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ABSTRACT Extubation failure is a complex and ongoing problem in the intensive care unit (ICU). It refers to
the patients who require re-intubation after extubation (namely disconnection from mechanical ventilation).
In these patients, extubation failure leads to severe risks associated with re-intubation and is associated
with increased mortalities, longer stay in ICU and also higher health care costs. Many studies have been
proposed to analyze the problem of extubation failure and identify possible factors or indices that may
predict extubation failure. However, these studies used a small number of patients for extubation failure
and limited their features to several vital signs or main characteristics. We argue that these are insufficient
and less accurate for the prediction of extubation failure. In this paper, we analyze 3636 adult patient records
in the MIMIC-III clinical database and apply the Light Gradient Boosting Machine (LightGBM) to predict
extubation failure. Also, we perform feature importance analysis according to the result of LightGBM and
interpret these features using SHapley Additive exPlanations (SHAP). Experimental results show that our
LightGBM method is effective in predicting extubation failure and outperform other machine learning
methods such as artificial neural network (ANN), logistic regression (LR) and support vector machine
(SVM). The results of feature importance and SHAP analysis are also proved effective and accurate.

INDEX TERMS Extubation failure prediction, feature importance, light gradient boosting machine, shapley
additive explanations.

I. INTRODUCTION
Mechanical ventilation is the primary way of breathing sup-
port for the patients in intensive care units (ICU). It is a
life-saving medical procedure and can assist patients with
acute respiratory difficulties. Studies have shown that around
50% of patients in ICU require mechanical ventilation
[1], [2]. Extubation refers to the process of removing

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

endotracheal tube from patients. It is the final step in liber-
ating a patient from mechanical ventilation. In critical care,
timely and effective extubation is an important goal [2].

The extubation process for a patient with mechanical ven-
tilation should be performed as soon as possible. Once there
is improvement noted within a few days or weeks, a clinical
decision should be made to withdraw the endotracheal tube
(i.e., extubation). Unnecessary delay and too early extubation
both have adverse effects on patients [3], [4]. Delayed extu-
bation (or long-term mechanical ventilation) is associated
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with increased morbidities and even mortalities as well as
a range of medical complications (e.g., ventilator-associated
pneumonia, airway trauma) [5]–[7]. Extubation too earlymay
cause extubation failure (EF). According to studies, up to
25% of patients fail the extubation and require re-intubation
due to recurrence of respiratory insufficiency [8]. EF puts
patients at acute risks associated with reintubation and
increases health care costs and length of stay in ICU and
also mortalities [9]–[11]. Therefore, considering the risks of
delayed and too early extubation, it is significant to identify
the ideal time point for extubation and reduce the patient’s
time on mechanical ventilation.

In clinical practice, the assessment for extubation readiness
is mainly based on the outcomes of the spontaneous breathing
trial (SBT), which contains T-tube breathing or low-level
pressure support ventilation over at least 30 minutes [2].
In addition, the decision to extubate is also based on many
other observations, such as blood gas results, ventilator set-
tings, and clinical expertise. Despite advances in technology,
the extubation decision making is still a complex and difficult
task for clinicians [12]. Actually, there is no consensus on
a standardized or objective weaning protocol [13], and it is
controversial which parameters should be included in that
protocol, even though the use of weaning protocols some-
times could be helpful [14]. Further, the actual applying of
weaning protocol varies individually and even varies amongst
different insititutions [13]. To help clinicians make more
informed decision, an automated prediction tool for extuba-
tion is necessary.

Several prospective and retrospective studies have been
proposed to identify important factors and indices that can
predict extubation failture [15], [16]. The factors are ranging
from demographic information (e.g., age, reason for intu-
bation) [17], vital signs (e.g., heart rate, respiratory rate)
[18], blood gas analysis (e.g., sodium, potassium, serum
anion gap) [15], and pulmonary characteristics (e.g., dura-
tion of mechanical ventilation, tidal volume) [17], [19].
Saugel et al. [15] applyed statistic analysis on the medical
records of 61 ICU patients and found that low pre-extubation
serum anion gap values and low pre-extubation PaO2/FiO2
1 ratio might be helpful. Chaparro and Giraldo [16] pro-
posed a new extubation index based on the power of respi-
ratory flow signal. Other indices, such as cardiorespiratory
behavior [20] and breathing patterns [21] have been used for
preterm neonate patients.

