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ABSTRACT Smart contract security is an emerging research area that deals with security issues arising from
the execution of smart contracts in a blockchain system. Generally, a smart contract is a piece of executable
code that automatically runs on the blockchain to enforce an agreement preset between parties involved in
the transaction. As an innovative technology, smart contracts have been applied in various business areas,
such as digital asset exchange, supply chains, crowdfunding, and intellectual property. Unfortunately, many
security issues in smart contracts have been reported in the media, often leading to substantial financial
losses. These security issues pose new challenges to security research because the execution environment
of smart contracts is based on blockchain computing and its decentralized nature of execution. Thus far,
many partial solutions have been proposed to address specific aspects of these security issues, and the trend
is to develop new methods and tools to automatically detect common security vulnerabilities. However,
smart contract security is systematic engineering that should be explored from a global perspective, and
a comprehensive study of issues in smart contract security is urgently needed. To this end, we conduct a
literature review of smart contract security from a software lifecycle perspective. We first analyze the key
features of blockchain that can cause security issues in smart contracts and then summarize the common
security vulnerabilities of smart contracts. To address these vulnerabilities, we examine recent advances in
smart contract security spanning four development phases: 1) security design; 2) security implementation;
3) testing before deployment; and 4) monitoring and analysis. Finally, we outline emerging challenges and
opportunities in smart contract security for blockchain engineers and researchers.

INDEX TERMS Blockchain, Ethereum, information security, smart contract, software engineering, software
lifecycle.

I. INTRODUCTION
As a decentralized and tamper-proof ledger, blockchain
has been portrayed as an ultimate security technology in
many respects, such as artificial intelligence (AI) [1]–[4],
big data [5], [6], Internet of Things (IoT) [7]–[9] and dig-
ital property (e.g., Deepfake [10] and Proof of delivery
[11]). However, blockchain technology still faces numerous
security issues [12]–[14]. Especially with the increase of
decentralized applications (Dapps) running on blockchains,
smart contract security is becoming more and more sig-
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nificant (see Figure 1) and has attracted much attention
from researchers [16]–[19]. Although the consensus proto-
col ensures the faithful execution of smart contracts, smart
contracts still have many security issues. These security
issues are especially severe in public blockchains because
the environment where smart contracts execute is mostly
decentralized, and a vulnerable smart contract is hard to
patch. For this reason, an attacker in the DAO [20] was
able to exploit a bug in a smart contract to repeatedly
siphon off money, which caused the investors to lose approx-
imately $50 million in cryptocurrency value. Therefore,
effective security solutions for smart contracts are urgently
needed.
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FIGURE 1. The number of attacks from smart contracts accounts for a significant proportion of the number of attacks from both
(a) different layers and (b) different components (data statistics as of March 15, 2019, from BCSEC [15]).

This paper proposes a specific software lifecycle approach
to rationalize how to tackle the issue of smart contract secu-
rity. Compared to previous works [16], [19], [21] concerning
this topic, our paper excels in several aspects.

1) Previous works have focused only on vulnerability
detection. Our research has a wider focus and includes not
only vulnerability detection but also security modeling, secu-
rity monitoring, bug bounties, etc. Specifically, our paper
offers a novel perspective for understanding smart contract
security in a visualized manner, which enables develop-
ers to track, control, and avoid blockchain project risks
systematically.

2) By considering smart contract security as a new type
of software weakness mitigation in a blockchain setting, our
paper systematically analyzes the causes of security issues in
smart contracts for the first time.

3) Most previous works surveyed smart contract security
only in Ethereum. However, our research outcome has broad
impact and is not limited to Ethereum. Without precedent,
we have compared security vulnerabilities of smart con-
tracts in Ethereum [22] and Fabric [23], two widely used
blockchain platforms, from three aspects: programming lan-
guages, blockchain platforms, and misunderstanding of com-
mon practices. The same comparison can be extended to other
blockchain platforms.

The rest of this paper is organized as follows. Section II
analyzes the causes of security issues in smart contracts.
A discussion of security vulnerabilities in different platforms
and anomalous activities in smart contracts is presented in
Section III. Section IV examines the existing solutions of
smart contract security in terms of security themes from
the perspective of the software lifecycle. Then, the emerg-
ing challenges and opportunities are proposed in Section V.
Finally, Section VI concludes the paper.

II. ANALYSIS OF SECURITY ISSUES IN SMART
CONTRACTS
A smart contract can be assumed as a mapping of a legal
agreement in reality. Once a smart contract is confirmed

by the consensus protocol and submitted to the blockchain,
it will be run in terms of the prior negotiation without
the interference of any third party. Owing to success in
Ethereum [22], smart contracts have been widely supported
by most of the current blockchains, such as Fabric [23],
Corda [24], and EOS [25]. However, several key features
of current blockchains may cause security issues in smart
contracts.

1) Decentralization and tamper-proofing are double-
edged swords. Blockchain is decentralized and tamper-
proof. Moreover, smart contracts can be developed and
deployed by pseudonymous malicious people (only public
addresses or public keys are known to others in most public
blockchains). Therefore, a vulnerable smart contract is hard
to patch and can easily become out of control once deployed.

2)Open-source code and public ledgers.Generally, a smart
contract is open-source. Contract transactions and data may
be visible to an adversary. The exposure leads to the fact that
smart contract vulnerability is easy to exploit.

3) Immaturity of blockchain platforms and smart con-
tract languages. Dapps development in the blockchain is
different from traditional application development. Develop-
ers of Dapps need a thorough understanding of the opera-
tions on the blockchain. Otherwise, the intention of smart
contract developers is often inconsistent with smart con-
tract implementation. Moreover, the blockchain technolo-
gies are evolving so fast that design flaws may exist in
blockchain platforms or smart contract languages. Devel-
opers of Dapps are always confronted with changing plat-
form features. Thus, common software weaknesses [26]
(we have illustrated some weaknesses related to smart con-
tract security in Table 1) may be amplified on blockchain
platforms.

4) Misunderstanding of common practices. Smart con-
tract developers often do not thoroughly understand the
principles of some practices of the blockchain. For exam-
ple, a misunderstanding of cryptography may lead to
security being for granted, which does not facility true
security.
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TABLE 1. Common software weakness.

5) Pseudonymous transactions. On most of the public
blockchains, transactions are pseudonymous. This feature
also stimulates criminal activities such as money laundering
[27] or Ponzi schemes [28] in smart contracts.

Smart contracts are often used to transfer financial assets.
Security issues in smart contracts may lead to a large number
of financial losses. An example is the DAO hack in Ethereum
[20], which caused a hard fork of the blockchain to nullify
the malicious transactions. Therefore, the risk of security
issues in smart contracts is generally more severe than that
in traditional applications.

III. CLASSIFICATION OF SECURITY ISSUES IN SMART
CONTRACTS
Different vulnerabilities may exist in different blockchain
systems. In this section, we mainly discuss security vulner-
abilities in smart contracts on Ethereum [22] and Fabric [23].
As the two most widely applied blockchains, Ethereum
and Fabric adopt two different but representative technolo-
gies in smart contract implementation. Ethereum utilizes the
domain-specific language (DSL) Solidity to write smart con-
tracts, whereas Fabric uses a general-purpose programming
language (e.g., Go or Java) to develop smart contracts (also
called chaincodes in Fabric). Different platforms and lan-
guages cause these two types of smart contracts to exhibit
distinguishing security vulnerabilities.

A. SECURITY VULNERABILITIES IN ETHEREUM SMART
CONTRACTS
Based on the previous works of [16], [19], [21], [29], [30],
we summarize primary security vulnerabilities in Ethereum
smart contracts in Table 2. We think that these vulnerabilities
arise from three aspects: the Solidity language, the blockchain
platform, and a misunderstanding of common practices.
We relate these vulnerabilities to common software weak-
nesses. In Table 2, we offer a preliminary understanding of
security vulnerabilities in Ethereum smart contracts. In the

FIGURE 2. An example of reentrancy.

following, we will restate these vulnerabilities, explain their
rationale, and propose simple schemes to fix them.

