propagation
environment and the data provided is of minimal amount. The
results of the proposed ANN model proved that the model
was capable of predicting path loss in urban (randomly-built)
environment. More importantly, working with a small num-
ber of inputs with detailed specifications of the propagation
also yielded significant accuracy, which turned to be better
than previously proposed ANN methodologies. The work
revealed that the developed model is effective in performing
path loss prediction.

Sotiroudis et al. [20] provided an alternative approach
for the prediction of path loss in urban areas by applying
a Differential Evolution (DE) algorithm, called Composite
DE (CoDE) in developing an optimal ANN. The authors
proposed a methodology for achieving optimum ANN. The
results of CoDE were compared with those obtained from
various DE strategies. It was reported that CoDE was highly
effective with the advantages of being easy to implement and
modifiable. Also, two ANN architectures with two and three
hidden layers were evaluated using CoDE, and the perfor-
mance proved their effectiveness and accuracy in yielding
expected results. The final results were compared with results
yielded by ray-tracing model, and the proposed method
showed better accuracy. Further work was recommended to
improve generalization and approximation abilities of the
ANN by utilizing data sets for non-uniform built-up environ-
ments.

Kalakh et al. [21] developed a neural network model for
Ultra-Wide Band (UWB) channel path loss in a mine envi-
ronment. The authors aimed at presenting this model with
a focus on alterations in path loss attenuation with respect
to time and distance. Neural network model was built using
the MLP architecture while employing the backpropagation
algorithm for the training. The results obtained from the neu-
ral network training and testing were compared with experi-
mental measured values. The neural network model correctly
predicted the changes in the path loss attenuation, while
providing sufficient accuracy with the experimental measure-
ments. The work revealed the significance and efficiency of

neural networks for path loss prediction in a typical harsh
environment (in this case, a mine).

Popescu et al. [22] also applied neural networks for the
prediction of path loss in urban environments, but in this
case, two separate neural networkmodels were considered for
Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) cases.
In the LOS case, relevant data (including transmitter and
receiver distance, height of buildings, streets width, sepa-
ration of building and transmitting antenna position with
respect to the rooftop) were used to train the ANNmodel. For
the NLOS case, two ANNmodels were built. The first model
was trained with the same parameters from the LOS case
while the second model was built with the same parameters,
also including diffraction losses computed by COST231-
Walfisch-Ikegami algorithm. The ‘‘hybrid network’’, which
combined path loss algorithms, network data and the neu-
ral network approach, yielded better results with acceptable
accuracy.

Ostlin et al. [14] suggested the use of ANN for macrocell
path loss prediction. In order to train and test the model,
data obtained from a commercial code division multiple
access were used. The feed-forward neural network archi-
tecture was used alongside two backpropagation algorithms
namely: Levenberg-Marquardt (LM) and Scale Conjugate
Gradient (SCG). Base station distance, vegetation type, land
usage, terrain path profile parameters and density near receiv-
ing antenna were used as the inputs. The path loss prediction
results from the ANN model were compared with two other
propagation models (Recommendation ITU-R P.1546 and the
Okumura-Hata model) to reveal that the trained ANN model
produced results with better accurate prediction. Although the
research work yielded good results, large path loss changes
could not be predicted as there was an absence of databases
for the topography. However, they authors proposed future
work, which would include specified training data with a
wider range of the propagation problem, thereby improving
generalization properties and accuracy of the neural network
model.

Liu et al. [23] proposed an Single Hidden Layer Feedfor-
ward Neural Network (SHLFNN) method for the modelling
of fading channels (path loss prediction), including small-
scale variation and large-scale attenuation. For small-scale
variation, two algorithms (ELM and LM) were employed
in training the neural network and the results showed that
ELM was as effective as the BP algorithm. For large-scale
attenuation, the ELM estimator required for the path loss
prediction exponent was established and it yielded results
with higher speed when compared to the BP algorithm. These
results proved the effectiveness of the ELM algorithm in the
neural network model.

Zaarour et al. [24] present an experimental study for mod-
elling path loss in UWB channel in a mine environment by
implementing Radial Basis Function (RBF) and MLP with
a focus on variations in path loss attenuation with respect
to distance and frequency. This was considered a differ-
ent approach in path loss modeling in a mine environment.
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The results obtained showed the efficiency of the RBF in
modeling path loss as it provided a lower error rate and higher
accuracy in path loss prediction. The authors concluded that
the research work would help in determining the best ANN
type for modeling the channel in a mine environment.

Fernández Anitzine et al. [25] provided an analysis based
on ANNs for the prediction of path loss in both indoor and
outdoor links. They aimed at providing a means of properly
selecting training set for the development of an effective
ANN model, which entailed the use of the LM algorithm for
the training process. The authors focused on implementing
a simplified ray-tracing tool (for the identification of the
‘‘dominant path’’), combined with ANN inputs derived from
the calculation of a number of propagation parameters. The
results of the training were compared with measurements
different from those used in the training process, and it proved
that ANN was more accurate, as its input parameters, which
were acquired from the ray-tracer were similar for adjacent
points along the route. In addition, a complete and detailed
description of the training process was presented, with a focus
on selecting an optimum training dataset.