Recently, artificial neural network (ANN) has been applied
by many researchers to address the problem of ventilator
extubating. Gottschalk et al. [19] has utilized 4 variables
(i.e., tidal volume [VT], minute ventilation, breathing fre-
quency, and maximum inspiratory pressure [PImax ]) to train
an ANN model. Kuo et al. [17] designed their ANN model
according to 8 input variables, consisting of subjects’ age,
reasons for intubation, duration of mechanical ventilation,

1PaO2 and FiO2 are the arterial partial pressure of oxygen and fraction of
inspired oxygen respectively.

acute physiology and chronic health evaluation (APACHE)
II scores, and breathing patterns obtained during a 30-min
SBT. Their ANN model showned better discrimination than
existing predictors, such as RSBI, PImax , RSBI1, RSBI30, and
MRSBI30, 2 in predicting successful extubation. However,
the data numbers for these ANN methods were small. Neu-
ral networks are more suitable for finding patterns in large
sample data, and the training algorithm, back propagation
(BP), for ANN also needs large numbers of data since the
uncontrolled convergence speed and local optima problem of
BP [22].

Mikhno and Ennett [18] applied machine learning tech-
niques to the 179 neonate records in the MIMIC-II (Multi-
Parameter Intelligent Monitoring of Intensive Care) clinical
database [23] to locate features relevant to EF, and to develop
a model for predicting EF in the neonatal intensive care unit.
But they used logistic regression to screen all combinations
of 3 features from a pool of 57 features (yielding 58,520 can-
didate models), and find 6 features for EF prediction from the
top two models. We argue that this feature selection process
is complicated and time-consuming.

Furthermore, all the methods above have a limitation,
which is that they have a small number of patients for EF, and
the numbers of EF patients are only 20 or 30. To improve the
performance for the prediction of extubation outcome, studies
with larger and more heterogeneous patient collectives are
needed [15]. In addition, existing works have limited their
features for prediction to at most a couple of key vital signs
or main characteristics, which are not sufficient and less
accurate for the extubation outcome analysis.

To these ends, in this paper, we propose an automated EF
prediction and feature analysis model, which is based on the
Light Gradient Boosting Machine (LightGBM). We extract
and utilize 3636 adult patient records with nearly one hundred
features from theMIMIC-III clinical database [24]. At the ini-
tial procedure, we perform the feature pre-processing, includ-
ing missing value processing and feature correlation analysis.
Then, we explore the use of LightGBM model to predict
EF and analyze features that effect the extubation outcomes.
The experimental results demonstrate the superiority of our
method. The main contributions of our work are summarized
as follows:

1) We employ a LightGBMmodel for EF prediction based
on large patient records;

2) We incorporate a large number of possible features to
perform a comprehensive analysis for EF prediction,
initially with 92 features;

3) We perform the feature importance analysis and visu-
alize important features with the SHAP method.

The remaining of this paper is organized as follows:
Section II describes the data and methods used in this study.
In Section III, we present the results, and Section IV gives

2RSBI = rapid shallow breathing index. RSBI1 and RSBI30 are RSBI at
1 min and 30 min in an SBT, respectively. MRSBI30 refers to the absolute
percentage change in RSBI from 1 to 30 min in an SBT.
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TABLE 1. Preliminary features listed by type.

discussion about important features and visualization of these
features. Finally, conclusions and future works are described
in Section V.

II. METHOD
A. DATA
We utilize the MIMIC-III clinical database, a freely acces-
sible critical care data with 54379 admissions, for this
study. The data includes patient demographic information,
vital signs, laboratory measurements, observations and notes
charted by care providers, fluid balance, procedure and diag-
nostic codes, imaging reports, and so on [24]. To efficiently
and deeply study the EF task, we selected 3636 patients
from the initial admissions as follows. First, we excluded
the patients who did not intubate and had unclear extubation
states. Second, since our focus is on the adult ICU patients,
the patients with age < 18 were removed. Third, admissions
that the patient was dead before extubation were filtered out.
Finally, 3636 unique adult patients undergoing mechanical
ventilation and extubation were analyzed in our study and
the numbers of extubation failure and extubation success are
624 and 3012 respectively.