1) Reentrancy. A reentrancy attack may occur when a
contract calls an external contract that takes over the con-
trol flow and calls back into the calling contract before the
first invocation is finished. This attack may have an unex-
pected consequence. As shown in Figure 2, when an external
contract calls the function withdrawBalance, the function
withdrawBalance will call the fallback of msg.sender when
calling require. In turn, the fallback function can call into
withdrawBalance again. Thus, the contract SimpleReentracy
will send the balance to msg.sender repeatedly because the
assignment statement ‘‘userBalances [msg.sender] = 0’’ has
not been executed thus far.
Fix Scheme. Do not call an external function until the

developer has done all of the internal work he needs to do.
2) Unprotected selfdestruct. This vulnerability arises from

a logic flaw in Solidity. A smart contract incorrectly per-
mits access to an unauthorized actor. For example, due to
missing or insufficient access controls, malicious parties can
call the function selfdestruct (see Figure 3) to destruct the
contract. Thus, the balance in the destructed contract will be
transferred to an unauthorized account.
Fix Scheme. Consider removing the selfdestruct function-

ality unless it is needed.
3) Integer underflow (overflow). An underflow (overflow)

occurs when an arithmetic operation reaches the minimum
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TABLE 2. Security vulnerabilities in Ethereum smart contracts.

FIGURE 3. An example of unprotected self-destruct.

FIGURE 4. An example of integer underflow.

(maximum) of a type. As shown in Figure 4, an integer
underflow occurs when a subtract operation attempts to create
a value that is outside of the unit type range (0∼255), which
will cause a misjudgment of the count value. This vulnerabil-
ity exists in many platforms and smart contract languages.
Fix Scheme. Use SafeMath [35] libraries for all arithmetic

operations in the smart contract.
4) Locked money. This vulnerability stems from the imma-

turity of blockchain platforms. An operator sometimes for-
gets to enter the address he expects to transfer to. Because the
default value of an empty field for an address is 0x0 in some
wallets such as Parity, money is often locked in this address.
Fix Scheme. Check the address before transferring.
5) Delegatecall to untrusted contracts. This vulnerability

mainly arises from the Solidity language. A special function
in contract A, namely delegatecall, may call a function of
another untrusted contract B (e.g., callee in Figure 5). When
calling into contract B, the context such as msg.sender is still
identical to the previous context of contract A. Calling into
untrusted contract B is very dangerous, because the code in B
can change any storage values of A and thus can completely
control the balance of A.
Fix Scheme. Use the function delegatecallwith caution and

ensure that you never call into an untrusted contract.

FIGURE 5. An example of delegatecall to untrusted contracts.

FIGURE 6. An example of transaction order dependence.

6) Transaction order dependence. This vulnerability arises
from a feature of the blockchain. As shown in Figure 6,
a contract EthClaimReward will give a reward to the first
person who solves a math problem (the contract owner will
initialize the value of the reward by calling the function setRe-
ward). Assuming that Alice solves the problem and submits
the answer by calling claimReward with a standard gas price,
Eve can see the answer that Alice just submitted because the
ledger is public. Now Eve can resubmit the answer with a
much higher gas price, and thus Eve’s transaction probably
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FIGURE 7. An example of weak randomness.

gets processed and committed beforeAlice’s. In that case,Eve
will receive the reward even though Alicewas the first person
to solve the problem.
Fix Scheme. Use a commitment scheme that is carried out

in two phases. (I) Instead of submitting a transaction with
the answer, any person who solves the problem first submits
a transaction with a hash of [salt, address, answer], where
salt may be a random value and [] is a combination operator
of multiple values. The contract stores this hash value and
the sender’s address. (II) To claim the reward, any person
who submits the hash in the previous phase will continue to
submit a transaction with his salt and answer. The contract
then calculates the hash of [salt, msg.sender, answer] and
checks this hash against the stored hash. The person who first
submits the matched hash receives the reward.

7) Weak randomness from chain attributes. Because many
contracts in Ethereum are open-source, it is challenging
to create a sufficiently strong source of randomness in
Ethereum. Attackers can easily predict the random number
generated by an algorithm with custom seeds using the corre-
sponding block information. An example is gambling Dapps,
such as UnsafeDependenceOnBlock in Figure 7, where a
pseudo-random number generator is used to pick the winner,
and thus the answer can be easily guessed because the value
of block.number is predictable when people guesses.
Fix Scheme. Use a commitment scheme that is carried out

in two phases: (I) the commit phase, during which a random
number for the answer is chosen and specified; in this phase,
the answer is quite unpredictable; and (II) the reveal phase
during which the answer is revealed and verified; in this
phase, the answer becomes a determined value.

8) Timestamp dependence. Smart contracts often use a
block timestamp to trigger conditions to execute some critical
operations. For example, a smart contract may depend on
a block timestamp to send out money (see theRun [34]).
Malicious miners can adjust the timestamp to a specific value
that influences the timestamp-dependent condition and favors
them.
Fix Scheme. Do not use a block timestamp as a random

seed to trigger conditions. Meanwhile, use the previous com-
mitment scheme.

9)Mishandled exceptions. This vulnerability mainly arises
from Solidity. If an external function in a contract contains

FIGURE 8. An example of mishandled exceptions.

many operations that may use up gas, calling such a costly
function may trigger an exception. A mishandled exception
may cause an attack, such as DOS (denial of service), on the
on-going contract. As shown in Figure 8 (a), if a malicious
bidder in an auction becomes a leader, he can remain the
leader forever because he can prevent anyone else from
successfully calling the function bid via a costly fallback
function.
Fix Scheme. Set up a pull payment system to isolate

each external call into an independent transaction from the
function bid so that the recipient of the call can initiate the
independent transaction. As shown in Figure 8 (b), the func-
tion withdrawRefund enables users to withdraw funds by
themselves rather than pushing funds to them in the function
bid, which reduces the chance of calling an external function
in bid.

10) Replay attack. Digital signatures can be used for iden-
tity authentication. However, by intercepting and replaying
the user’s previous signature, a malicious user can imperson-
ate a specific user [36]. Figure 9 shows a smart contract that
aims to solve the problem of users being unable to transfer
their tokens unless they have enough ether to pay for the
transaction fees. By invoking transferProxy, a user _from can
transfer tokens with a value of _value to another user _to
with a valid elliptic curve signature represented by (_v, _r,
_s). A replay attack is performed as follows. (I) Alice, i.e.,
A, initiates a transaction by calling transferProxy (A, B, 100,
3, sig) in which 100 Token will be sent to Bob, i.e., B, and
3 Token will be paid to Proxy as a service fee. To identify
herself, Alice then signs the transaction with her signature
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TABLE 3. Security vulnerabilities in fabric chaincodes.

of sig(A, B, 100, 3). (II) The transaction is carried out by
Proxy. Bob gets 100 Token from Alice the first time. (III) Bob
initiates a new transaction by calling transferProxy (A, B, 100,
3, sig), where sig is a replay of sig(A, B, 100, 3). (IV) The
new transaction is carried out by Proxy. Bob gets 100 Token
for a second time, this time without authorization.
Fix Scheme. Add an incremental nonce, the name of the

blockchain and the address of the calling user into the signa-
ture. Use the information submitted by the calling user and
the shared nonce to construct the hash value (i.e., byte32 h in
transferProxy) to verify the signature [36].

B. SECURITY VULNERABILITIES IN FABRIC CHAINCODES
There are very few papers [37], [38] focused on security
vulnerabilities in Fabric chaincodes. Based on [37] and [38],
we summarize primary security vulnerabilities in Fabric
chaincodes in Table 3, where we consider Go as the pro-
gramming language because Go is most widely used in Fabric
chaincode development.

Similar to the vulnerabilities in Ethereum smart contracts,
the vulnerabilities in Fabric chaincodes also arise from three
aspects: the Go language, the blockchain platform, and a
misunderstanding of common practices. Different from com-
mon software weaknesses, most security vulnerabilities in
Fabric chaincodes arise from the nondeterministic behavior
of Go, which may lead to consensus failure. Examples of
the vulnerabilities in Table 3 can be found in [38] (e.g.,
Listing 2 in [38]) or [39] (readers are able to run a demo on
the homepage of [39] to get a report that includes examples
of nine security vulnerabilities in [37]). Moreover, because

FIGURE 9. An example of a replay attack [36].

