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ABSTRACT Tongue diagnosis is an important way of monitoring human health status in traditional Chinese
medicine. As a key step of achieving automatic tongue diagnosis, the major challenges for robust and
accurate segmentation and identification of tongue body in tongue images lay in the large variations of
tongue appearance, e.g., tongue texture and tongue coating, caused by different diseases for different patients.
To cope with these challenges, we propose a novel end-to-end model for multi-task learning of tongue
localization and segmentation, named TongueNet, in which pixel-level prior information is utilized for
supervised training of deep convolutional neural network. Firstly, we introduce a feature pyramid network
based on the designed context-aware residual blocks for the extraction of multi-scale tongue features. Then,
the region of interests (ROIs) of tongue candidates are located in advance from the extracted feature maps.
Finally, finer localization and segmentation of tongue body are conducted based on the feature maps of ROIs.
Quantitative and qualitative comparisons on real-world datasets show that the proposed TongueNet achieves
state-of-the-art performance for the segmentation of tongue body in terms of both robustness and accuracy.

INDEX TERMS Tongue segmentation, tongue diagnosis, traditional Chinese medicine, TongueNet, deep
learning.

I. INTRODUCTION
Tongue diagnosis is one of the most common and impor-
tant methods used in Traditional Chinese Medicine (TCM)
because of its painless attribute and convenience. The appear-
ance features of tongue body such as color, texture, shape, and
coating reveal a large amount of information about human
health status in TCM. However, traditional tongue diagnosis
depends highly on clinicians’ experience and thus different
clinicians are likely to conclude different diagnostic results
for the same patient. Fortunately, by utilizing computer and
other relative techniques, computer-aided methods for tongue
diagnosis are able to improve these deficiencies [1], [2].
In those methods, the tongue ROI extraction process is firstly
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required to analyze the tongue appearance features automati-
cally. Therefore, the automatic localization and segmentation
of tongue body in tongue images is one of the key tech-
nologies for tongue diagnosis and the performance of which
directly affects the accuracy of tongue diagnosis.

Tongue segmentation aims at segmenting the region of
tongue body from those complex backgrounds such as teeth,
lips, face and other materials. Different from the conventional
segmentation tasks in nature scene, tongue segmentation is
more challenging because of the issues of large variations of
tongue appearances for different patients while higher pre-
cision requirement, data imbalance, e.g. small parts of fore-
ground region (tongue body) compared with the background
region, and hard sample mining e.g. lip pixels as the hard
samples is hard to be segmented from tongue pixels because
the similar appearances and close touch between them.
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FIGURE 1. Examples of tongue images with large variations of tongue
appearances from different patients.

Different methods have been proposed in the past for the
segmentation of tongue. Most of those methods are based on
the traditional image processing techniques, however, some
of them are sensitive to the illumination changes or clus-
tered backgrounds [3], [4], some of them confuse lips from
tongue body [5]–[7], and some of them require additional
preprocessing which makes the whole segmentation process
more complex [8], [9]. More recently, deep learning based
methods [10]–[12] have been proposed for automatic tongue
segmentation. Although those deep learning based methods
outperform the most traditional tongue segmentation meth-
ods, there are still some limits in those methods. In [10], addi-
tional preprocessing is required such as image enhancement
which makes the whole segmentation process more complex.
Similarly, in [11], brightness discrimination as a preprocess-
ing reduces the ability of generalization as a deep learning
based model. In [12], an end-to-end method is proposed and
achieves a remarkable result in tongue segmentation based on
SharpMask [13], however, SharpMask is capable of locating
the object but can not distinguish the type of object, which
results in slow segmentation speed and less accurate because
of undesired processing on unrelated objects.

To solve above-mentioned issues, we propose a novel
end-to-end model for multi-task learning of tongue localiza-
tion and segmentation, called TongueNet, which segments
tongue in a pixel-to-pixel manner automatically based on
deep convolution neural network and achieves high accu-
racy. To extract discriminative multi-scale features of tongue
images, a novel feature pyramid network based on the
designed context-aware residual blocks is proposed. Then,
based on the extracted multi-scale feature maps, TongueNet
is able to localize the tongue body rapidly, and then gen-
erates a precise segmentation mask of tongue body, which
does not require any preprocessing and is robust to shape
deformation, color variations of tongue coating and different
illumination conditions. Moreover, a weighted loss function
based on Tversky index is utilized for the training of the
model, to mitigate the issues of data imbalance and hard
sample mining.