According to previous studies, extubation failure was
defined as the need for re-intubation within 48 hours after
extubation [2]. Since direct information of whether the patient
is intubated or not is not available in MIMIC-III, we infer
the ventilation status (i.e., ‘‘intubated’’ or ‘‘not-intubated’’)
through ventilator related parameters, such as respiratory sup-
port, ventilator mode, airway, breath rate, and oxygen deliv-
ery device [18]. In other words, if the patient has any of the
parameters associated with using ventilator, the ventilation
status of the patient is considered as intubated. An ‘‘extuba-
tion’’ event was defined as the time point where ‘‘intubated’’
status changed to ‘not-intubated’’.

B. FEATURE PREPROCESSING
1) INITIAL FEATURES
Table 1 shows a preliminary set of features or variables that
we used for this study. Note that these variables are selected

FIGURE 1. Missing degree of initial features, where HR = Heart rate,
MAP = Mean arterial pressure, POS = Percutaneous oxygen saturation, T
= Temperature, SBP = Systolic blood pressure, and DBP = Diastolic blood
pressure.

according to the suggestions of our cooperated clinicians, and
all of them are considered helpful by clinicians to predict
EF. So we give a systematic and comprehensive analysis for
the factors that may influence extubation outcomes. In total,
we have 92 features, which contain demographic characteris-
tics of the patient (e.g., age, gender and some past diseases),
vital signs such as heart rate and respiratory rate, laboratory
results for blood gas analysis, blood glucose and total pro-
tein, ventilator information including duration of mechanical
ventilation, VT and Minute volume, and clinical intervention
such as sedation days and vasopressor. Also, the variables
contain clinical scores of RSBI, SOFA and GCS. If a patient
is extubated, we find and extract the above variables for the
patient from the timeline before extubation.

2) MISSING VALUE PROCESSING
Fig. 1 demonstrates the missing degree of our initial fea-
tures, and we divide the features into four groups: the feature
values are not missing (‘‘0%’’), missing degree is less than
20% but greater than 0% (‘‘0%-20%’’), missing degree is in

150962 VOLUME 7, 2019



T. Chen et al.: Prediction of Extubation Failure for ICU Patients Using LightGBM

FIGURE 2. Correlation analysis.

20%-40% (‘‘20%-40%’’), and missing degree is greater than
40% (‘‘>40%’’).We remove features that theirmissing degree
is greater than 40%. For features in group ‘‘20%-40%’’ (i.e.,
Ca+, PIP, Height, and Lactic acid), we analyze the distribu-
tions of the values for each features, and the missing values
for feature ‘‘Lactic acid’’ are imputed using the median of
the ‘‘Lactic acid’’ values from other patients. The missing
values for features ‘‘Ca+’’, ‘‘PIP’’ and ‘‘Height’’ are imputed
similarly but using the mean values. Features in group
‘‘0%-20%’’ also use their respective means to fill the missing
values.

3) CORRELATION ANALYSIS
To avoid different features having high correlation, we per-
form correlation analysis for the features after missing value
processing. Pearson’s correlation coefficient is calculated for
each feature against every other feature. The visualization
result of correlation analysis is shown in Fig. 2. We find
that features with high correlations (R2 > 0.75) are the min-
imums, maximums and means for Hear rate, Respiratory
rate, Mean arterial pressure, Percutaneous oxygen saturation,
Temperature, Systolic blood pressure and Diastolic blood
pressure, respectively. According to suggestions of clinicians,
we choose the means for features HR, MAP, T, SBP and
DBP, maximum for RR and minimum for POS. After the
missing value processing and correlation analysis (removing
10 and 14 features respectively), we finally have 68 features
for model input.

C. LIGHTGBM-BASED EF PREDICTION
1) LightGBM
LightGBM [25] is a fast, distributed, high-performance gra-
dient boosting framework based on decision tree algorithm,
used for ranking, classification and many other machine
learning tasks. In essence, LightGBM is an ensemble method

that combines the predictions of multiple decision trees (by
adding them together) to make the final prediction that gen-
eralizes well. Importantly, LightGBM trains the multiple tree
models in an additive manner, with each new tree model
being trained to predict the residuals (i.e., errors) of the prior
models. Suppose we want construct a LightGBMmodel with
T trees, and for a given dataset with n examples, the additive
training process can be described as:

ŷ(0)i = 0

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi)+ f2(xi) = ŷ(1)i + f2(xi)

· · ·

ŷ(t)i =
t∑

k=1

fk (xi) = ŷ(t−1)i + ft (xi) (1)

where ŷ(t)i is the prediction of the i-th example at the t-th
iteration and ft is the learned function for the t-th decision
tree. As the Eq. 1 illustrates, in each iteration, we keep the
current model ŷi and add a new function f (or the learned
residuals) into the model. The f s of all iterations can be
learned by minimizing the following objective:

L(t)
=

n∑
i

l(yi, ŷ
(t)
i )+

T∑
t=1

�(ft ) (2)

The first term is the loss function measuring the difference
between the prediction y(t)i and the target yi, and the second is
the regularization term which penalize the complexity of the
model.

Particularly, LightGBM is an implementation of gradient
boosting decision tree (GBDT) [26].When training each indi-
vidual decision tree (f ) and splitting the data, there are two
exclusive strategies LightGBM employed: gradient-based
one-side sampling (GOSS) [25] and leaf-wise growth.
GOSS aims to tackle the computational complexity problem
of conventional implementations of GBDT, which need to go
through every feature of every data point when computing
the information gain for all the possible splits. The crucial
observation behind GOSS is that data instances with larger
gradients play greater roles in information gain computation.
Therefore, when estimating the best split, GOSS keeps data
instances with large gradients and randomly samples data
with small gradients. This strategy has been proved effective
and work faster than conventional ones. Leaf-wise growth is
an efficient strategy for growing trees. It finds the leaf with
the largest splitting gain from all the current leaves each time,
and then splits the leaf, and circulate this process. In other
words, It will choose the leaf with max delta loss to grow.
Compared with level-wise growth strategy, leaf-wise one can
reduce more errors and obtain better accuracy under the same
splitting times. The disadvantage of leaf-wise strategy is that
it may grow trees deeply and lead to overfitting. Therefore,
LightGBM adds a maximum depth limit on leaf-wise to
ensure high efficiency while preventing overfitting. An illus-
tration of leaf-wise and level-wise tree growth strategies is
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FIGURE 3. Strateges of tree growth.

FIGURE 4. Extubation failure prediction process.

shown in Fig. 3. We discuss the impact of these two strategies
on feature importance analysis in Section III-B.

2) EF PREDICTION
Due to the high performance and fast speed of LightGBM,
in this paper, we explore the LightGBMmethod on EF predic-
tion and analyze important factors that useful for EF predic-
tion. Fig. 4 describes the whole process of our EF prediction
has four steps:

(1) Before forming the final input data (with 68 features),
we perform data processing including extracting eligible
patients from theMIMIC-III clinical database, initial features
extraction, missing value processing and correlation analysis.

(2) The LightGBM is applied on the input data. We set
parameters ‘‘num_leaves =70’’ and ‘‘max_depth=6’’ to
avoid over-fitting, especially the ‘‘max_depth’’ (avoid con-
structing trees too deep). The ‘‘min_data_in_leaf’’ parameter
indicates the minimum number of samples per leaf node. It is
an important parameter to deal with over-fitting of leaf-wise
grown trees, and we set it to 30. In addition, the ‘‘learn-
ing_rate’’ is set to 0.02, and we use 5-fold cross-validation
to compute the average prediction results.

(3) According to the result of step (2), we perform feature
importance analysis, and find the top 36 features that are help-
ful for EF prediction. The feature importance ranking is based
on the importance type ‘‘split’’ (in ‘‘feature_importance’’

TABLE 2. Performance comparison. ACC = accuracy, SEN = sensitivity,
and SPE = specificity.

FIGURE 5. The result of feature importance analysis of LightGBM.

function), which computes numbers of the times the feature is
used in LightGBM to represent the importance of that feature.

(4) Data set with the analyzed top 36 features are inputted
to a new LightGBM model, outputting the prediction for
extubation failure. The final result is also obtained through
5-fold cross-validation.