Fabric has no native cryptocurrency, it is difficult to determine
the severity of these vulnerabilities.

C. DISCUSSION OF VULNERABILITIES ON DIFFERENT
PLATFORMS
Different platforms and programming languages cause the
vulnerabilities in smart contracts on different platforms to
exhibit distinguishing characteristics regarding three aspects.
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FIGURE 10. The overview of security themes from a smart contract lifecycle perspective.

1) SOME VULNERABILITIES ARISE FROM SPECIFIC
LANGUAGES
These vulnerabilities, such as no.1∼ no.5 in Table 2 and
no.1∼ no.5 in Table 3, may only appear in the corresponding
platform. For instance, the vulnerability of unprotected self-
destruct arises from a flaw of Solidity. Accordingly, this vul-
nerability may only exist in Ethereum (no. 3 in Table 2 may
be an exception because this vulnerability may exist in many
programing languages). Moreover, because nondeterminism
may exist in general-purpose programming languages (e.g.,
Go), some vulnerabilities, such as global variables and iterate
over map, may appear in Fabric chaincodes. However, due
to specific restrictions on Solidity (e.g., there are no explicit
instructions in Solidity to generate random numbers or access
files outside of the EVM), these nondeterministic vulnerabil-
ities do not exist in Ethereum smart contracts.

2) SOME VULNERABILITIES ARISE FROM FEATURES OF THE
SPECIFIC BLOCKCHAIN PLATFORM
These security vulnerabilities, such as no. 6∼ no. 8 in
Table 2 and no. 9∼ no. 10 in Table 3, only appear on the cor-
responding platform. For example, the vulnerability of trans-
action order dependence only occurs when an accounting
measure for runtime with gas [22] exists in the blockchain.
This vulnerability does not exist in Fabric chaincodes. Alter-
nately, the vulnerability of read your write does not exist in
Ethereum smart contracts.

3) SOME VULNERABILITIES ARISE FROM A
MISUNDERSTANDING OF COMMON PRACTICES
These vulnerabilities may appear on most blockchain plat-
forms, including Ethereum and Fabric.

To date, there are at least dozens of blockchain plat-
forms that support smart contracts. Saini summarized the
characteristics of 40 different smart contract platforms [40].
These platforms may use different programming languages

and have distinguishing platform features. It is difficult to
compare all of these platforms. However, the same analysis
regarding their comparison to Fabric chaincodes or Ethereum
smart contracts concerning vulnerabilities can be conducted
based on the above three aspects.

D. ANOMALOUS ACTIVITIES
In most of the existing blockchain platforms, pseudonymous
transactions provide a nest for criminal smart contracts [27].
Because a smart contract is hard to patch for bugs, how to
monitor anomalous activities in a smart contract after its
deployment and apply appropriate countermeasures should
be considered in advance. Some approaches for effectively
detecting and preventing the proliferation ofmalicious behav-
iors in smart contracts are encouraged [28], [41].

IV. SECURITY SOLUTIONS FOR SMART CONTRACTS
Smart contract security is systematic engineering that
should be explored from a global perspective. Accordingly,
we classify current smart contract security solutions in terms
of the evolution of the contract lifecycle. Similar to the tradi-
tional software lifecycle, we divide the contract lifecycle into
four phases: security design, security implementation, testing
before deployment, and monitoring and analysis. In any of
these phases, contract security is paramount. Figure 10 illus-
trates the state of the art of smart contract security based on
these phases.

The horizontal axis in Figure 10 shows the evolution of
the smart contract lifecycle. We clustered related research
works into different themes spanning one or more phases.
Each theme is represented by a rounded rectangle with a
red title. For each theme, different types of related works,
which are separated by commas, are shown in the body
of the corresponding rectangle. We illustrate these themes
in terms of different lifecycle phases in the following
sections.
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TABLE 4. Smart contract security solutions in the phase of security design.

A. SECURITY DESIGN
As shown in Figure 10, three themes (i.e., design princi-
ple, design pattern, and security modeling) span the phase
of security design. These themes focus on how contracts
are designed to avoid security issues. Notably, models
constructed in the theme of security modeling may be trans-
formed into contract implementation directly. We have sum-
marized all related works in Table 4, where platforms,
keywords, and whether open-source tools are available or not
are listed. Meanwhile, the corresponding websites are shown
in the APPENDIX if open-source tools are available.

1) DESIGN PRINCIPLE
To design secure smart contracts, reference [42] proposed a
general philosophy for Ethereum and reference [43] proposed
security guidelines for EOS. Both of them proposed five
essential design principles (see the keywords in Table 4),
which present the methodology for designing secure con-
tracts on the blockchain. For example, the principle of Pre-
pare for failure indicates that the contract code must be able
to respond to bugs gracefully due to the lack of patching
schemes. For instance, if an attack such as DAO [20] occurs,
the contract must be able to pause to avoid further financial
losses.

2) DESIGN PATTERN
In software engineering, a design pattern describes an
abstraction of a reoccurring problem and presents a standard
solution. Six security patterns (see the keywords in Table 4)
are outlined in [44] to address vulnerabilities in Ethereum.
For example, the mutex pattern can provide a solution to
reentrancy vulnerability, and the emergency stop pattern
can stop the execution of a contract if malicious behav-
iors are detected. By manually inspecting the source code
of 811 Solidity contracts, Bartoletti et al. [45] identified some
common design patterns (see the keywords in Table 4), some
of which, such as authorization and time constraint, can also
address some security issues in the blockchain.

3) SECURITY MODELING
Due to semantic inconsistency between the code implemen-
tation and the contract requirements, the process of coding a
contract using a Turing-complete language such as Solidity

FIGURE 11. An example of FSM for blind auctions from [46].

can be error-prone. Moreover, the order of instruction also
affects the correctness of the contract execution. Accordingly,
recent works [46], [47] were proposed to formalize contract
clauses to enhance security. We summarize them into the
theme of security modeling. As shown in Figure 10, this
theme spans two phases: security design and security imple-
mentation. In this theme, a high-level specification derived
from business logic is characterized by rigorous and precise
semantics, which facilitates formal verificationwhilemitigat-
ing the vulnerabilities in the implementation.

FSolidM [46] allows developers to define smart con-
tracts as finite state machines (FSMs) to help develop-
ers create more secure contracts by design. For instance,
Figure 11 shows an example of FSMs for blind auctions [46],
where ABB is the initial state of the FSM. Each transition
(e.g., bid and close) is associated with an action that a user can
perform and may have a corresponding guard for the action.
FSolidM provides an easy-to-use editor and a code generator
for creating FSMs and automatically generating Ethereum
contract code. Additionally, FSolidM offers a plugin mech-
anism to enable developers to easily eliminate security vul-
nerabilities in contracts.

Recently, Idelberger et al. proposed the concept of logic-
based smart contracts [47]. Compared with a smart contract
based on a procedural language, such as Solidity, a logic-
based smart contract has distinct technical advantages in
bridging the gap between the contract implementation and
the legal prose because a logic-based smart contract is easy to
understand by involved entities during the process of negoti-
ation and dispute resolution. With the logic-based approach,
the programmer can write smart contracts only by describing
contractual clauses (what has to be done) instead of writing
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TABLE 5. Smart contract security solution in the phase of security implementation.

down detailed steps (how to do it). These contractual clauses
will then be encoded into logic rules, upon which a rule-based
enginewould reason and execute. Accordingly,many security
issues could be avoided due to the absence of manual coding
in this process.

B. SECURITY IMPLEMENTATION
Security implementation includes three themes: security
development, security template, and security modeling.
We have explained Security Modeling previously. In this sub-
section, we mainly discuss security development and security
template. We have summarized these two themes in Table 5.

1) SECURITY DEVELOPMENT
This theme concerns how developers of smart contracts can
avoid security vulnerabilities during the process of contract
implementation.