Zineb and Ayadi [26] developed a new propagation model
using ANN. Neural networks and data mining techniques
were combined to develop a newmodel. The proposedmodel,
derived from the multi-wall model was intended for the
most popular frequency bands including UMTS, GSM and
WiFi. The neural network was modelled using MLP frame-
work, and it was trained with measured data (including fre-
quency, floor attenuation, transmitter-receiver distance and
frequency) utilizing the BP learning algorithm. The results
derived from the ANN-based multi-wall multi-frequency
(ANN-based MWMF) model showed better performance
and higher accuracy as compared to a calibrated multi-wall
model. The authors suggested that the results obtained could
be improved by including other parameters, not contained in
the model e.g. diffraction loss, body shadowing, and so on.

Gómez-Pérez et al. [27] recommended the use of ANN
for attenuation modeling prompted by vegetation barriers at
cellular frequency bands of 2G to 4G. MLP architecture was
used, and trained with measurements of various configura-
tions of vegetation barriers (such as barrier thickness, vege-
tation density, foliage, polarization, frequency, trunk density
of vegetation specie and receiver position along the linear
rail) as well as vegetation species at frequency bands of 900,
1800 and 2100MHz. After training and testing, comparisons
were carried out with the obtained inferred attenuation of the
ANN and the experimental data. In addition, various inferred
attenuations were compared, where the obtained ANN results
were also compared with path loss obtained by ITU-R rec-
ommendation and linear regression. As a result of these com-
parisons, it was shown that the model was highly efficient
in predicting accurate attenuation in the specified frequency
bands, while retaining low median error. It was suggested
that the model would be highly beneficial to radio network
planners in predicting the attenuation caused by vegetation
formation. However, the frequency bands used in this model

can be extended to higher frequencies (such as Wi-Fi, Wi-
Max or 5G frequency bands), provided appropriate training
is carried out.

Popoola et al. [9] established an optimal model for the
prediction of path loss utilizing feed-forward neural net-
works. In order to obtain input data, drive test measure-
ments were conducted at varying distances from several base
station transmitters. SHLFNN was trained with the derived
data (including elevation, clutter height, longitude, altitude,
latitude) using LM algorithm. Afterwards, the ANN model
performance was evaluated. The results derived from model
were compared with popular empirical models (COST231,
Egli, Hata and ECC-33) [7], [28], [29] to reveal the optimal
performance of the ANN model in improving accuracy and
generalization ability. In future, more data can be sourced
from various propagation environments and other machine
learning techniques can be exploited as well.

Eichie et al. [30] established a model based on neural net-
works for the determination of GSMRSS level with the use of
atmospheric factors (e.g. relative humidity, atmospheric tem-
perature, dew point). These atmospheric factors were used as
the inputs for the ANN model and trained with the aid of the
LM algorithm. The development of the model was a three-
strep approach. Firstly, the required data were acquired; then
the data collected were pre-processed; finally, the proposed
ANNmodel was designed and implemented using the weight
and bias values to form model equation. The results obtained
showed that the developed model performed optimally with
low MSE and acceptable accuracy values.

Benmus et al. [13] proposed the prediction of path loss
at 900, 1800, and 2100 MHz bands by means of the neural
network approach. They collected measurements from five
different areas namely; urban, dense-urban, suburban, dense-
suburban and rural areas, at the specified frequency bands,
which were used for the model training and evaluation. The
results derived from the model were compared with Hata
model by evaluating performance based on the MSE. The
MSE for the proposed model was lower than that of the Hata
model, while maintaining a high level of accuracy.

Bhuvaneshwari et al. [31] evaluated three dynamic
neural networks namely: Focused Time Delay Neu-
ral Network (FTDNN), Distributed Time Delay Neural
Network (DTDNN) and Layer Recurrent Neural Net-
work (LRNN) for the path loss prediction in a bid to minimize
errors between the measurements and simulations. Each of
the dynamic neural networks were trained with LM and SCG
training algorithms. Performance evaluation was analyzed
with respect to the correlation between measurements and
simulations, the ME value and the SD value. Results showed
that LRNN provided the best performance with increased
computation time, while the FTDNN performed better than
the DTDNN.

Angeles and Dadios [32] proposed an alternative ANN
model for the prediction of path loss in digital TVmacrocells.
The model was designed using the Longley-Rice simulation,
with the aid of a feedforward neural network architecture
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TABLE 1. Taxonomy of related studies based on network parameter
optimization.

and trained using a BP algorithm. The results derived from
the prediction model was of better performance compared
to other propagation models such as free space propagation
model and the Egli model. The developed model was able to
adapt to arbitrary environments. The effects of multiple trans-
mitter locations and the positioning of the receivers higher
than a transmitter can be investigated in future work.

Ferreira et al. [33] utilized ANN for the purpose of
improving the prediction of the outdoor signal strength in
the Ultra High Frequency (UHF) band. Measurements were
conducted at 1140 MHz in an urban environment, while
RSSL was measured using the Delta-Bullington method and
Cascade Knife Edge, both available in ITU-R. Input such
as transmitter-receiver distance, diffraction loss and signal
strength prediction were fed into the ANN, which showed
great effectiveness in predicting RSS. The results obtained
from the study revealed that ANN can be used as a supple-
ment tool for ITU prediction models.