The main contributions of this paper are as follows:

• We propose an end-to-end deep model, named Tongue-
Net, which segments tongue in a pixel-to-pixel manner.

Different from previous deep learning based meth-
ods [10]–[12], which segment the tongue body directly
on the original image with a complex background.
In TongueNet, the candidate regions of tongue ROI
are located firstly before segmentation, which greatly
reduces the difficulty of segmentation and therefore
boosts the segmentation accuracy.

• We develop a context-aware feature pyramid network
based on dilated residual convolution [14], which is
designed according to the characters of tongue image,
to extract multi-scale features of tongue effectively.

• We conduct quantitative and qualitative comparisons
among TongueNet and the state-of-the-art methods on
the commonly used datasets, and the segmentation
results indicate that TongueNet outperforms other meth-
ods significantly.

II. RELATED WORK
A. TRADITIONAL METHODS
Traditional tongue segmentation methods based on images
features can be roughly divided into three categories: region
based methods [3], [4], [9], edge based methods [5]–[7], [15],
and the hybrid methods [8]. For region based methods, in [3],
a tongue segmentation method based on the combination of
the watershed transform and active contour model is pro-
posed, in which, the watershed transform is used to get the
initial contour, and an active contour model, or ‘‘snakes’’,
is used to converge to the precise edge. Similarly, in [4],
the watershed algorithm is utilized to segment tongue image
into many small regions and then color-similarity based
region merging is performed to get the final tongue body
segmentation. In [16] histogram projection is utilized firstly
to locate the tongue body, getting the convinced foreground
and background area in form of trimap. Then, trimap is took
as the input for LBDM [17] algorithm to implement the
final segmentation. In [9], the initial region of tongue body
is firstly determined via transforming and thresholding on
the hue component of HSI color model and the red com-
ponent of RGB color model, and then refined by removing
fake object regions such as the upper lip with the help of
morphological operations. For edge based methods, edge
initialization are required in those methods to segment the
final tongue body. In [5], the evolving contour is initialized
with the bi-elliptical deformable template. In [15], the initial
edge of tongue body is selected from edge map. Moreover,
there are also some color feature based methods for initial
contour localization [6], [7]. As a hybrid method that fuses
region-based and edge-based approaches into one single seg-
mentation pipeline [8], the ROI of tongue body is firstly
extracted based on the use of color information, and then
the original image is replaced by the ROI for subsequent
segmentation. Finally an improvement is made to an exist-
ing region-based method MSRM (Maximal Similarity based
Region Merging). Although each of those methods has its
fair share of success, corresponding limitations still exist
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FIGURE 2. The framework of the proposed TongueNet.

among them. For example, some of them are sensitive to the
illumination changes and the cluttered backgrounds, some
of them confuse the lips from tongue body and therefore
some preprocessings are required, which is time-consuming.
So, it is still considerably challenging to achieve sufficient
efficiency and accuracy for tongue segmentation.

B. DEEP LEARNING BASED METHODS
Benefiting from the development of deep learning based
techniques, such as deep convolution neural networks, sig-
nificant performance improvements have been witnessed
in the field of computer vision; e.g. object detection [18],
image classification [19], and image segmentation [20], [21].
However, fewworks employ deep learning-basedmethods for
tongue segmentation due to the difficulty of collecting and
labeling the tongue images. Recently, several deep learning
based methods [10]–[12] have been proposed for automatic
tongue segmentation, which outperform most of the tradi-
tional tongue segmentation methods. In [10], an enhanced
HSV color model convolutional neural network is proposed
for tongue image segmentation, however, in this model, addi-
tional preprocessing is required such as image enhancement
which makes the whole segmentation process more complex.
In [11], an image quality evaluation method based on bright-
ness statistics is proposed to judge whether the input image
is to be segmented, and then SegNet [22] is employed for
training on the preprocessed images, in this method, bright-
ness discrimination as a preprocessing reduces the ability of
generalization as a deep learning based model. In [23], initial
segmentation results of Deeplabv3 [24] are firstly obtained
and then optimized by LBDM [17] to get the final segmen-
tation results. In [12], an end-to-end deep model is proposed
based on ResNet [25] and SharpMask [13], however, in this
method, segmentation precedes recognition, which is slow
and less accurate.