OpenZeppelin [48] is a security library for developing
Ethereum smart contracts. It offers out-of-the-box role-based
access control of the blockchain, as well as cryptography util-
ities such as SafeMath [35]. OpenZeppelin can be installed
directly into Dapps using node.js and integrated with Truffle
[54], an Ethereum development environment.

Security EIPs (Ethereum improvement proposals [49])
present appropriate proposals to avoid security vulnerabilities
on the Ethereum platform. For example, EIP 155 provides a
way to address simple replay attacks. Security EIPs are very
significant for the implementation of secure smart contracts.

Some implementation skills are also exploited to enhance
contract security. Reference [50] presents four standard tech-
niques (see the keywords in Table 5) to develop upgradeable
Ethereum smart contracts. This work shows that although
the deployed contract code is immutable on Ethereum,
a workaround still exists as long as we consider the security
issues in advance.Moreover, fix schemes in section III aiming
to address specific security vulnerabilities can also be seen
as part of security development (we will not restate them
here).

2) SECURITY TEMPLATE
Clack et al. [51] introduced smart contract templates, which
connect a legal agreement to the final executable code via
operational parameters. Figure 12 illustrates their work,
where an agreement template often contains legal prose and
parameters. The prose and parameters can be customized in
the negotiation stage and then formed into a legal agreement.
Correspondingly, the standardized smart contract code can
be generated directly in terms of the agreement template
and modified in negotiation. After the agreement is signed,
the values of parameters are defined and then passed to
the code template, which enables the final executable con-
tract code. In their later work, Clark et al. [52] identified
the essential requirement and design options of templates.
Moreover, Clark proposed a series of approaches to verify
whether the smart contract code faithfully performs the provi-
sions of the legal contract [53]. Although they did not explic-
itly mention smart contract security in their works, we argue
that standard code templates with security enhancements (see
Figure 12), such as security patterns and security libraries,
can be extracted from business logic to significantly reduce
errors in manual coding. If such security templates are built,
they could be tested and certified only once and then used by
others while avoiding security issues.

C. TESTING BEFORE DEPLOYMENT
Because smart contracts are difficult to patch after deploy-
ment, it is necessary to perform sufficient testing to ensure
their security before their deployment. Table 6 classifies
smart contract security solutions in the phase of testing before
deployment into three security themes: rigorous formal veri-
fication, code analysis tools, and security audit.

1) RIGOROUS FORMAL VERIFICATION
Rigorous formal verification is a mathematical approach to
verifying the correctness and security of a program. Smart
contracts are very suitable for rigorous formal verification
because the contract program is small and time-bounded.
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TABLE 6. Smart contract security solutions in the phase of testing before deployment.

Rigorous formal verification is usually applied after the com-
pletion of the contract code, although more precisely, it can
also be used to verify the correctness of the middle repre-
sentation of smart contracts in the design or implementation
phase (e.g., a high-level specification derived from business
logic in security modeling).

There are several approaches to rigorously formalize
and verify smart contracts. Among them, some are based
on contract code [55], [56], whereas some are based
on Ethereum virtual machine (EVM) semantics [57]–[59].
The latter can be viewed as tailored implementations
of EVM that take into account the proof of security
properties.

Abdellatif and Brousmich [55] proposed a novel approach
for modeling smart contract behavior with strong semantics
using a behavior interaction priorities (BIP) framework based
on the source code of smart contracts. In addition, they simu-
lated this behavior model with a series of runtime verification
and simulation engines. The results from the simulation were
further analyzed to verify security properties with a statistical
model checking (SMC) tool, which revealed some malicious
operations. However, under most circumstances, formalizing
smart contract behavior based on existing source code is
nontrivial. Using two prototype tools, Solidity∗ and EVM∗
(see Figure 13), Bhargavan et al. [56] translated Ethereum
contracts into F∗, a functional language equipped with an
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FIGURE 12. Relations among the agreement template, agreement,
standard code template, and final executable code.

FIGURE 13. Formalization verification based on contract code [56].

interactive proof assistant for program verification. However,
the translation only supports a fragment of EVM bytecode
and leaves out many essential constructs.

To develop secure contracts, Hirai [57] formalized EVM
semantics using Lem, from which the interactive theorem
prover Isabelle/HOL can be extracted to prove security prop-
erties of smart contracts (see Figure 14). This work is the
first formal EVM definition for smart contract verification.
However, the semantics are only a sound overapproximation
of the original semantics in [57] and thus cannot serve as a
general-purpose basis for static analysis. To demonstrate the
significance of rigorous semantic foundations for the design
of security verification, Grishchenko et al. [58] presented
the first complete small-step semantics of EVM bytecode,
which they formalized in the F∗ proof assistant. Based on
this formalization, program verifications, as well as proofs for
fundamental security properties, were proposed. Moreover,
Hildenbrandt et al. [59] presented fully executable rigorous
formal semantics on EVM using the K framework [71]. They
also showed how the existing language-independent tools,
such as the reachability logic prover [72] for the K frame-
work, can be applied to security analysis on EVM programs.
Both [58] and [59] obtained executable code that was suc-
cessfully validated against the Ethereum test suite to show the
correctness of their semantic definitions. They successfully
identified various mistakes and imprecisions in the existing
semantics and enabled the verification of security properties
for Ethereum smart contracts, thus offering formal verifi-
cation and a precision guarantee for these smart contracts.

FIGURE 14. Proof of security properties based on EVM semantics [57].

Nevertheless, full automation of the verification of security
properties still needs to be explored further.

Beckert et al. [60] proposed a formal specification and
verification of smart contracts written in Java in Fabric using
KeY [73], a semi-interactive deductive theorem prover for
statically verifying sequential Java programs. Notably, they
extended KeY to support the verification of smart contracts,
and this extension operates on the Fabric ledger and handles
serialization. As far as we know, the work of Beckert et al. is
the only work on formal verification of Fabric smart contracts
thus far.

2) CODE ANALYSIS TOOLS
Thus far, only a few static code analysis tools, whether they
rely on a rigorous formalization or not, have been imple-
mented to improve code quality and security. The tools con-
duct static code analysis on the source code or bytecode of
smart contracts without executing the programs. The analysis
may include some or all of the following steps. (I) Build
an intermediate representation (IR), e.g., an abstract syntax
tree (AST), for subsequent in-depth analysis. (II) Enrich the
IR with some additional information, likely coming from
static control or date flow analysis and formal verification
techniques, such as symbolic execution [74], abstract inter-
pretation [75], and symbolic model checking [76]. (III) Per-
form vulnerability detection according to a security pattern
(anti-pattern or secure property) that defines the vulnerability
criteria in IR terms.

Oyente [34], one of the most popular automatic security
analysis tools for EVM smart contracts, leverages symbolic
executionwith the constraint solver Z3 [77] to find four com-
mon bugs (namely, transaction ordering dependence, times-
tamp dependence, mishandled exceptions, and reentrancy).
Reference [11] uses Oyente to help eradicate these common
bugs in smart contracts. Figure 15 shows the architecture
of Oyente, which takes bytecode and the current Ethereum
global state as input. Four components, namely CFG (Control
Flow Graph) Builder, Explorer, Core Analysis, and Validator,
form the core of Oyente. CFG Builder constructs a control
flow graph of smart contracts, which feeds the Explorer
and Graph visualizer. Explorer symbolically executes the
contract, and the result is then fed to Core Analysis, where
Oyente targets the common bugs. Finally, Validator filters out
false positives before final reporting. Among 19,366 existing
smart contracts, Oyente flags 8,833 as vulnerable, includ-
ing the DAO bug. However, Oyente only detects particular
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FIGURE 15. The architecture of Oyente [34].

vulnerabilities with false positives. Additionally, it only
implements a lightweight semantics of the EVM bytecode,
and thus misses a few critical commands concerning contract
calls and creations.
Symbolic execution used byOyente is a powerful technique

for identifying vulnerabilities. However, it does not guarantee
the exploration of all execution paths, which may result in
false negatives. In contrast to Oyente, Securify [18] is an
abstract interpreter that explores all possible paths. Addition-
ally, Securify, though non-open-source, is a tool available for
smart contract code analysis using a web page. Securify ana-
lyzes the contract dependency graph in stratified Datalog [78]
to infer precise semantic information from EVM bytecode.
Then, it checks compliance and violation patterns to verify
whether a security property holds. Compared with Oyente,
Securify’s analysis is fully automated. Because patterns are
expressed in a designated domain-specific language (DSL)
in Securify, anyone can easily extend new patterns to address
new vulnerabilities.