Ayadi et al. [34] developed a UHF path loss model based
on neural networks for heterogeneous networks. Conducted
measurements were split into two: one for model training
while the other was used for model validation. The pro-
posed neural network-based model made use of the BP
algorithm, while obtaining inputs from Standard Propagation
Model (SPM) and an addition of various parameters such as
diffraction loss, type of environment, frequency and land use

TABLE 2. Taxonomy of related studies based on measurement location
and signal frequency.

distribution. Comparison of results from the neural network
model with results obtained from SPM and ITU-R models
showed the accuracy of the developed model.

In conclusion, the review of related works is organized
into four categories of 20 criteria. The details extracted from
21 related articles are presented in Tables 1-4. Category 1
(network parameter optimization) include: (a) varying input
data variables; (b) varying hidden layer activation func-
tion; (c) varying output layer activation function; (d) vary-
ing learning algorithms; and (e) varying number of hidden
neurons. Category 2 (measurement location and signal fre-
quency) include: (a)measurement location (city and country);
(b) frequency band; and (c) signal frequency. Category 3
(neural network configuration and training parameters)
include: (a) input data variables; (b) data pre-processing;
(c) activation functions; (d) number of hidden layer and
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TABLE 3. Taxonomy of related studies based on neural network configuration and training parameters.

neurons; (e) learning algorithms; and (f) performance met-
rics. Category 4 (performance evaluation results) include:
(a) Mean Error (ME); (b) Mean Absolute Error (MAE);

(c) Mean Square Error (MSE); (d) Root Mean Square Error
(RMSE); (e) Standard Deviation (SD) and; (f) Regression
Coefficient (R).
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TABLE 3. (continued.) Taxonomy of related studies based on neural network configuration and training parameters.

In the process of literature review, 21 related articles were
identified and thoroughly reviewed. To the best of our knowl-
edge:

Table 1 shows that there is no single study that performed
extensive neural network parameter optimization to guaran-
tee high model accuracy and better generalization ability.
In this new study, different ANN parameters were optimized
to minimize path loss prediction error. The optimization
experimentations include varying the: (a) input data variables;
(b) hidden layer activation function; (c) output layer acti-
vation function; (d) learning algorithms; and (e) number of
hidden neurons.

Table 2 shows that previous ANN modelling in the liter-
ature employed measurement data that were collected from
radio networks which transmit signals at frequencies above
Very High Frequency (VHF) band. Meanwhile, VHF signal

range is 30-300 MHz. However, majority of the reviewed
work focused on UHF networks [9], [15]–[17], [19], [14],
[22], [23], [13], [25]–[34]; two studies focused on Super High
Frequency (SHF) network [21], [24]; while the remaining
seven studies employed simulated data for ANN-based path
loss modelling [18]–[20], [23], [25], [27], [32]. Given the
same propagation environment, the behaviour of radio signals
often changes with varying transmission frequency. Also,
only two of the 21 studies were conducted to capture the
unique features of Nigerian propagation terrain. However,
these studies focused on a different city other than the one
selected for this present study. Therefore, this present study
seeks to develop ANN model for path loss predictions based
on real data obtained from a typical VHF radio network oper-
ating at 189.25 MHz in an urban propagation environment
(Benin City, Nigeria).
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TABLE 4. Taxonomy of related studies based on performance evaluation results.

In order to ensure good ANN model generalization,
the developedmodel must performwell when tested with data
that are different from the previously used training data. In the
literature [9], [14]–[27], [13], [30]–[34], developed ANN
path loss models were tested with data obtained from radio
networks that operate at the same signal frequency as that of
the training data. In this new study, ANN path loss model
was developed using RSS data obtained from VHF network
(NTA-BENIN, 189.25MHz); while the generalization ability
of the developed ANN path loss model was tested using six
subsets of data collected from UHF network (ITV-BENIN,
479.25 MHz).

Table 3 shows that this new study considered a wider
range of parameters for both neural network configuration
and model training in terms of input data variables, data
heterogeneity, activation functions, number of hidden layer
and neurons, learning algorithms, and performance metrics.

As shown in Table 4, this new study employs all the six
model performance evaluation metrics (ME, MAE, MSE,
RMSE, SD and R) to assess the accuracy and generalization
ability of the developed ANN path loss model. This study
achieved higher prediction accuracy and better generalization
performance than existing models.

Therefore, the summary of the contributions of this paper is
the outcome of the extensive experimentations of neural net-
work optimization (as evident in Table 2) that was conducted
to determine the optimal network parameters for path loss
predictions inVHF band. Fieldmeasurement campaignswere
conducted in the urban areas of Benin City, Edo State, Nigeria
to measure terrain profile data of the receiver and path losses
of signal transmitted at 189.25MHz and 479.25MHz. Differ-
ent ANN architectures were trained with varying number of
input parameters and hidden neurons. Also, the ANN training
was performed based on different learning algorithms and
activation functions. At the end of each experimentation,
the performance of the model was evaluated using statistical
metrics including MAE, MSE, RMSE, SD and R.

III. MATERIALS AND METHOD
A. MEASUREMENT SET-UP AND DATA COLLECTION
An experimental set-up was designed and implemented to
measure and record the RSS of the radio signal received
from the transmitting antennas of two broadcasting stations
located in Benin City, Edo State, Nigeria (i.e. NTA-BENIN
and ITV-BENIN). The broadcasting stations transmit radio
signals using omnidirectional antennas with power of 10 kW
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FIGURE 1. RSS measurement set-up.

at 300 metres transmitter height. The measurement set-up
consists of a portable spectrum analyser (SEFRAM 7806),
a GPS (Global Positioning System) and a personal computer
(laptop) as shown in Figure 1.