C. MULTI-TASK LEARNING
Multi-task learning [26] aims at learning multiple tasks
jointly by exploiting the shared structures to improve

generalization performance and mitigate manual labeling
consumption [27]. Recently, multi-task learning has achieve
remarkable success in the field of computer vision such as
image classification [28], semantic segmentation [29], image-
to-image prediction [30], and depth prediction [31]. In Uber-
Net [32], an image pyramid approach is proposed to process
images acrossmultiple resolutions, where for each resolution,
additional task-specific layers are constructed on the top of
the shared VGG-Net [33]. Mask R-CNN proposed in [29]
detects objects in an image while simultaneously generating
a high-quality segmentation mask for each instance. Mask
R-CNN extends Faster R-CNN by adding a branch for pre-
dicting an object mask in parallel with the existing branch
for bounding box recognition. In [31], Cross-Stitch Networks
contain one standard feed-forward network per task, with
cross-stitch units to allow features to be shared across tasks.
Inspired by the successful application of multi-task learning
architecture in computer vision, our proposed TongueNet is a
multi-task learning based model that localizes and segments
tongue body simultaneously.

III. METHOD
For the segmentation of tongue body in tongue images,
we aim to automatically segment the tongue body from
the complex background, independent of the diversity in
their appearance, and without any manual intervention and
preprocessing. To achieve this, we model the problem as
a binary dense labeling task: Given a camera-taken RGB
image, which contains both tongue body and other noise
background regions such as face and lip, the task is to predict
either ‘‘tongue’’ or ‘‘non-tongue’’ labels for each pixel.

As a multi-task learning architecture, our proposed
TongueNet consists of three stages, namely feature extraction
stage, region proposal stage, and prediction stage, to conduct
tongue localization and segmentation tasks simultaneously.
Firstly, to make full use of spatial information and prior
knowledge such as color, shape, and texture of tongue body,
a context-aware feature pyramid network based on dilated
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FIGURE 3. Examples of 3 × 3 dilated convolutional kernels with three
different dilation rates as 1, 2, and 3 respectively.

residual convolution is employed in the feature extraction
stage to extract multi-scale features of tongue images. Then,
tongue ROIs are localized based on the extracted featuremaps
in the region proposal stage, which are served as the candi-
dates for the final localization and segmentation of tongue
body. Finally, in the prediction stage, two different learning
tasks, namely segmentation and localization respectively, are
jointly learned by TongueNet via optimizing the designed loss
function. The details of the proposed method are described in
the following sections.

A. CONTEXT-AWARE FEATURE PYRAMID NETWORKS
1) DILATED CONVOLUTION
Dilated convolution [34], [35] aims at enlarging the recep-
tive field of feature maps to aggregate context information
without increasing extra parameters and computation, e.g.,
adding more convolutional layers enables a larger receptive
field but introduce more filtering operations and thus more
computation. Different from standard convolution operation,
in which, the striding operation and pooling layers would lead
to a reduction of the resolution of feature maps and therefore
result in a loss of spatial information, in dilated convolution
operation, there are not above-mentioned issues.

Mathematically, a 2-D dilated convolutional filtering can
be formulated as follows:

y(h,w) =
H∑
i=1

W∑
j=1

x(h+ r × i,w+ r × j)f (i, j) (1)

where y(h,w) is the output of dilated convolutional filtering
from input x(h,w) at location (h,w), f (i, j) is a kernel with
the height of H and the width of W respectively, and r is the
dilation rate. Therefore, a size of k × k kernel is capable of
filtering a size of (k + (k − 1)(r − 1))× (k + (k − 1)(r − 1))
region with dilated rate r . For example, as shown in Fig. 3,
a size of 3× 3 dilated convolutional kernel with rate 1 is the
standard convolutional kernel, whose size of receptive field
is 3 × 3, while the sizes of receptive field of a size of 3 × 3
dilated convolutional kernel are 5× 5 for rate 2 and 7× 7 for
rate 3 respectively.

FIGURE 4. Comparison of the original residual building block and the
proposed context-aware residual building block.