Kalra et al. proposed Zeus [17], a completely automated
tool, to reason about the correctness and fairness of smart con-
tracts using formal approaches including abstract interpre-
tation and symbolic model checking along with constrained
Horn clauses [79]. Zeus takes as input contract source code
and security policy (written in XACML-styled templates).
It performs static analysis atop the source code to deter-
mine the points at which the verification predicates must be
asserted. Then, Zeus transforms the smart contract source
code embedded with policy assertions into a low-level IR
such as LLVM bitcode. Finally, Zeus feeds the bitcode to a
verification engine to determine whether the security policy
is satisfied. The evaluation shows that Zeus is soundwith zero
false negatives and a low false-positive rate, and it offers a sig-
nificant improvement in analysis time over previous works,
such as Oyente. Because most high-level languages already
have mature LLVM bitcode translators, Zeus is scalable and
is now available for the Fabric and Ethereum platforms.
Unfortunately, Zeus is not open-source and is only used to
analyze contracts whose source code is available.

Chaincode Scanner is a static security analyzer designed
for Fabric smart contracts [61]. It often takes smart contracts
written in the Go language as input. Some automated security
analyses, such as control flow graph analysis and dependency
graph analysis, are conducted to check for nine vulnerabil-
ity patterns [37]. However, due to the lack of a detailed
description of Chaincode Scanner, we cannot fully disclose

the theory of the tool. Yamashita et al. [38] surveyed various
artifacts and identified fourteen potential risks in Fabric. They
argued that smart contracts written in general-purpose pro-
gramming languages, such as Go and Java, lack restrictions
and are more likely to cause nondeterministic risks. Some
ready-made tools, such as Go tools [80], can be utilized
to conduct static security analysis for some common risks,
but this does not take into consideration some risks in the
blockchain context. Therefore, Yamashita et al. implemented
a prototype tool to cover these risks, which analyzed the AST
of contracts. Moreover, they compared Chaincode Scanner
and Go tools with their tool. Comparison results showed that
their tool hasmore effective coverage and better performance.

Octopus [62] is a security analysis tool for smart con-
tracts with EVM and WASM (WebAssembly [81]) support.
To improve analysis efficiency, Octopus can translate byte-
code into an assembly representation (another IR format)
using a disassembler and then simplify the assembly into
static single assignment (SSA) representation for further opti-
mization. Moreover, Octopus utilizes control flow graphs
and call flow graphs to analyze security vulnerabilities and
exploits symbolic execution to find new paths into a pro-
gram. Compared to other tools, Octopus can perform security
analysis of smart contracts on multiple blockchain platforms,
including BTC, ETH, NEO, and EOS.

Meanwhile, some other security analysis tools, such as
TEETHER [63], Mythril [64], SmartCheck [65], and Man-
ticore [66], also perform security analysis using formal ver-
ification approaches. References [19], [21] and [82] present
empirical vulnerability analysis to compare the performances
of these tools. Among these tools, TEETHER provides not
only amethodology to find vulnerabilities but also end-to-end
exploit generation.Moreover, an overview of foundations and
tools for the static analysis of Ethereum smart contracts can
be found in [83].

Another thingworth noting is that, unlike the approaches in
security themes mentioned before, most code analysis tools,
including Oyente, Securify, Zeus, Chaincode Scanner, Octo-
pus, and TEETHER, analyze the control flow graph or con-
tract dependency graph. Accordingly, with these tools, it is
possible to address some security issues in the situation where
multiple smart contracts interact. That is, although a smart
contract is not vulnerable, it still may be dangerous because
it calls a vulnerable one.

3) SECURITY AUDIT
Security issues and incorrectness in smart contracts can cause
devastating financial consequences. Consequently, security
audits are necessary to ensure the security and correctness
of smart contracts. If developers are not confident enough
in their professional ability to perform security audits, they
can entrust the audit task to some professional constitutions
[67]–[69], who will write a qualified auditing report for secu-
rity issues they identify.

An ideal audit will be a combination of automatic andman-
ual code analysis. Generally, the automatic code analysis uses
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TABLE 7. Smart contract security solutions in the phase of monitoring and analysis.

static code analysis tools, such as Oyente and Securify, to find
vulnerabilities. These tools can save a significant amount of
time for security auditors, but they may miss some critical
security vulnerabilities. As a supplement, auditors can review
every line of code and test them for different vulnerabilities
by manual analysis.

Additionally, regulatory bodies also need to carry out pub-
lic audits of smart contracts. Many smart contracts in public
blockchains, such as Ethereum, do not have readily available
source code, which makes audits challenging. To address
this problem, Zhou et al. proposed a reverse- engineering
tool entitled Erays [70] to reconstruct high-level pseudocode
based on EVM bytecode. With Erays, security auditors can
not only explore code complexity and code reuse of Ethereum
smart contracts but also uncover contract intention and behav-
ior. Moreover, any other approaches adopted by contract
developers for security audit can still be used here.

D. MONITORING AND ANALYSIS
Even if a contract has been deployed and run, users still need
some measures to discover vulnerabilities that were missed
in the previous phase for improvement in new releases. These
measures include bug bounty, security monitoring, and post
hoc analysis. We have summarized all of these measures
in Table 7.

1) BUG BOUNTY
Although measures in the phase of testing before deployment
can help us find most bugs, some bugs are still hard to
identify. Bug bounty programs are often used to discover
deeply hidden bugs. Unlike formal verification, a type of
static analysis technique, bug bounty is a type of dynamic

FIGURE 16. The Hydra framework with heads f1, f2 and f3 [86].

analysis technique. In a bug bounty program, hackers expect-
ing financial rewards generally find bugs when the system
is running. Many Ethereum ecosystems, such as EtherScan
[84] and Raiden [85], provide bug bounty programs to further
improve system security.

However, bug bounties lack rigorous principles for pric-
ing bounties appropriately. Because the financial value of
critical bugs in gray markets may significantly exceed the
bounty value [86], some hackers would rather sell or exploit
bugs than claim them. Moreover, bounty payers often do not
want to pay before confirming an exploit, whereas hack-
ers worry that revealing exploits risks nonpayment. All of
these things compromise the generalization of bug bounty
programs. To address these challenges, Breidenbach et al.
proposed Hydra [86], a bug bounty framework, and then
applied it to smart contracts.

As the first general, principled bug bounty system on
the blockchain, Hydra utilizes an exploit gap technology
named N-of-N-version programming (NNVP). The ratio-
nale of Hydra is shown in Figure 16, where multiple ver-
sions of smart contract programs (Hydra heads) with the
same functionality are independently developed. A hacker
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can obtain the bounty only when a head outputs a different
result from the others, which shows that a bug exists in the
head. In Hydra, a bug is exploitable only if it affects all
heads similarly. That is, the same bug exists in all heads
and causes the same exceptional output, which is almost
impossible because those heads are independently developed.
This property makes critical bugs detectable at runtime, but
hard to exploit. In particular, with the Hydra smart contract,
a fair exchange between bounty payers and hackers is also
enabled. Bounty payers do not need to pay before confirming
an exploit, whereas hackers no longer have to worry that
revealing exploits risks nonpayment. Moreover, using an
adjustable bounty value and submarine commitments, Hydra
encourages economically rational hackers to disclose bugs
while effectively preventing bug withholding. Although the
authors designed the Hydra framework for the Ethereum
platform, its fundamental methodology is easy to extend to
any other blockchain, such as Fabric or EOS.

2) SECURITY MONITORING
Comparedwith static code analysis, which can reveal security
vulnerabilities based on contract code before deployment,
monitoring and analyzing transaction data on the blockchain
can uncover many vulnerability exploits in real-time.