The spectrum analyzer was used to measure the RSS at
different distances from the transmitting antennas. SEFRAM
7806 is a cost-effective measurement instrument used by
field technicians and engineers for basic signal investigations,
thereby eliminating the need for a full-featured conventional
spectrum analyzer. It is suitable for terrestrial analogue and
digital television networks. The battery-operated handheld
digital meter is equipped with a lithium-ion battery and it is
capable of measuring radio frequency signal strength levels
with a frequency range of 45-865 MHz.

The spectrum analyzer was set-up accordingly: remote
supply was set using the toolbox key; received signal was
identified using the spectrum key; the parameters of the
received signal were adjusted using the measurement key; the
signal reception was completely validated using the TV key;
the value to bemodifiedwas selected using the validation key;
and the value was adjusted using the knob key. The function-
alities of the keys and a typical display output of SEFRAM
7806 are shown in Figure 2. The resolution of the spectrum
analyzer for terrestrial measurement is 50 kHz. In addition,
a handheld GPS (GARMIN GPS 76CS) receiver was used
to obtain the spatial coordinates of the measuring points
in degrees, and to measure the elevation of the receiver’s
location. SEFRAM 7806 and GARMIN GPS 76CS were
connected to a laptop for efficient data logging. Themeasured
RSS data were transferred to the laptop through Universal
Serial Bus (USB) interfaces. The path losses between the

transmitting antenna and the receiving antenna were obtained
by subtracting the RSS values from the transmitted power.

Field measurement campaigns were conducted in the
urban areas of Benin, Edo State, Nigeria to obtain relevant
geographical and network information. RSS data collected
through drive tests were used to quantify the path losses of
radio signals transmitted at 189.25 and 479.25 MHz from the
antennas of NTA-BENIN and ITV-BENIN broadcasting sta-
tions. The study location forms the nucleus of the Niger Delta
region in Nigeria. Edo State borders at Kogi State (North),
Delta State (East and South), Ekiti and Ondo States (West).
The climatic condition is usually tropical, made up of two
major seasons including the wet (or rainy) and dry seasons.
Six drive test routes were planned and surveyed including:
Ekpoma-Auchi, A232, Benin-Warri, Benin-Okumu, Ekenwa,
and Sagamu-Benin Expressway roads. Figure 3 shows the
digitized map of Edo State, displaying the locations of where
measurement samples were taken.

B. DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK
MODEL FOR PATH LOSS PREDICTION
The proposed Feed Forward Neural Network (FFNN) model
was developed in accordance with various objectives, which
include varying: the number of inputs, number of hidden
neurons, activation function and training algorithms. A single
hidden layer with suitable number of hidden neurons were
used to approximate arbitrary continuous function [35]. The-
oretical works and many experimental results have shown
that a single hidden layer is sufficient for ANN to approxi-
mate any complex nonlinear function. Many researchers in
the field of ANN suggest that it is usually unnecessary to
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FIGURE 2. (a) SEFRAM 7806 spectrum analyzer functionalities (b) Sample RSS measurement waveform.

use more than one hidden layer in a multilayer feedforward
network. Indeed, many experimental results in other appli-
cation areas confirmed that one hidden layer is enough to
produce high prediction accuracy and good generalization
ability for regression problems [36]–[40]. Additional hidden
layer may introduce more complexity, thereby increasing
training time and memory requirements. It may also lead
to model over-fitting, especially when the data size is not
sufficiently large.

The obtained measurement data from the drive tests con-
ducted along twelve routes were divided into training and
testing datasets. The testing dataset was used to evaluate
the generalization ability of the developed ANN models.
Therefore, the complete dataset was distributed into 70%

training, 15% validation and 15% testing. In the course of the
model development and experimentations, the suitability of
three popularly used activation functions was carefully inves-
tigated. The mathematical representations of the activation
functions are given by equations (1)-(3) respectively [30]:

i Logistic sigmoid activation function (logsig)

f (u) =
1

1+e−u
(1)

ii Hyperbolic tangent sigmoid activation function
(tansig)

f (u) =
2

1+e−2u
(2)
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FIGURE 3. Map showing RSS measurement routes.

iii Linear activation function (purelin)

f (u)= u (3)

In addition, the efficiency of the eight training algorithms
[41] were examined. The choice of the most appropri-
ate training algorithm for ANN model development usu-
ally depends the complexity of the task, training data size,
the sizes of the weight and bias vectors, the error target,
and area of application. In this study, we investigated the
effectiveness of eight training algorithms to justify their

use for path loss predictions. These training algorithms are:
(a) Levenberg-Marquardt backpropagation (LM); (b) BFGS
quasi-Newton backpropagation (BFGS); (c) Resilient back-
propagation (RP); (d) Scaled conjugate gradient backprop-
agation (SCG); (e) Conjugate gradient backpropagation
with Fletcher-Reeves updates (CGF); (f) Conjugate gra-
dient backpropagation with Polak-Ribiére updates (CGP);
(g) One-step secant backpropagation (OSS); and (h) Gra-
dient descent with momentum and adaptive learning rate
backpropagation (GDX).
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LM is one of the most commonly used training algorithms
for supervised learning owing to its high speed. However,
its computation processes are often memory-intensive. The
theoretical background and mathematical formulation of LM
algorithm are detailed in [42]–[44]. Usually, the training data
is randomly divided into three: training, validation and testing
data subsets. The training data subset is supported by the
validation and validation data subsets. Validation subset is
used to achieve early stopping of training process once there
is no significant improvement in the network performance
while the generalization ability of the neural network is
monitored using the testing subset. For any neural network
to be trained using LM algorithm, the network weight, net
input, and activation functions must be derivable. The major
drawback here is the use of average or sum of squared errors
as performance metric in Jacobian computations.