2) CONTEXT-AWARE DILATED RESIDUAL BLOCK
As illustrated in many previous works [33], [36], a good
feature extraction network should be deep enough with
many convolution layers such that multi-scale features can
be sufficiently learned. Inspired by the successful use of
ResNet [25] in feature extraction and classification tasks,
residual blocks are also employed in our proposed TongueNet
but with a context-aware modification to aggregate more
context information of tongue body for more discriminative
feature extraction.

The original residual block contains several convolutional
groups with different kernel sizes and the mapping performed
by the original residual block can be defined as follows:

xi+1 = ReLU (G(xi,w
g
i )+ F(xi,w

f
i )) (2)

where xi and xi+1 are the input and output of i-th residual
block respectively, G(·) and F(·) are two different nonlinear
transformation groups, each of which consists of a convo-
lution, batch normalization (BN) and rectified linear units
(ReLU). Especially,F(·) is usually one single nonlinear trans-
formation group or an identity function I (xi) = xi. w

g
i and w

f
i

are two sets of weights and biases associated with G(·) and
F(·) respectively. For example, as shown in Fig. 4a, given a
3-groups based original residual block, with each group has
a batch normalization layer and a ReLU layer followed by a
standard convolutional layer, the resolution of output is half
of input, which might lead to a loss spatial information for
feature extraction.

Different from the original residual block, our proposed
context-aware dilated residual block is defined as follows:

xi+1=ReLU (D(ϕi×GD(xi,w
g
i )+(1−ϕi)×FD(xi,w

f
i ))) (3)

where xi and xi+1 are the input and output of i-th context-
aware residual block respectively,D is the dilated convolution
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FIGURE 5. The architecture of the proposed context-aware feature
pyramid networks.

operation, GD(·) and FD(·) are two different nonlinear trans-
formation groups, each of which consists of a dilated con-
volution, batch normalization (BN) and rectified linear units
(ReLU). wgi and w

f
i are two sets of weights and biases associ-

ated with GD(·) and FD(·) respectively. Here, a weighted skip
connection is employed by assigning different weights ϕi and
1− ϕi to the outputs of GD(·) and FD(·) respectively.

3) MULTI-SCALE FEATURE EXTRACTION
Although the powerful representation ability that deep resid-
ual network possesses, it has been proven that a better perfor-
mance can be boosted through using pyramid representations
for multi-scale images [37]. Therefore, a feature pyramid
network (FPN) based on the proposed context-aware residual
blocks is employed in TongueNet to extract more reliable and
representative multi-scale features. Fig. 5 shows the detailed
architecture of the proposed context-aware FPN, which con-
sists of three parts: the bottom-up pathway, the lateral con-
nections, and the top-down pathway.

In the bottom-up pathway, five context-aware dilated
residual blocks, namely DConv1_x, DConv2_x, DConv3_x,
DConv4_x, and DConv5_x respectively, are serially con-
nected as the backbone of FPN for feature extraction of
tongue region. The output of each block is employed to
construct the corresponding featuremaps in different pyramid
levels. As we go down the top-down pathway through a mod-
ule called lateral connection, feature maps are firstly merged
with the corresponding bottom-up features by going through
a 1 × 1 convolution layer with an element-wise addition
operator. Then, we apply a 3 × 3 convolution again to all
merged featuremaps to obtain the final pyramid featuremaps,
denoted as P2, P3, P4, P5. The 3×3 convolution used here is
to reduce the aliasing effect due to upsampling. Each level
of the pyramid feature maps can be used for tongue body
localization at a different scale in the next region proposal
stage as shown in Fig. 2.

B. ARCHITECTURE OF TONGUENET
Our proposed TongueNet consists of three stages for tongue
localization and segmentation, namely feature extraction

FIGURE 6. Examples of feature maps extracted from context-aware
feature pyramid networks. Column 1-10 are the original RGB image,
outputs of DConv1_x, DConv2_x, DConv3_x, DConv4_x, DConv5_x, P2, P3,
P4, and P5 respectively; Row 1-3 are three different tongue samples from
three different datasets. (The feature maps at different levels are
randomly selected for visualization.).

FIGURE 7. Region proposal network used in TongueNet.

stage, region proposal stage, and prediction stage. The archi-
tecture of TongueNet is illustrated in Fig. 2.

In the feature extraction stage, a context-aware feature
pyramid network is utilized to extract multi-scale features
of tongue images, as described in section III-A.3. In this
stage, the feature maps of tongue image in different pyramid
levels are extracted for tongue localization in the next region
proposal stage. As shown in Fig. 6, the extracted feature maps
in different levels represent discriminatively for tongue body
compared to the face and other substances.