D. EVALUATION METRICS
We evaluate the prediction performance of all the methods in
terms of accuracy, sensitivity and specificity. The equations
are described as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(3)

Sensitivity =
TP

TP+ FN
(4)

Specificity =
TN

TN + FP
(5)

where TP, TN, FP, FN refer to true positive, true negative,
false positive, and false negatives, respectively. Additionally,
receiver operating characteristic (ROC) curve as well as area
under the ROC curve (AUC) are measured. The AUC value
is computed by taking the integral of true positive rate with
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FIGURE 6. The feature importance ranking of LightGBM (with
68 features).

respect to the false positive rate:

AUC =
∫ 1

0
Rtp(Rfp)δRfp (6)

where the true positive rate Rtp is a function of the false
positive rate Rfp along the curve.

III. RESULTS
A. PERFORMANCE OF LIGHTGBM AND FEATURE
IMPORTANCE ANALYSIS
The performance of LightGBM and the result of feature
importance analysis are shown in Table 2 and Fig. 6. Firstly,
we apply the final input data with 68 features on LightGBM,
which has an accuracy of 80.23%, sensitivity of 74.85%,
specificity of 83.27% and the AUC value is 0.8130. Then,
we perform feature importance analysis. As shown in Fig. 6,
the three most important features are DHMV, PO2 and
PaCO2, then the importance of features Arterial PH, HRmin,
BUN, Weight, Age and Hemoglobin reduces but still main-
tains a certain importance. Further, we observe that almost all
the five features related to ventilator information show high
importance, especially the DHMV, Mean airway pressure,
VT and Minute volume. Features in laboratory results are
also crucial for EF prediction, such as Hemoglobin, Blood
glucose, APTT, K+, and Cl−. Since many features have little
importance on the EF prediction, we extract the top 36 fea-
tures for further analysis. As we can see, LightGBM with
the top 36 features represents similar performance with that
of 68 features, reducing slightly in accuracy and sensitivity

FIGURE 7. The feature importance ranking of XGboost (with 68 features).

but showing slight improvements in specificity and AUC
value. This indicates that the removed 34 features are not such
important and even not working in EF prediction.

B. PERFORMANCE COMPARISON WITH XGBOOST
XGboost [27] is also an implementation of GBDT. Com-
paring with LightGBM, the differences are that it adopts
the pre-sorting method to compute the spitting information
gain and the level-wise method (see Fig. 3(a)) to grow the
tree. However, when computing the splitting gain, pre-sorting
method needs to go through all the splitting points, consum-
ing a lot of time and space. Further, level-wise tree con-
struction method splits all the nodes in each layer equally.
Some leaf nodes have a little splitting gain, which may not
effect the results, but XGboost still splits, increasing the
computational cost. The performance comparison between
LightGBM and XGboost is shown in Table 2. For input
68 features, XGboost presents similar results to LightGBM
on the sensitivity and AUC value, but decreases by 3.33%
and 5.22% on the accuracy and specificity, respectively. Fig. 7
illustrates the feature importance analysis result of XGboost.
As we can see, the important features for EF prediction is
PO2, Hemoglobin, PaCO2, WBC and Blood glucose in Lab-
oratory results, HRmin and DBPmin in vital signs, and Age and
Weight in demographic information. Different from the result
of LightGBM, the importance result of features in ventilator
information of XGboost are not that important. Our clinicians
indicate that the importance ranking of XGboost is not so
accurate even it has the same top 36 features with LightGBM.
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FIGURE 8. The SHAP value for a single data sample.

FIGURE 9. The feature importance ranking of LightGBM (with
36 features).

This is also the reason that we are not using XGboost for EF
prediction.

C. PERFORMANCE COMPARISON WITH OTHER
MACHINE LEARNING METHODS
Moreover, existing methods for EF prediction have uti-
lized other machine learning methods, including LR [18],
SVM [28] andANN [17], [19].We compare the EF prediction
result of LightGBM with those of the aforementioned meth-
ods shown in Table 2 and Fig. 5, andwe calculate the averaged
accuracy, sensitivity, specificity and AUC value in the same
setting as LightGBM (using 5-fold cross-validation). The
LightGBM is generally superior tomethods such as LR, SVM
and ANN. All these methods show good results in accuracy
and specificity, especially the LR with 68 features (81.37%
accuracy and 82.19%) and ANN (80.23% accuracy) with
36 features, but they have pretty lower sensitivities and AUC
values. The ROC curves in Fig. 5 also illustrate the superiority
of LightGBM.