SCG algorithm was developed based on conjugate direc-
tions with no line search at every iteration [45]. In CGF
algorithm, the search for the steepest descent direction begins
with the first iteration and the weight and bias are updated
based on conjugate gradient backpropagation with Fletcher-
Reeves updates. A conjugate search direction is realized by
combining both the new and previous steepest descent direc-
tions together. Elaborate information about CGF algorithms
can be found in [43], [46]. This algorithm requires addi-
tional memory space than primitive methods but thy are most
suitable for networks with large number of weights. CGP is
a different conjugate gradient method developed by Polak
and Ribiére. Here, the weight and bias are updated based
on conjugate gradient backpropagation with Polak-Ribiére
updates [47].

In BFGS algorithm, the weight and bias of the network are
updated using BFGS quasi-Newtonmethod described in [48],
[49]. For faster convergence during the optimization process,
Newton’s method was developed to replace conjugate gradi-
ent method. However, the replacement comes with complex
and memory-intensive computations. Quasi-Newton method
eliminated the need for the computation of second deriva-
tives by updating an estimate Hessian matrix at every iter-
ation. BFGS algorithm is an improved quasi-Newton method
based on Broyden, Fletcher, Goldfarb, and Shanno update.
Although the algorithm converges faster with fewer iterations

when compared to conjugate gradient approach, BFGS per-
forms large computations for every iteration and it requires
additional memory space. BFGS algorithm will be most suit-
able for smaller feedforward neural networks.

RP algorithm employs resilient backpropagation method
to mitigate the challenges of partial derivatives introduced
by the steepest descent used with sigmoid functions during
multilayer network training. The sign of the derivate is deter-
mined solely by the direction of the weight update with no
regard for the magnitude of the derivative. A different update
is used to calculate the magnitude of changes in weight.
A detailed description of the RP method is provided in [50].
GDX is a network training function that updates weight and
bias values by combining adaptive learning rate with momen-
tum training. GDXcan train any network as long as its weight,
net input, and transfer functions have derivative functions.

Owing to the need for more memory and computation
requirements in BFGS algorithm at every iteration than the
conjugate gradient algorithms, there is need for a secant
approximation to reduce the demands. OSS algorithm is an
attempt to bridge the gap between the conjugate gradient
algorithms and the quasi-Newton (secant) algorithms. This
algorithm does not store the complete Hessian matrix; it
assumes that at each iteration, the previous Hessian was the
identity matrix. This has the additional advantage that the
new search direction can be calculated without computing
a matrix inverse. This algorithm requires less storage and
computation per epoch than the BFGS algorithm. It requires
slightly more storage and computation per epoch than the
conjugate gradient algorithms. It can be considered a com-
promise between full quasi-Newton algorithms and conjugate
gradient algorithms. More information about OSS method
can be found in [51].

The performance of the developed ANN models was
evaluated based on the following statistical metrics: MAE,
MSE, RMSE, SD, and R. The metrics are given by
equations (4)–(8), as shown at the bottom of this page,
respectively.

The proposed ANN model architecture design and experi-
mentation framework shown in Figure 4 was implemented in
MATLAB 2016b to determine the most appropriate network
bias and weight values, number of inputs, number of neurons,

MAE =
1
n

∑n

i=1

(
PLmi − PL

p
i

)
(4)

MSE =
1
n

∑n

i=1

(
PLmi − PL

p
i

)2 (5)

RMSE =

√
1
n

∑n

i=1

(
PLmi − PL

p
i

)2 (6)

SD =

√
1
n

∑n

i=1

(
|PLmi − PL

p
i | − µ

)2 (7)

R =

∑n
i=1

(
PL i,measured − PLmeasured,mean

)2
−
∑n

i=1
(
PL i,predicted − PL i,measured

)2∑n
i=1

(
PL i,measured − PLmeasured,mean

)2 (8)
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FIGURE 4. Flow chart of ANN model development process.

training algorithm and activation function type to be used in
the optimal ANN model development. We investigated the
effects of the kind of inputs, number of hidden layer neurons,
activation function and training algorithm on the performance
of ANN models designed for path loss predictions. The most
suitable number of neurons, number of inputs, learning algo-
rithm and activation function pairs were determined through
carefully designed extensive experimentations.

IV. RESULTS AND DISCUSSIONS
In this section, the analysis of the data as well as the results of
the study are presented and discussed with respect to the aim
and objectives of this study. The data obtained from the field
measurement campaign were analyzed to verify the validity
of the acquired data, and then used for ANN model training,
validation and testing. Furthermore, a comparative study of
the ANN path loss predictions and those of empirical models
(Hata, COST 231, Egli and ECC-33) was performed to ascer-
tain the efficacy of ANN models for path loss prediction.