In the region proposal stage, tongue ROIs are localized
for the final localization and segmentation of tongue body.
In this stage, the region proposal network (RPN) [38] is
employed, which slides across the multi-scale feature maps
generated from the lower feature extraction module by a
sliding window, to produce a list of region proposals that
likely contain tongue body. Given those feature maps as
input, the output of RPN is a series of region proposals
that might contain the tongue goal. As shown in Fig. 7,
the feature maps are passed to a 3 × 3 size of standard
convolutional layer and then mapped to a 2048-dimensional
vector. Follow that, two branches of 1 × 1 size of standard
convolutional layers, namely box classification branch and
box regression branch respectively, are then used to predict
the category and position of a proposal, which is also called
an anchor and centered at the corresponding sliding window
as depicted as a red box in Fig. 7 for visualization. For
each sliding-window, both branches simultaneously predict k
proposals, in which three different anchor aspect ratios {2:1,
1:1, 1:2} and four scales determined by four levels of feature
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maps {P2, P3, P4, P5} are employed to generate k = 12
anchors in this case at each sliding position. Finally, 2k scores
that measure the probability of tongue/non-tongue for each
proposal, and 4k outputs that encode the coordinates of k
proposal boxes, are obtained from box classification branch
and box regression branch respectively.

In the prediction stage, each of the proposals generated
from the region proposal stage by sliding over the fea-
ture maps, is converted into the fixed size of feature map
by using bilinear interpolation through a technique called
RoIAlign [29], to rectify the misaligned tongue proposals.
After alignment, two followed branches are applied, namely
localization branch, andmask branch, to perform final tongue
body localization and tongue mask segmentation respec-
tively, as demonstrated in Fig. 2.

In the localization branch, two concatenated FC layers as
a regressor to refine the anchor box to fit the tongue object
better for proposal localization. In the mask branch, which
consists of a few stacked convolutional layers, the feature
maps selected by RPN are taken as inputs, and a pixel-to-
pixel semantic segmentation is conducted based them to get
the final segmentation mask of tongue body.

C. LOSS FUNCTION
As in many multi-task learning models [28]–[31], a multi-
task loss function is utilized in this paper for the training of
TongueNet, as defined in the follows:

L = Lloc + Lmask (4)

where Lloc is the sum of a smooth L1 loss and a log loss [39] of
the bounding box generated by the RPN in the region proposal
stage of TongueNet. Lmask is a weighted loss function based
on Tversky index [40] for hard sample mining, e.g. lip pixels
are the hard samples which are similar with tongue body
pixels and touch to them closely, and data imbalance, e.g. the
area of tongue body is far small compared with background
area. The definition of Lmask is as follows:

Lmask =
∑
c

1− TIc (5)

where TIc is the Tversky similarity score [41] and defined as
follows:

TIc =

∑N
i=1 picgic+ε∑N

i=1 picgic+α
∑N

i=1 picgic̄+β
∑N

i=1 pic̄gic+ε
(6)

where pic is the probability that pixel i belong to tongue class
c, pic̄ is the probability that pixel i belong to non-tongue class
c̄, gic is the ground truth training label which is 1 for tongue
pixel i and gic̄ is 0 for non-tongue pixel i. ε is a small number
set as 10−8 by us to prevent division by zero. α and β are two
parameters which control the trade off between false negative
and false positive in the case of large class imbalance. When
α = β = 0.5, TIc is simplified to a Dice score coefficient.
In this paper, α is set as 0.3 and β 0.7 empirically for all
experiments.

IV. EXPERIMENT
In this section, we discuss the experiments to validate the
effectiveness of the proposed architecture. Firstly, we intro-
duce the dataset and evaluation method. Then, experimental
results are demonstrated which prove that TongueNet not
only achieves a state-of-the-art segmentation accuracy on the
commonly used datasets, but also performs stable on the
newly collected complex dataset.