By analyzing multiple invocations of an Ethereum con-
tract during its run-time, Nikolić et al. [87] systematically
characterized a class of vulnerabilities that they call trace
vulnerabilities. They focused their attention on three cate-
gories of contracts with trace vulnerabilities: greedy con-
tracts (contracts that remain alive and lock Ether indefinitely),
prodigal contracts (contracts that leak funds carelessly to
arbitrary users), and suicidal contracts (contracts that can be
killed by any arbitrary user). They implementedMAIAN [91]
to specify and reason about trace properties. By employing
symbolic analysis and a concrete validator, MAIAN finds
exploits for the infamous Parity bug, which previous analyses
failed to capture.

Grossman et al. [88] defined the notion of effectively
callback free (ECF) objects. They argued that identifying vul-
nerabilities bymonitoring ECF objects in the execution traces
of Ethereum is feasible. Therefore, they proposed an efficient
online algorithm for discovering reentrancy. Other known
vulnerabilities can also be discovered similarly. To avoid
unexpected consequences, they suggested that smart con-
tracts should first be executed on the testnet before they are
finally deployed on the mainnet [92].

Similar to ECF online detection, DappGuard [89] is an
active monitoring and defense tool for Ethereum smart con-
tracts that searches for attack fingerprints from transaction
logs or receipts to identify attacks. For example, vulnerabil-
ity exploits for smart contracts can be discovered through
high gas usage, strange message values, and suspicious fall-
back invocations in transaction logs or receipts. Combined
with code analysis tools such as Oyente, DappGuard can
be extended to monitor the anomalous behavior of smart
contracts in real-time.

Monitoring UI [90] is a blockchain monitoring platform
that uses React.js, the Watson IoT platform [93] and the
Fabric Node SDK to interact with a Fabric blockchain ser-
vice. Operators can use this UI platform to monitor assets,
perform transactions, and query the state of the blockchain.
Unlike DappGuard [89], Monitoring UI does not provide
secure monitoring of smart contracts. However, because all
transaction data related to the contract are available on this
platform, it can be extended to detect attacks in real-time by
analyzing the transfer of assets.

3) POST HOC ANALYSIS
With the increasing volume of blockchain transaction data,
some data analysis or machine learning approaches can be
applied to discover attacks or abnormal activities on the
blockchain.

Chen et al. [41] conducted the first systematic study of
Ethereum transactions by graph analysis. They designed an
approach to collect all transactions, including internal trans-
actions resulting from the execution of smart contracts. From
the transaction data, they built three graphs: a money flow
graph (MFG), contract creation graph (CCG), and contract
invocation graph (CIG). With these graphs, they character-
ized major activities on Ethereum and discovered many new
insights, including degree distribution and node importance.
According to contract invocation analysis, some security
issues concerning multiple contracts interacting with each
other may also be solved. For instance, two security issues,
i.e., attack forensics and anomaly detection, were addressed.
Attack forensics can be used to find all accounts controlled
by an attacker. Anomaly detection can discover abnormal
contract creation, which consumes many disks or network
resources by creating many contracts that are rarely used.
Figure 17 illustrates their approach.

FIGURE 17. An overview of graph analysis [41].

The Ponzi scheme, a classic fraud, can acquire a large
amount of money and have a very negative impact on
Ethereum. Chen et al. [28] proposed an effective classi-
fier to detect Ponzi schemes on Ethereum. Their approach
utilizes data mining and machine learning to detect Ponzi
contracts even if the source code for smart contracts is not
available. By verifying smart contracts manually, account
features and code features of Ponzi contracts were first
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FIGURE 18. The framework of smart Ponzi scheme detection [28].

extracted from the transactions and operation codes, respec-
tively. Then, the authors proposed a classifier model based on
XGBoost [94], which is proven to be effective in detecting
Ponzi schemes. Figure 18 illustrates the framework of their
approach.

V. CHALLENGES AND OPPORTUNITIES
A. SECURITY DESIGN
With the application of smart contracts in different
industries [95]–[97], more security patterns and security
anti-patterns should be extracted from the emerging security
vulnerabilities.
Security Modeling is a promising research direction. There

is still considerable room for this direction. In FSMs-based
approaches, the number of states and transitions grows expo-
nentially with the number of contracts, which makes this
modeling approach inappropriate for complex business logic.
Moreover, a logic-based approach is still in the proof-of-
concept stage even if this approach has distinct advantages in
negotiation, notarizing, and enforcement of a contract. The
algorithm for a logic approach is not efficient in blockchain
scenarios. Moreover, how to effectively extract FSMs [46]
and logic rules from legal agreements [47] to mitigate vul-
nerabilities is worth exploring. How to make the logic and
procedural approaches compatible is also challenging.

With the popularity of blockchain, more domain-specific
modeling approaches and logic languages with precise
semantics should be proposed to avoid vulnerabilities. These
models and languages should be easy to convert into
code or real legal contracts adopted by the court directly.

B. SECURITY IMPLEMENTATION
A promising research direction in security implementation of
smart contracts is the integration of more security libraries,
such as OpenZeppelin [48], into the contract development
environment in the form of security plugins. These libraries
will provide security enhancement for the development of
smart contracts.

Another promising research direction in security imple-
mentation of smart contracts is the development of a formal
high-level domain-specific language with explicit semantics
and security enhancements. With this language, developers
could write contract templates, from which legal agree-
ments and executable smart contract code could be automat-
ically extracted, thereby avoiding error-prone manual coding
and eliminating major security issues. Moreover, to keep

templates simple and semantics precise, developers could
also integrate logic rules in a logic-based approach [47] into
template technology.

C. TESTING BEFORE DEPLOYMENT
Rigorous formal verification is an effective approach for
detecting security vulnerabilities. For Ethereum, rigorous
formal verification formalizes the EVM interpreter or smart
contract code using a general-purpose intermediate-level lan-
guage, such as Lem. This language serves as an intermediate
between high-level languages and executable bytecode. That
is, contract code in high-level languages will first be compiled
into contract code in intermediate-level languages instead of
EVM bytecode. Because these intermediate-level languages
are well integrated with the program prover, it is amenable
to the program verification. A promising research direc-
tion is to design new intermediate-level languages specifi-
cally for smart contracts, instead of these general-purpose
intermediate-level languages, to facilitate the formal verifi-
cation of smart contracts. Scilla [98] is such an attempt. With
the popularity of the Ethereum platform, more and more such
intermediate-level languages that are easy to understand but
that have strong expressive power and precise operational
semantics will appear. Different from Ethereum, Fabric uses
a general-purpose programming language to write smart con-
tracts [23]. Accordingly, the formalization of smart contracts
for Fabric may be more complicated than that for Ethereum.
Fortunately, some provers (e.g., KeY [73]) associated with
general programming languages are available, and how to
adapt these provers to blockchain scenarios is also worth
exploring.

In addition to rigorous formal verification, code analysis
tools are also exploited to find security vulnerabilities in
smart contracts. However, these tools are still in the infancy
stage. Their performance is not ideal. Many of them do
not cover the full range of security vulnerabilities outlined
in this paper. Moreover, there is still considerable room to
improve their accuracy, false-positive rate, and false-negative
rate in the process of vulnerability detection. For this aspect,
deep learning may be useful. Moreover, because new security
vulnerabilities continue to emerge, an excellent code analysis
tool should be extensible. The tool should be able to identify
new security vulnerabilities by defining new security prop-
erties. However, security properties are now often specified
ad hoc and are mostly verified manually. A method for the
unified and flexible specification of security properties to
facilitate automatic verification is urgently needed.

In brief, because smart contracts are hard to patch once they
are deployed on the blockchain, testing before deployment is
significant. A convenient test platform for smart contracts,
especially new test techniques such as mocking objects capa-
ble of effectively emulating the blockchain, are also worth
exploring further. Additionally, the construction of standard
test datasets for a specific blockchain platform to mitigate
the difficulty of testing smart contracts is also a promising
research direction.
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TABLE 8. Open-source websites of smart contract security solutions.