RSS measurement data collected through drive tests in
the urban propagation environments were evaluated along
the planned survey routes. The drive tests were con-
ducted along twelve major routes, six each for NTA-BENIN
and ITV-BENIN broadcasting stations. The routes include
Ekpoma-Auchi Road, A232 Road, Benin-Warri Road, Benin-
Okumu Road, Ekenwa Road and Sagamu-Benin Expressway.
The number of data instances obtained from each of these
routes are presented in Table 5. A total of 285 and 253 data
instances were collected over ITV-BENIN and NTA-Benin
network respectively.

Table 6 presents the distances covered during the drive tests
for each of the routes. ITV-BENIN drive test conducted along

TABLE 5. Data instances collected along 12 drive test routes.

TABLE 6. Data instances collected along 12 drive test routes.

Ekpoma-Auchi road covered a total distance of 90.26 km
from the transmitting antenna. Similarly, the total dis-
tances covered along A232, Benin-Warri, Benin-Okumu,
Ekenwa, and Sagamu-Benin Expressway are 57.39 km,
38.11 km, 12.32 km, 14.17 km and 56.61 km respectively.
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TABLE 7. Statistical description of the training dataset.

TABLE 8. Statistical description of the testing sub-dataset (R1).

The NTA-BENIN drive tests along the same routes covered
total distances of 89.59 km, 46.71 km, 27.68 km, 8.71 km,
11.33 km and 69.06 km respectively. RSS data obtained from
NTA-BENIN and ITV-BENIN were used for neural network
training and testing respectively. The plots of the training
data and the testing data are shown in Figures 5 and 6.
Regarding open and public accessibility of data for research
reproducibility, our aim is to submit a data article for future
publication in an open access journal. A similar approach was
adopted in our previous research [7], [28], [29].

Tables 7-13 present the statistical description of the train-
ing dataset and the testing sub-datasets. The descriptive sta-
tistical measures include the: mean, median, mode, standard
deviation, variance, kurtosis, skewness, range, minimum and
maximum. This depicts the difference between the testing and
training datasets and confirms the validity of the generaliza-
tion ability for the developed ANN model, while presenting
an overall summary of the data under consideration.

Tables 14–17 show the path loss prediction values obtained
by considering the various cases. In Case I, there is only one

TABLE 9. Statistical description of the testing sub-dataset (R2).

TABLE 10. Statistical description of the testing sub-dataset (R3).

TABLE 11. Statistical description of the testing sub-dataset (R4).

ANN input attribute (i.e. distance). In Case II, there are two
ANN input attributes (i.e. distance and elevation). In Case III,
there are four ANN input attributes (i.e. longitude, latitude,
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TABLE 12. Statistical description of the testing sub-dataset (R5).

TABLE 13. Statistical description of the testing sub-dataset (R6).

distance and elevation). The training dataset was trained using
the Levenberg-Marquardt algorithm, with 10 hidden neurons
and hyperbolic tangent sigmoid (tansig, tansig) activation
function. The performance results of the three input scenarios
are presented in Table 14. The experiment indicated that the
inclusion of a larger number of inputs produced the least
error with MAE, MSE, RMSE, SD and R values of 0.68 dB,
0.89 dB, 0.94 dB, 0.66 dB and 0.98 respectively.

Table 15 represents the values derived as a result of varying
the number of hidden neurons from 1 – 20. The dataset
was trained using LM algorithm, the hyperbolic tangent sig-
moid (tansig, tansig) activation function and the four input
instances (latitude, longitude, elevation and distance). Nine
hidden neurons recorded the least error with MAE, MSE,
RMSE, SD and R values of 0.64 dB, 0.81 dB, 0.90 dB,
0.63 dB and 0.99 respectively.

In Table 16, LM algorithm was employed in training
the model, as well as 9 hidden neurons and the four input
instances. The logistic sigmoid (logsig), hyperbolic tan-
gent sigmoid (tansig) and the linear (purelin) activation

FIGURE 5. Training data collected from VHF Transmitter (189.25 MHz) at
varying distances.

TABLE 14. Performance evaluation for varying input variables.

functions were considered while conducting the experiment.
The results retrieved specified that the use of the hyperbolic
tangent sigmoid (tansig) activation function at both the hid-
den and output layer produced the least error with MAE,
MSE, RMSE, SD and R values of 0.58 dB, 0.66 dB, 0.81 dB,
0.56 dB and 0.99 respectively.

In Table 17, various training algorithms were considered,
while nine hidden neurons, the four-input instances and the
tansig, tansig activation function were employed in training
the network. The Levenberg-Marquardt algorithm proved to
be the most accurate with MAE, MSE, RMSE, SD and R
values of 0.58 dB, 0.66 dB, 0.81 dB, 0.56 dB and 0.99 respec-
tively. Recent research findings support the position of this
paper on the efficiency of LM algorithm for prediction tasks
in different application areas [52]–[55].