A. DATASET AND EVALUATION METHOD
For medical tongue segmentation, the existed public datasets
are small and the tongue images in these datasets are cap-
tured in a uniform illumination condition and small changes
of tongue body in appearance. To evaluate the proposed
method in term of both accuracy and robustness, we use three
different tongue image datasets, called TestSet1, TestSet2,
TestSet3 respectively, among which, TestSet1 [12] is a com-
mon dataset containing 300 images with size of 768 × 576
published by BioHit;1 TestSet2 was collected by us from by
the Third People’s Hospital of Fujian Province which consists
of 331 images with size of 550 × 650, the tongue images in
this dataset were captured from hundreds of patients andmost
of them differ greatly in terms of shape deformation, color of
tongue coating and tongue textures; and TestSet3 [8], [42]
contains totally 290 images with size of 600× 576, in which,
the images are captured by the same device but under two
different cases: whether to take the tongue lateral view or not.
For TonguSet3, we crop the images and use only the front
view parts for the experiment.

For evaluation metrics, three commonly used performance
measures in deep learning based methods [11], [12], namely
Precision, Dice coefficient (Dice) and mean Intersection over
Union (mIoU) respectively, and other three commonly used
metrics for traditional segmentation methods [5], namely
False Positive Rate (FPR), False Negative Rate (FNR) and
Misclassification Error (ME) respectively. All six metrics are
defined as follows:

Precision =
|Fg

⋂
Fp|

|Fp|
(7)

Dice =
2|Fg

⋂
Fp|

|Fg| + |Fp|
(8)

mIoU =
1
2

(
|Fg

⋂
Fp|

|Fg
⋃
Fp|
+
|Bg

⋂
Bp|

|Bg
⋃
Bp|

)
(9)

FPR =
|Bg

⋂
Fp|

|Bg|
(10)

FNR =
|Fg

⋂
Bp|

|Fg|
(11)

ME = 1−
|Fg

⋂
Fp| + |Bg

⋂
Bp|

|Fg| + |Bg|
(12)

where Fp and Bp are tongue region (foreground) and non-
tongue region (background) of the prediction of model,
respectively; Fg and Bg are tongue region (foreground) and

1https://github.com/BioHit/TongeImageDataset
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FIGURE 8. Box-and-whisker plots of different metrics for performance comparison among TongueNet and other baselines.

non-tongue region (background) of the ground truth, respec-
tively; | · | is the cardinality of a set.

B. IMPLEMENT DETAILS
The model is implemented by using Keras2 deep learning
framework and trained on Ubuntu 16.04 OS with 2.5GHz
Intel Core i7 CPU, 32GB RAM, and NVIDIA GTX 1080Ti
graphic card with 11GB memory. Adam algorithm [43] is
utilized for optimization with learning rate as 0.001, batch
size 4, weight decay 2 × 10−4. The training set, validation
set, and test set are produced by randomly splitting 80%,
10% and 10% of each dataset respectively for training and
testing. In the experiment, ten-fold cross-validation is utilized
for each model to evaluate the performance. During training,
data augmentations such as scale, rotation, and changes on
brightness, contrast, gamma, and color are performed as in
other deep learning based methods [11], [12].

C. EXPERIMENTAL RESULTS AND ANALYSIS
We compare our methods with five of the most recent
deep learning based methods: FCN [44], U-Net [45], Mask
R-CNN [29], SegNet based method proposed in [11], Deep-
Tongue [12]. It should be noted that FCN, U-Net, and Mask
R-CNN are three baselines that were originally used for
segmentation in nature scene or single task medical image
segmentation. Different from [11], [12], which selected only
the mean value of variant metrics to evaluate the seg-
mentation performance of tongue images, in this paper,

2https://github.com/keras-team/keras

box-and-whisker plots are also utilized to analyze the distri-
bution of the results.

1) QUANTITATIVE RESULTS
To demonstrate the effectiveness of the proposed method
quantitatively, six metrics precision, dice score, mIoU, FPR,
FNR, andME are selected for the performance measurement,
and the results for all compared methods on Testset1, Test-
set2, Testset3 datasets are provided in Table 1. and Fig. 8.