D. MONITORING AND ANALYSIS
Real-time monitoring and analysis are very significant for
blockchain security. Blockchain platforms, such as Ethereum
and Fabric, are expected to provide an internal framework for
efficient monitoring of the execution of smart contracts in the
future. Based on such a framework, organizations can expand
the scope of security monitoring according to their business.

As more and more transactions of different businesses are
dealt with on the blockchain, a variety of attacks and scams
will emerge due to the enormous value transfer associated
with these transactions, which provides a promising research
direction for data mining on the blockchain. For instance,
we may discover more new insights regarding anomalous
behavior in smart contracts by in-depth graph analysis.

E. OTHER DIRECTIONS
If the security of smart contracts is considered at the sys-
tem level (e.g., EVM implementation), we will spend less
on security in the contract development lifecycle. However,
consideration of security at the system level is a more general
problem and thus is also a significant challenge.

Corresponding to traditional software, some researchers
advocate for a discipline of blockchain software engineering
to address the issues posed by smart contract programming
[99], [100]. We also hold this viewpoint. With the progress
of blockchain security, blockchain engineers and researchers
may propose more new best practices and security tools
concerning blockchain software engineering.

VI. CONCLUSION
As examined in this paper, the environment in which smart
contracts are executed is decentralized and hard to patch
for bugs. Consequently, smart contracts have many security
issues in terms of security vulnerabilities and anomalous

activities. Our focus on smart contract security from the
perspective of the software lifecycle enabled us to reveal the
practical and theoretical aspects of smart contract security
to a greater degree than any previous study. We achieved
this vital research outcome as follows. First, we illustrated
key features of blockchains that cause security issues in
smart contracts, including 1) decentralized, tamper-proof
and public ledgers; 2) open-source smart contract code;
3) immature platforms and languages, and 4) pseudony-
mous transactions. We revealed the most common security
vulnerabilities of smart contracts in Ethereum and Fabric.
We also discussed the differences in vulnerabilities on differ-
ent blockchain platforms. Then, we demystified the puzzles
of security solutions for smart contracts in terms of numerous
security themes spanning four contract development phases:
1) security design; 2) security implementation; 3) testing
before deployment; and 4) monitoring and analysis. Finally,
we summarized the challenges of security research for smart
contracts as a software engineering problem and suggested
several research directions to improve smart contract security.
We hope that this paper builds on the current research out-
comes of smart contract security and signifies a milestone in
information security in the age of blockchain. We expect that
many more research efforts will follow by expanding on the
works classified in this paper and by applying the techniques
outlined here to various business contexts.

APPENDIX
For the convenience of reference, Table 8 shows the websites
of all open-source tools in Section IV. These websites were
available as of September 6, 2019.

REFERENCES
[1] K. Salah, M. Rehman, N. Nizamuddin, and A. Al-Fuqaha, ‘‘Blockchain

for AI: Review and open research challenges,’’ IEEE Access, vol. 7,
pp. 10127–10149, 2019.

VOLUME 7, 2019 150199



Y. Huang et al.: Smart Contract Security: Software Lifecycle Perspective

[2] G. Zhang, T. Li, Y. Li, P. Hui, and D. Jin, ‘‘Blockchain-based data sharing
system for ai-powered network operations,’’ J. Commun. Inf. Netw., vol. 3,
no. 3, pp. 1–8, 2018.

[3] AI & Blockchain: An Introduction. Accessed: Sep. 8, 2019. [Online].
Available: https://mattturck.com/ai-blockchain/

[4] Decentralized ai Blockchain Whitepaper, Nebula AI Team, Montreal,
QC, Canada, 2018.

[5] E. Karafiloski and A. Mishev, ‘‘Blockchain solutions for big data chal-
lenges: A literature review,’’ in Proc. IEEE EUROCON 17th Int. Conf.
Smart Technol., Ohrid, Macedonia, Jul. 2017, pp. 763–768.

[6] P. Banerjee and S. Ruj, ‘‘Blockchain enabled data marketplace—
Design and challenges,’’ 2018, arXiv:1811.11462. [Online]. Available:
https://arxiv.org/abs/1811.11462

[7] M. A. Khan and K. Salah, ‘‘IoT security: Review, blockchain solutions,
and open challenges,’’ Future Gener. Comput. Syst., vol. 82, pp. 395–411,
May 2018.

[8] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah, ‘‘Mon-
etization of IoT data using smart contracts,’’ IET Netw., vol. 8, no. 1,
pp. 32–37, Jan. 2019.

[9] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
‘‘A user authentication scheme of IoT devices using blockchain-enabled
fog nodes,’’ in Proc. IEEE/ACS 15th Int. Conf. Comput. Syst. Appl.
(AICCSA), Aqaba, Jordan, Oct./Nov. 2018, pp. 1–8.

[10] H. Hasan and K. Salah, ‘‘Combating deepfake videos using blockchain
and smart contracts,’’ IEEE Access, vol. 7, no. 1, pp. 41596–41606,
Dec. 2019.

[11] H. Hasan and K. Salah, ‘‘Proof of delivery of digital assets using
blockchain and smart contracts,’’ IEEE Access, vol. 6, pp. 65439–65448,
2018.

[12] I. C. Lin and T. C. Liao, ‘‘A survey of blockchain security issues and
challenges,’’ Int. J. Netw. Secur., vol. 19, no. 5, pp. 653–659, 2017.

[13] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the security
of blockchain systems,’’ Future Gener. Comput. Syst., to be published.

[14] N. Andola, M. Gogoi, S. Venkatesan, and S. Verma, ‘‘Vulnerabilities
on hyperledger fabric,’’ Pervas. Mobile Comput., vol. 59, Oct. 2019,
Art. no. 101050.

[15] BCSEC Incorporation. Accessed: Mar. 15, 2019. [Online]. Available:
https://bcsec.org/analyse

[16] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on Ethereum
smart contracts (SoK),’’ in Proc. Int. Conf. Princ. Secur. Trust, Uppsala,
Sweden, Apr. 2017, pp. 164–186.

[17] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyzing safety
of smart contracts,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., San Diego,
CA, USA, 2018, pp. 1–15.

[18] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, ON,
Canada, 2018, pp. 67–82.

[19] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, ‘‘Security analysis
methods on Ethereum smart contract vulnerabilities: A survey,’’ 2019,
arXiv:1908.08605. [Online]. Available: https://arxiv.org/abs/1908.08605

[20] The DAO (Organization). Accessed: Sep. 6, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/The_DAO_(organization)

[21] D. Ardit, ‘‘Ethereum smart contracts: Security vulnerabilities and security
tools,’’ M.S. thesis, Dept. Comput. Sci., Norwegian Univ. Sci. Technol.,
Trondheim, Norway, 2017.

[22] G. Wood, ‘‘Ethereum: A secure decentralised generalised transac-
tion ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32,
Apr. 2014.

[23] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th ACM EuroSys Conf., Porto,
Portugal, 2018, Art. no. 30.

[24] R. G. Brown et al., ‘‘Corda: An introduction,’’ R3 CEV, Aug. 2016.
[Online]. Available: https://docs.corda.net/_static/corda-introductory-
whitepaper.pdf

[25] EOS White Paper. Accessed: Jun. 8, 2019. [Online]. Available:
https://github.com/EOSIO/Documentation/blob/master/Technical
WhitePaper.md

[26] Commonweakness Enumeration. Accessed: Jun. 8, 2019. [Online]. Avail-
able: https://cwe.mitre.org/data/index.html

[27] A. Juels, A. Kosba, and E. Shi, ‘‘The ring of Gyges: Investigating the
future of criminal smart contracts,’’ in Proc. ACM SIGSACConf. Comput.
Commun. Secur., Vienna, Austria, 2016, pp. 283–295.

[28] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, ‘‘Detecting
Ponzi schemes on Ethereum: Towards healthier blockchain technology,’’
in Proc. World Wide Web Conf. World Wide Web, Lyon, France, 2018,
pp. 1409–1418.