Taking all the results acquired from Tables 14–17, it is
evident that the optimal ANN path loss model comprises of
the following: multiple input, nine hidden neurons, the tan-
sig, tansig activation function, and the Levenberg-Marquardt
learning algorithm. Figure 7 displays the network architecture
of the optimal ANN model. The training dataset was divided
into sub-datasets with 70% for training, 15% for validation
and 15% for testing. Hence, the correlation degree between
the path loss values predicted by the optimal ANN model
and their corresponding target path loss values in the three
sub-datasets of the training dataset is depicted in Figure 8.
The training, validation and testing sub-datasets possessed R
values of 0.9926, 0.9870 and 0.9873 respectively, while the
overall R value for the training process is 0.991, indicating
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FIGURE 6. Testing data collected from UHF Transmitter (479.25 MHz) at varying distances along (a) Route 1 (b) Route 2 (c) Route 3 (d) Route 4
(e) Route 5 (f) Route 6.

that prediction accuracy is guaranteed during radio network
planning and optimization.

A comparative analysis of the ANN predicted results and
some empirical models (Hata, COST 231, ECC-33 and Egli

models) is presented in Figure 9. It entails the graphical
illustration of measured path loss and the predicted path
loss values plotted against the distance between the mobile
station and the base station transmitter. This was performed to
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TABLE 15. Performance evaluation of varying number of hidden neurons.

TABLE 16. Performance evaluation of nine pairs of activation function.

confirm the validity of the ANN model as the optimal model
for path loss prediction, as compared to empirical the models
with the aid of the training dataset. It was detected that the
four empirical models possessed a similar behavior, although
there was an over- and under-prediction of the path loss by the
ECC-33 and Egli models respectively. However, the obtained
ANN results proved to be more accurate as it depicts a greater
resemblance of the measured data.

To evaluate the generalization ability of the model, the test-
ing dataset, comprising of six sub-datasets (consisting of
routes 1 to 6), was processed using the ANN network archi-
tecture produced during the training process. In order to
carry out this experiment, the number of inputs to the model
was considered to determine the effect of smaller or larger
number of inputs in producing the least error. As shown

TABLE 17. Performance evaluation of varying learning algorithms.

FIGURE 7. Optimal ANN model architecture.

FIGURE 8. R values for optimal ANN model training and validation.

in Figures 10 (a) – (f) and Tables 18 (a) – (f), the results
attained proved that the model possesses a good general-
ization ability, with ‘‘neither too little or too large’’ inputs.
Introducing elevation and distance into the model for testing
produced the highest regression coefficient, R when com-
pared to the introduction of ‘‘Distance only’’ and ‘‘Latitude,
Longitude, Elevation and Distance’’ into the model.

Table 18 (a) depicts the predicted path loss values for the
first testing sub-dataset (route 1). It shows that the multi-
ple input parameter produced the best generalization ability
with R value of 0.91. Its corresponding graphical represen-
tation as displayed in Figure 10 (a) shows an analysis of the
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FIGURE 9. Path loss predictions of ANN and empirical models on training
data.

generalization ability of the ANN model when subjected to
data newly introduced to the model, while taking the number
of inputs into consideration. Themean and predicted path loss
values were plotted against the distance between the mobile
station and the base station transmitter. It was observed that
the three instances possessed a somewhat similar behavior,
each underestimating the mean path loss. However, the ‘‘Lat-
itude, Longitude, Elevation and Distance’’ criteria presented
the greatest resemblance with the mean path loss, while the
‘‘Elevation and Distance’’ criteria illustrated great inaccuracy
due to its large deviation from the measured data within the
80 – 90 km range.

The results of the performance evaluation of the second
testing sub-dataset (route 2) are presented in Table 18 (b).
In this case, the ‘‘Distance only’’ attribute produced the high-
est regression coefficient value of 0.95, while the least R value
of 0.88 was generated by the ‘‘Latitude, Longitude, Elevation
and Distance’’ attribute. From the illustration in Figure 10
(b), it is evident that the ‘‘Distance only’’ and the ‘‘Eleva-
tion and Distance’’ attributes show similar behavior with the
mean path loss while the ‘‘Latitude, Longitude, Elevation and
Distance’’ attribute completely underestimates and outlies the
measured path loss.

Table 18 (c) portrays a rather different performance eval-
uation, as the ‘‘Elevation and Distance’’ criteria possesses
the highest regression coefficient and the least RMSE value
of 0.96 and 3.05 dB respectively as opposed to the ‘‘Distance
only’’ attribute with least R value of 0.89. The diagram
in Figure 10 (c) proves these estimations, as it depicts the
relative closeness of the ‘‘Elevation and Distance’’ attribute
to the mean path loss, although a resemblance between both
patterns is non-existent. In addition, the ‘‘Latitude, Longi-
tude, Elevation and Distance’’ criteria tend to underestimate
the mean path loss entirely, except at the distance range of 24-
26 km where it performs over-prediction. This behavior can
be attributed to environmental constraints such as presence of
clutter, reflection, diffraction, scattering, etc.

TABLE 18. (a) Path loss predictions on testing sub-dataset (R1). (b) Path
loss predictions on testing sub-dataset (R2). (c) Path loss predictions on
testing sub-dataset (R3). (d) Path loss predictions on testing sub-dataset
(R4). (e) Path loss predictions on testing sub-dataset (R5). (f) Path loss
predictions on testing sub-dataset (R6).