The experimental results show that the proposed
TongueNet significantly outperforms the baselines on all
datasets. For example, as shown in Table 1, TongueNet
achieves gains of 1.45% compared with FCN, 0.75% com-
pared with U-Net, 3.58% compared with SegNet, 3.57%
compared with DeepTongue, and 1.22% compared with
Mask R-CNN respectively on TestSet1 for mIoU metric.
On TestSet2, TongueNet decreases the ME value by around
0.41% compared with FCN, 0.31% compared with U-Net,
0.43% compared with SegNet, 0.51% compared with
DeepTongue, and 0.11% compared with Mask R-CNN,
respectively. All those improvements demonstrate the effec-
tiveness of multi-task learning and context-aware based fea-
ture extraction module in TongueNet. However, for FNR,
it seems that the performance of TongueNet is slightly worse
than those compared baselines, for example, TongueNet
increases the FNR value by around 0.51% compared with
U-Net on TestSet1, 0.24% compared with DeepTongue
on TestSet2, and 0.26% compared with DeepTongue on
TestSet3, the true cause for this is because the predictions by
those baselines are not closed enough to the real boundary of
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TABLE 1. Segmentation performance of different methods. Best results are marked in red and the second-best in blue.

FIGURE 9. The lowest 3 FNR and highest 3 FNR results of different methods on TestSet1. Red solid line indicates the prediction and Blue dashed line
means the ground truth.

tongue body, which results in a lower FNR but a much higher
FPR value. As shown in Fig. 9, compared with other base-
lines which have relatively lower average FNR, TongueNet

performs more stable and achieves better closeness between
the prediction and the boundary of tongue body. Moreover,
compared with Mask R-CNN, a multi-task learning based
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FIGURE 10. Visualization results from different methods experimented on three datasets. Red solid line indicates
the prediction and Blue dashed line means the ground truth.
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method, TongueNet achieves stable improvement on all met-
rics especially for FNR score because of the down-sample of
feature maps in the original feature pyramid network of Mask
R-CNN. It demonstrates the effectiveness of the proposed
context-aware feature extraction module and the Tversky
index based loss function used for the issue of large class
imbalance.

2) QUALITATIVE RESULTS
To demonstrate the effectiveness of the proposed method
qualitatively, experimental results of different methods on
three datasets are shown in Fig. 10. Three randomly selected
samples from TestSet1, TestSet2 and TestSet3 are dis-
played for qualitative visualization in Fig. 10a, 10b and 10c,
respectively. It can be seen that most methods are capable
of segmenting the tongue bodies with simple background
accurately, as demonstrated in Fig. 10c. Those tongue images
are captured from an uniform illumination condition and
with less disturbance of other materials such as lips, tongue
texture and coating. However, with large variations of tongue
appearance, e.g. tongue texture, shape, and coating of differ-
ent patients, TongueNet achieves not only high segmentation
accuracy, but also a more stable performance on all datasets.
For example, as shown in Fig. 10a and Fig. 10b, for FCN
and SegNet, those algorithms conduct segmentation directly
on the whole image, which are easily misled by the complex
materials such as lips and face. Different from those meth-
ods, the proposed TongueNet carries out the segmentation of
tongue body only on the featuremaps of ROIs localized by the
RPN, as illustrated in Fig. 7, which narrows the scope of seg-
mentation to alleviate the influence of hard samples like lips
and face. Compared with Mask R-CNN, TongueNet achieves
more accurate segmentation results which demonstrates the
effectiveness of the proposed context-aware feature extrac-
tion module and the Tversky index based loss function used
for training. Combining with the results shown in Table 1
and Fig. 8, it is obvious that the proposed TongueNet leads
to the most accurate and robust performance compared with
all other methods.

V. CONCLUSION
In this paper, we study the problem of tongue localization and
segmentation, which is vital in an automatic tongue diagnos-
tic system in traditional Chinese medicine and challenging
because of the issues of large variations of tongue appear-
ance, data imbalance, and hard sample mining. To solve the
above-mentioned issues, we propose a new end-to-end tongue
localization and segmentation method, named TongueNet,
which segments tongue in a pixel-to-pixel manner automat-
ically based on deep convolution neural network. To extract
more discriminative multi-scale features of tongue images,
a novel feature pyramid network based on the designed
context-aware residual blocks is proposed. Then, based on
the extracted multi-scale feature maps, TongueNet is able to
localize the ROI of tongue body rapidly, and then generates
a precise segmentation mask of tongue body based on the

extracted ROI, which does not require any preprocessing and
is robust to shape deformation, color variations of tongue
coating and different illumination conditions. Quantitative
and qualitative comparisons on real-world datasets show
that the proposed TongueNet achieves state-of-the-art perfor-
mance for the segmentation of tongue body in terms of both
robustness and accuracy.
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