[29] SWC Registry. Accessed: Jun. 8, 2019. [Online]. Available:
https://smartcontractsecurity.github.io/SWC-registry/

[30] Known Attacks. Accessed: Jun. 8, 2019. [Online]. Available:
https://consensys.github.io/smart-contract-best-practices/known
_attacks/

[31] I Accidentally Killed It. Accessed: Jun. 8, 2019. [Online]. Available:
https://elementus.io/blog/which-icos-are-affected-by-the-parity-wallet-
bug/

[32] BeautyChain Token Bug. Accessed: Jun. 8, 2019. [Online]. Available:
https://blog.matryx.ai/batch-overflow-bug-on-ethereum-erc20-token-
contracts-and-safemath-f9ebcc137434

[33] Hundreds of Millions of Dollars Locked at 0 × 0 Address and Smart
Contracts’ Addresses. Accessed: Jun. 8, 2019. [Online]. Available:
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-
locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-
4144dbe3458a

[34] L. Luu, Duc-Hiep Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making
smart contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun.
Secur., Vienna, Austria, 2016, pp. 254–269.

[35] SafeMath. Accessed: Jun. 8, 2019. [Online]. Available:
https://ethereumdev.io/safemath-protect-overflows/

[36] Replay Attack. Accessed: Jun. 8, 2019. [Online]. Available:
https://medium.com/cypher-core/replay-attack-vulnerability-in-
ethereum-smart-contracts-introduced-by-transferproxy-124bf3694e25

[37] T. Kaiser. Chaincode Scanner: Automated Security Analysis of
Chaincode. ChainSecurity. Accessed: Sep. 6, 2019. [Online]. Available:
https://static.sched.com/hosted_files/hgf18/18/GlobalForum-tobias-
kaiser.pdf

[38] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, ‘‘Potential
risks of Hyperledger Fabric smart contracts,’’ in Proc. IEEE Int. Work-
shop Blockchain Oriented Softw. Eng. (IWBOSE), Hangzhou, China,
Feb. 2019, pp. 1–10.

[39] Chaincode Scanner. Accessed: Sep. 6, 2019. [Online]. Available:
https://chaincode.chainsecurity.com/

[40] V. Saini. ContractPedia: An Encyclopedia of 40+ Smart Contract Plat-
forms. Accessed: Sep. 6, 2019. [Online]. Available: https://hackernoon.
com/contractpedia-an-encyclopedia-of-40-smart-contract-platforms-
4867f66da1e5

[41] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
‘‘Understanding Ethereum via graph analysis,’’ in Proc. IEEE Int. Conf.
Comput. Commun., Honolulu, HI, USA, Apr. 2018, pp. 1484–1492.

[42] General Philosophy. Accessed: Jun. 8, 2019. [Online]. Available:
https://consensys.github.io/smart-contract-best-practices/general
_philosophy/

[43] Security Guidelines. Accessed: Sep. 6, 2019. [Online]. Available:
https://github.com/slowmist/eos-smart-contract-security-best-
practices/blob/master/README_EN.md#security-guidelines

[44] M. Wohrer and U. Zdun, ‘‘Smart contracts: Security patterns in
the Ethereum ecosystem and solidity,’’ in Proc. IEEE Int. Workshop
Blockchain Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 2–8.

[45] M. Bartoletti and L. Pompianu, ‘‘An empirical analysis of smart contracts:
Platforms, applications, and design patterns,’’ in Financial Cryptography
and Data Security. Cham, Switzerland: Springer, 2017, pp. 494–509.

[46] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid:
Correct-by-design smart contracts for Ethereum,’’ 2019,
arXiv:1901.01292. [Online]. Available: https://arxiv.org/abs/1901.01292

[47] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, ‘‘Evaluation of
logic-based smart contracts for blockchain systems,’’ in Proc. Int. Symp.
Rules Rule Markup Lang. Semantic Web, Stony Brook, NY, USA, 2016,
pp. 167–183.

[48] OpenZeppelin. Accessed: Sep. 6, 2019. [Online]. Available:
https://openzeppelin.org

[49] Security EIPs. Accessed: Sep. 6, 2019. [Online]. Available:
https://consensys.github.io/smart-contract-best-practices/security_eips

[50] Upgradable Contract. Accessed: Sep. 6, 2019. [Online]. Avail-
able: https://hackernoon.com/how-to-make-smart-contracts-upgradable-
2612e771d5a2

[51] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract tem-
plates: Foundations, design landscape and research directions,’’ 2016,
arXiv:1608.00771. [Online]. Available: https://arxiv.org/abs/1608.00771

150200 VOLUME 7, 2019



Y. Huang et al.: Smart Contract Security: Software Lifecycle Perspective

[52] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract templates:
Essential requirements and design options,’’ 2016, arXiv:1612.04496.
[Online]. Available: https://arxiv.org/abs/1612.04496

[53] C. D. Clack, ‘‘Smart contract templates: Legal semantics and code vali-
dation,’’ J. Digit. Banking, vol. 2, no. 4, pp. 338–352, 2018.

[54] Truffle. Accessed: Sep. 6, 2019. [Online]. Available:
https://truffleframework.com/

[55] T. Abdellatif and K.-L. Brousmiche, ‘‘Formal verification of smart con-
tracts based on users and blockchain behaviors models,’’ in Proc. IEEE
9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS), Paris, France,
Feb. 2018, pp. 1–5.

[56] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, ‘‘Formal verification of smart
contracts: Short paper,’’ in Proc. ACM Workshop Program. Lang. Anal.
Secur., Vienna, Austria, 2016, pp. 91–96.

[57] Y. Hirai, ‘‘Defining the Ethereum virtual machine for interactive theo-
rem provers,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC),
Sliema, Malta, 2017, pp. 520–535.

[58] I. Grishchenko,M.Maffei, and C. Schneidewind, ‘‘A semantic framework
for the security analysis of Ethereum smart contracts,’’ in Proc. Int. Conf.
Princ. Secur. Trust, Thessaloniki, Greece, 2018, pp. 243–269.

[59] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, ‘‘KEVM:
A complete formal semantics of the Ethereum virtual machine,’’ in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), vol. 1, Aug. 2018,
pp. 204–217.

[60] B. Beckert, M. Herda, M. Kirsten, and J. Schiffl, ‘‘Formal specification
and verification of hyperledger fabric chaincode,’’ in Proc. Int. Conf.
Formal Eng. Methods, Gold Coast, QLD, Australia, 2018, pp. 44–48.

[61] ChainSecurity. Accessed: Sep. 6, 2019. [Online]. Available: https://
medium.com/chainsecurity/release-of-hyperchecker-2dff2ebe30cc

[62] Octopus. Accessed: Jun. 8, 2019. [Online]. Available: https://github.
com/quoscient/octopus

[63] J. Krupp and C. Rossow, ‘‘teEther: Gnawing at Ethereum to automatically
exploit smart contract,’’ in Proc. 27th USENIX Secur. Symp., Baltimore,
MD, USA, Aug. 2018, pp. 1317–1333.

[64] Mythril. Accessed: Jun. 8, 2019. [Online]. Available: https://github.
com/ConsenSys/mythril

[65] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis of
Ethereum smart contracts,’’ in Proc. IEEE/ACM 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain (WETSEB), Gothenburg, Sweden,
May/Jun. 2018, pp. 9–16.

[66] Manticore. Accessed: Sep. 6, 2019. [Online]. Available: https://github.
com/trailofbits/manticore

[67] Security Audits for High-Impact Projects. Accessed: Jun. 8, 2019.
[Online]. Available: https://zeppelin.solutions

[68] Smart Contract Security Audit. Accessed: Sep. 6, 2019.[Online]. Avail-
able: http://smartcontracts.smartdec.net/

[69] ConsenSys Diligence. Accessed: Sep. 6, 2019. [Online]. Available:
https://consensys.net/diligence/

[70] Y. Zhou, D. Kumar, S. Bakshi, J.Mason, A.Miller, andM.Bailey, ‘‘Erays:
Reverse engineering Ethereum’s opaque smart contracts,’’ in Proc. 27th
USENIX Secur. Symp., Baltimore, MD, USA, Aug. 2018, pp. 1371–1385.
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