In Table 18(d), the acquired results show a similarity to
those obtained in Table 18(c), as ‘‘Elevation and Distance’’
attribute yields themost accurate results, with R value of 0.93,
rendering the ‘‘Distance only’’ attribute as the least efficient
of the three because to its low regression coefficient of 0.86.
The graphical illustration in Figure 10 (d) shows the behav-
ioral patterns of the inputs with respect to the mean path
loss. The dissimilarity between the ‘‘Distance only’’ attribute
and the measured path loss is apparent, while the ‘‘Latitude,
Longitude, Elevation and Distance’’ attribute shows a similar
behavior in spite of its underestimation of the model. How-
ever, the ‘‘Elevation and Distance’’ attribute depicts a close
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FIGURE 10. (a) Generalization performance of testing sub-dataset (R1). (b) Generalization performance of testing sub-dataset (R2). (c) Generalization
performance of testing sub-dataset (R3). (d) Generalization performance of testing sub-dataset (R4). (e) Generalization performance of testing
sub-dataset (R5). (f) Generalization performance of testing sub-dataset (R6).

relation to the mean path loss, proving its ability to achieve
good generalization performance.

The results in Table 18(e) and its corresponding illustra-
tion in Figure 10 (e) depicts the same outcomes with the

previous and latter experiments (routes 3 and 4). The ‘‘Ele-
vation and Distance’’ input parameter still upholds its effi-
ciency by yielding the highest regression coefficient and the
least RMSE of 0.97 and 0.90 respectively. These prediction
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values are portrayed in the graphical representation, where
the ‘‘Distance only’’ parameter retains a dissimilar pattern
to the mean path loss while over-predicting the model. Fur-
thermore, the ‘‘Latitude, Longitude, Elevation and Distance’’
attribute completely under-predicts the model, although it
possesses a similar pattern as the measured path loss.

Table 18 (f) exposes the predicted path loss values obtained
from the sixth testing sub-dataset (route 6). The highest
regression coefficient of 0.94 produced by the ‘‘Elevation
and Distance’’ attribute is portrayed in Figure 10 (f), as it
depicts the best resemblance to the mean path loss. However,
the ‘‘Latitude, Longitude, Elevation and Distance’’ criteria
can be described as the outlier in this case as it totally
under-predicts the model, except at the 45 – 55km distance
range where it performs over-prediction of the measured
path loss.

From the obtained results and graphical illustrations pre-
sented, the ANN model proved to possess a good general-
ization ability, with R values of 0.8 and above for the six
testing sub-datasets. However, the ‘‘Elevation and Distance’’
attribute produced the highest R values and least RMSE
values in most cases, taking instances not initially introduced
in the training process into consideration. As earlier stated,
the determination of the optimal ANN model was based
on some statistical parameters namely: MAE, MSE, RMSE,
Standard Deviation and R, in which the predicted path loss
values were compared with the target path loss values in both
the training and testing datasets. The results obtained from the
experiments showed that the network architecture employing
all inputs (latitude, longitude, elevation and distance), nine
hidden neurons, hyperbolic tangent sigmoid (tansig, tansig)
activation function and the Levenberg-Marquardt algorithm
had the best performance. The FFNN architecture produced
the least prediction error with MAE, MSE, RMSE, Standard
Deviation and R values of 0.58 dB, 0.66 dB, 0.81 dB, 0.56 dB
and 0.99 respectively.

V. CONCLUSION
In order to design efficient wireless communication systems,
the propagation factors of the radio channel often pose serious
challenges to radio network engineers whose responsibility
is to ensure that subscribers are provided with high speed
Internet services at optimum received signal strength. For
such efficient network design to be achieved, accurate and
reliable path loss models are highly essential for radio net-
work coverage and signal interference predictions.

ANN models have proven to be easier to deploy than
deterministic models and they are also more accurate than
empirical models. In addition, ANN can be adapted for path
loss predictions in rural, suburban and urban propagation
environments. Basically, path loss prediction is classified as
a regression problem. In this case, ANN model is trained
with field measured data to understand the non-linear rela-
tionship between the output variable (path loss) and the
dependent/input variables such as the frequency of trans-
mission, building height, receiver antenna height, transmitter

antenna height, separation distance between the base station
and the mobile station etc. Determination of the appropriate
input/feature vector and the correct setting of neural network
parameters needed for optimal path loss prediction is very
crucial.

In this paper, we conducted an extensive investigation to
determine the optimal neural network parameters for path
loss prediction in VHF band. Field measurements were
conducted in an urban propagation environment to obtain rel-
evant geographical and network information about the receiv-
ing mobile equipment and quantify the path losses of radio
signals transmitted at 92.3 MHz and 189.25 MHz. Different
neural network architectures were trained with varying kinds
of input parameters, number of hidden neurons, activation
functions, and learning algorithms to accurately predict cor-
responding path loss values. At the end of the experimenta-
tions, the results obtained showed that the ANN model that
yielded the best performance employed four input variables
(latitude, longitude, elevation, and distance), nine hidden neu-
rons, hyperbolic tangent sigmoid (tansig) activation function,
and the Levenberg-Marquardt (LM) learning algorithm with
MAE, MSE, RMSE, SD and R values of 0.58 dB, 0.66 dB,
0.81 dB, 0.56 dB and 0.99 respectively. Finally, a comparative
analysis of the developed model with Hata, COST 231, ECC-
33 and Egli models showed that ANN-based path loss model
has better prediction accuracy and generalization ability than
the empirical models.
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