IV. DISCUSSION
After using LightGBM with the top 36 features to predict
EF, we again perform feature importance analysis based on
the trained LightGBM. The importance ranking is demon-
strated in Fig. 9. Generally, comparing with LightGBM with

FIGURE 10. Overall analysis of features.

68 features, the importance orders of these features are not
changing greatly, except for the feature Sedation day.

In this section, we go step further on the feature importance
analysis. Feature importance is the contribution of each fea-
ture to improving the predictive ability of the entire model.
It can intuitively reflect the importance of features and see
which features have great influence on the final model, but
it is impossible to judge how the relationship between the
feature and the final prediction is. In Fig. 9, we can observe
that the features of DHMV, PO2 and PaCO2 are the threemost
important factors affecting the prediction for EF. However,
whether these features have positive or negative, or other
more complex correlations with EF, it can not obtained
from Fig. 9. SHAP (SHapley Additive exPlanations) [29],
a interpretable tool for prediction output of machine learning
models, can reflect the influence of the features in each data
sample, and also shows the positive and negative effects.
Therefore, we explore further on the correlation between fea-
tures and EF using SHAP value and top 15 features in Fig. 9.
The visualization results are shown in Fig. 10 and Fig. 8.
Fig. 8 visualizes the SHAP values for a single data sample.
The base value (0.2918) is the mean of the fitting values
of targets in the training set. The blue indicates a negative
contribution, and the red indicates a positive contribution.
The below red texts are the values for these features, and
the output value (0.58) is the prediction output of the sample.
As shown in Fig. 8, the longest red bar is the Sedation day, and
it increases the prediction value by 0.2 at least. The longest
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blue bar is the HRmin, and a small value of HRmin decreases
the prediction result.

In Fig. 10, each row represents a feature with the SHAP
value on the horizontal axis and each point represents a data
sample. The redder the color means the larger the value of
the feature itself, and the bluer the color means the smaller
the value of the feature itself. The left features in Fig. 10
are re-sorted by the SHAP framework. From Fig. 10, we can
intuitively observe that the Sedation day is a very important
feature, and basically it is positively correlated with EF. Seda-
tion day means the time of intubation patients using sedative
drugs, which are crucial to maintain physiological stability
and control pain levels of patients while intubated. The longer
the sedation time also means the longer duration of mechan-
ical ventilation, which makes extubation more difficult. The
features of BUN, PaCO2, Mean airway pressure, and HRmin
are also positive to predict EF, and increasing the values of
these features can increase the prediction of EF. The features
of PO2, GCS, Weight, Hemoglobin, Arterial PH, and VT are
negatively correlated with EF, and the smaller the values of
these feature, the better the prediction of the model. Other
features like DHMV, Creatinine and Blood glucose have both
positive and negative correlations with EF, but DHMVprefers
to negative correlation, Blood glucose prefers to positive
correlation and Creatinine is neutral. For the feature Age,
small feature values can reduce the prediction for EF, but
large feature values can not only increase the prediction but
also reduce it.

In addition, we also try the synthetic minority over-
sampling technique (SMOTE) [30] to enlarge the data of EF
to overcome the imbalanced learning problem, but the final
results with or without SMOTE are not obvious. So, we are
not using SMOTE finally.

V. CONCLUSION
In this paper, we applied LightGBM to predict extubation
failure using 3636 adult patient records in the MIMIC-III
clinical database. We also performed a comprehensive fea-
ture importance analysis to identify useful features for EF
prediction. When training the LightGBM, we firstly utilized
the processed 68 features as input, and selected the top
36 features according to the result of feature importance
analysis, and performed further study on these 36 feature.
Experimental results demonstrated that using LightGBM is
feasible for EF prediction and it outperformed other machine
learning methods such as XGboost, LR, SVM and ANN.
More importantly, we adopted the SHAP to explore the corre-
lation between features and the prediction for EF. The feature
importance and SHAP analysis illustrated that features of
DHMV, PO2 and PaCO2 had great influence on the final
model, and the Sedation day showed high positive correlation
with EF, respectively. Of course, other features like Arterial
PH, BUN, HR, Age andWeight were also important. In clini-
cal practice, clinicians can concentrate more on those features
to make more informed extubation decision. However, even
though the LightGBM showed a better performance than

other methods, the sensitivities (the recognition for EF) were
still not very high. Further studies to improve the EF precition
performance are needed.
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